imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

August 2005

MMBT5550 NPN General Purpose Amplifier

MMBT5550 NPN General Purpose Amplifier

• This device is designed for general purpose high voltage amplifiers and gas discharge display drivers.

1. Base 2. Emitter 3. Collector

Absolute Maximum Ratings * T_a = 25°C unless otherwise noted

Symbol	Parameter	Value	Units
V _{CEO}	Collector-Emitter Voltage	140	V
V _{CBO}	Collector-Base Voltage	160	V
V _{EBO}	Emitter-Base Voltage	6.0	V
I _C	Collector current - Continuous	600	mA
T _J , T _{stg}	Junction and Storage Temperature	-55 ~ +150	°C

* These ratings are limiting values above which the serviceability of any semiconductor device may be impaired.

NOTES:

1. These ratings are based on a maximum junction temperature of 150 degrees C.

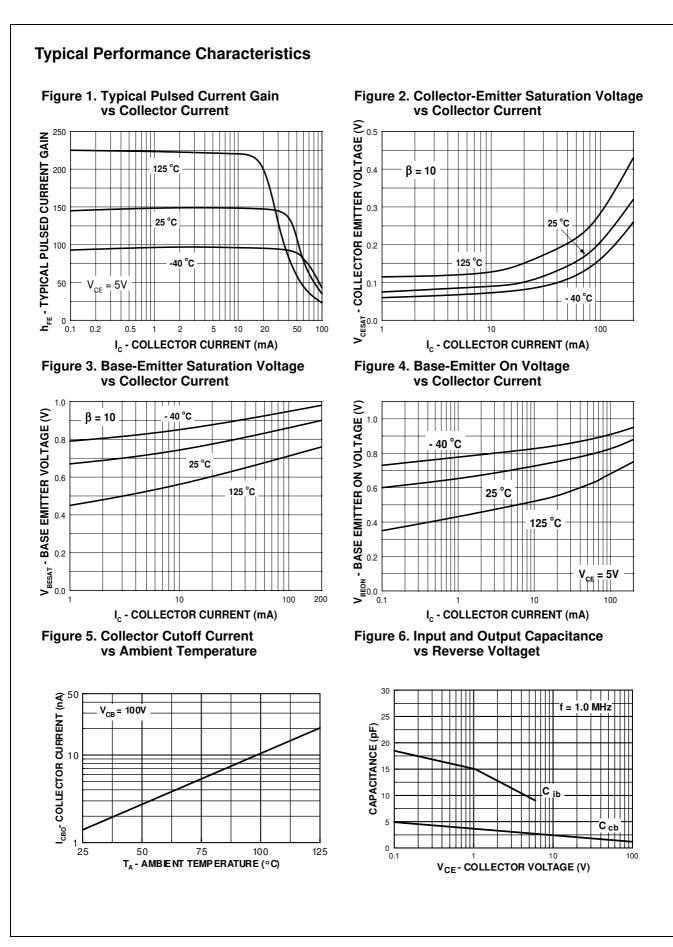
2. These are steady state limits. The factory should be consulted on applications involving pulsed or low duty cycle operations.

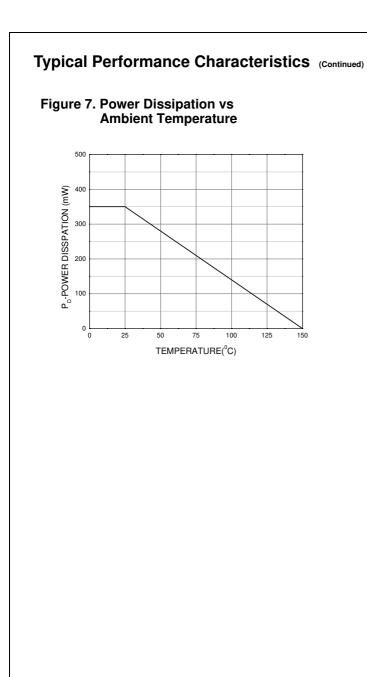
Electrical Characteristics $T_a = 25^{\circ}C$ unless otherwise noted

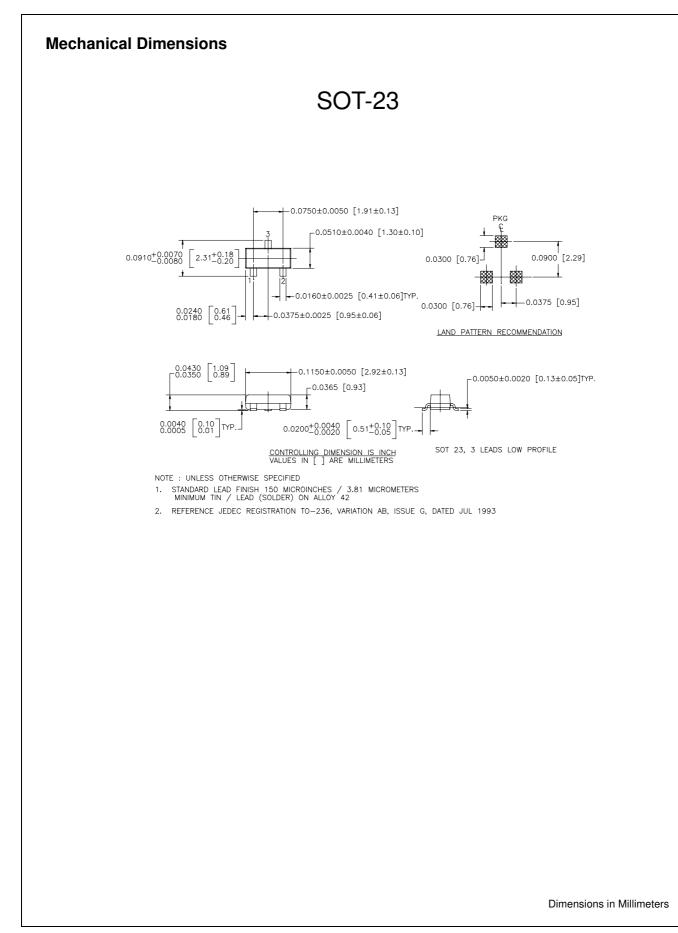
Symbol	Parameter	Test Condition	Min.	Max.	Units
Off Charact	teristics		1		1
V _{(BR)CEO}	Collector-Emitter Breakdown Voltage *	I _C = 1.0mA, I _B = 0	140		V
V _{(BR)CBO}	Collector-Base Breakdown Voltage	$I_{\rm C} = 100 \mu {\rm A}, \ I_{\rm E} = 0$	160		V
V _{(BR)EBO}	Emitter-Base Breakdown Voltage	$I_{E} = 10 \text{mA}, I_{C} = 0$	6.0		V
I _{CBO}	Collector Cutoff Current	$V_{CB} = 100V, I_E = 0$ $V_{CB} = 100V, I_E = 0, T_a = 100^{\circ}C$		100 100	nA μA
I _{EBO}	Emitter Cutoff Current	$V_{EB} = 4.0V, I_{C} = 0$		50	nA
On Charact	eristics				•
h _{FE}	DC Current Gain	$\label{eq:IC} \begin{array}{l} I_{C} = 1.0 \text{mA}, \ V_{CE} = 5.0 \text{V} \\ I_{C} = 10 \text{mA}, \ V_{CE} = 5.0 \text{V} \\ I_{C} = 50 \text{mA}, \ V_{CE} = 5.0 \text{V} \end{array}$	60 60 20	250	
V _{CE(sat)}	Collector-Emitter Saturation Voltage	$I_{C} = 10$ mA, $I_{B} = 1.0$ mA $I_{C} = 50$ mA, $I_{B} = 5.0$ mA		0.15 0.25	V V
V _{BE(sat)}	Base-Emitter On Voltage	$I_{C} = 10mA, I_{B} = 1.0mA$ $I_{C} = 50mA, I_{B} = 5.0mA$		1.0 1.2	V V

Electrical Characteristics $T_a = 25^{\circ}C$ unless otherwise noted

Symbol	Parameter	Test Condition	Min.	Max.	Units
Small Signal Characteristics					
f _T	Current Gain Bandwidth Product	$I_{C} = 10$ mA, $V_{CE} = 10$ V, f = 100MHz	50		MHz
C _{obo}	Output Capacitance	$V_{CB} = 10V, I_E = 0, f = 1.0MHz$		6.0	pF
C _{ibo}	Input Capacitance	$V_{BE} = 0.5V, I_{C} = 0, f = 1.0MHz$		30	pF


Thermal Characteristics Ta=25°C unless otherwise noted


Symbol	Parameter	Max.	Units
P _D	Total Device Dissipation Derate above 25°C	350 2.8	mW mW/°C
R_{\thetaJA}	Thermal Resistance, Junction to Ambient	357	°C/W


* Device mounted on FR-4 PCB 1.6" \times 1.6" \times 0.06."

Package Marking and Ordering Information

Device Marking	Device	Package	Reel Size	Tape Width	Quantity
1F	MMBT5550	SOT-23	7"		3,000

www.fairchildsemi.com

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx™ ActiveArray™
Bottomless™
Build it Now™
CoolFET™
CROSSVOLT™
DOME™
EcoSPARK™
E ² CMOS™
EnSigna™
FACT™
FACT Quiet Series™

The Power Franchise[®]

Programmable Active Droop™

FAST[®] FASTr™ FPS™ FRFET™ GlobalOptoisolator™ GTO™ HiSeC™ I²C™ i-Lo™ ImpliedDisconnect[™] IntelliMAX™ Across the board. Around the world.™

ISOPLANAR™ LittleFET™ MICROCOUPLER™ MicroFET™ MicroPak™ MICROWIRE™ MSX™ MSXPro™ OCX™ OCXPro™ **OPTOLOGIC[®] OPTOPLANAR™** PACMAN™ РОР™ Power247™ PowerEdge™

PowerSaver™ PowerTrench[®] QFET[®] QS™ QT Optoelectronics™ Quiet Series™ RapidConfigure™ RapidConnect™ μSerDes™ SILENT SWITCHER® SMART START™ SPM™ Stealth™ SuperFET™ SuperSOT™-3 SuperSOT[™]-6

SuperSOT™-8 SyncFET™ TinyLogic[®] TINYOPTO™ TruTranslation™ UHC™ UltraFET[®] UniFET™ VCX™ Wire™

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN: NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.
	First Production