

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

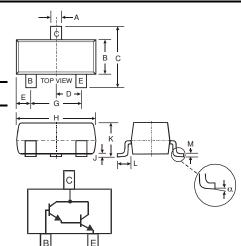
Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

MMBT6427


NPN SURFACE MOUNT DARLINGTON TRANSISTOR

Features

- Epitaxial Planar Die Construction
- Ideal for Low Power Amplification and Switching
- High Current Gain
- Lead, Halogen and Antimony Free, RoHS Compliant "Green" Device (Notes 1 and 4)

Mechanical Data

- Case: SOT-23
- Case Material: Molded Plastic. UL Flammability Classification Rating 94V-0
- Moisture Sensitivity: Level 1 per J-STD-020D
- Terminals: Solderable per MIL-STD-202, Method 208
- Lead Free Plating (Matte Tin Finish annealed over Alloy 42 leadframe).
- Terminal Connections: See Diagram
- Marking (See Page 3): K1D
- Ordering & Date Code Information: See Page 3
- Weight: 0.008 grams (approximate)

	SOT-23	
Dim	Min	Max
Α	0.37	0.51
В	1.20	1.40
C	2.30	2.50
D	0.89	1.03
Е	0.45	0.60
G	1.78	2.05
Н	2.80	3.00
7	0.013	0.10
K	0.903	1.10
١	0.45	0.61
М	0.085	0.180
α	0°	8°
All Din	nensions	in mm

Maximum Ratings @T_A = 25°C unless otherwise specified

Characteristic	Symbol	Value	Unit
Collector-Base Voltage	V_{CBO}	40	V
Collector-Emitter Voltage	V_{CEO}	40	V
Emitter-Base Voltage	V_{EBO}	12	V
Collector Current - Continuous	Ιc	500	mA

Thermal Characteristics

Characteristic	Symbol	Value	Unit
Power Dissipation (Note 2) @ T _A = 25°C	P_{D}	300	mW
Thermal Resistance, Junction to Ambient (Note 2)@ T _A = 25°C	$R_{ hetaJA}$	417	°C/W
Operating and Storage Temperature Range	T _J , T _{STG}	-55 to +150	°C

Electrical Characteristics @TA = 25°C unless otherwise specified

Characteristic	Symbol	Min	Max	Unit	Test Condition
OFF CHARACTERISTICS (Note 3)					
Collector-Base Breakdown Voltage	$V_{(BR)CBO}$	40	_	V	$I_C = 100 \mu A, I_E = 0$
Collector-Emitter Breakdown Voltage	$V_{(BR)CEO}$	40	_	V	$I_C = 10 \text{mA}, I_B = 0$
Emitter-Base Breakdown Voltage	$V_{(BR)EBO}$	12	_	V	$I_E = 10 \mu A, I_C = 0$
Collector Cutoff Current	I _{CBO}		50	nA	$V_{CB} = 30V, I_{E} = 0$
Collector Cutoff Current	ICEO		1.0	μΑ	$V_{CE} = 25V, I_B = 0$
Emitter Cutoff Current	I _{EBO}		50	nA	$V_{EB} = 10V, I_C = 0$
ON CHARACTERISTICS (Note 3)					
DC Current Gain	h _{FE}	10,000 20,000 14,000	100,000 200,000 140,000	_	$I_C = 10$ mA, $V_{CE} = 5.0$ V $I_C = 100$ mA, $V_{CE} = 5.0$ V $I_C = 500$ mA, $V_{CE} = 5.0$ V
Collector-Emitter Saturation Voltage	V _{CE(SAT)}	_	1.2 1.5	V	$I_C = 50 \text{mA}, I_B = 0.5 \text{mA}$ $I_C = 500 \text{mA}, I_B = 0.5 \text{mA}$
Base-Emitter Saturation Voltage	$V_{BE(SAT)}$	_	2.0	V	$I_C = 500 \text{mA}, I_B = 0.5 \text{mA}$
Base-Emitter On Voltage	V _{BE(ON)}	_	1.75	٧	$I_C = 50 \text{mA}, V_{CE} = 5.0 \text{V}$
SMALL SIGNAL CHARACTERISTICS					
Output Capacitance	C_{obo}	8.0 Typical		рF	$V_{CB} = 10V$, $f = 1.0MHz$, $I_E = 0$
Input Capacitance	Cibo	15 Typical		рF	$V_{EB} = 0.5V, f = 1.0MHz, I_{C} = 0$

Notes:

- 1. No purposefully added lead. Halogen and Antimony Free.
- Device mounted on FR-4 PCB, 1 inch x 0.85 inch x 0.062 inch; pad layout as shown on Diodes Inc. suggested pad layout document AP02001, which can be found on our website at http://www.diodes.com/datasheets/ap02001.pdf.
- Short duration pulse test used to minimize self-heating effect.
- Product manufactured with Data Code V9 (week 33, 2008) and newer are built with Green Molding Compound. Product manufactured prior to Date Code V9 are built with Non-Green Molding Compound and may contain Halogens or Sb₂O₃ Fire Retardants.

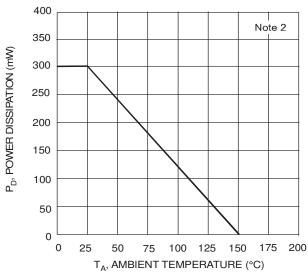
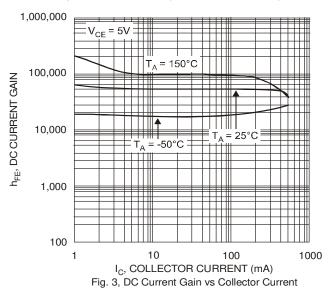



Fig. 1, Max Power Dissipation vs Ambient Temperature

1000 $V_{CE} = 5V$ f_T, GAIN BANDWIDTH PRODUCT (MHz) 100 10 1 10 100 I_C, COLLECTOR CURRENT (mA)

Fig. 5, Gain Bandwidth Product vs Collector Current

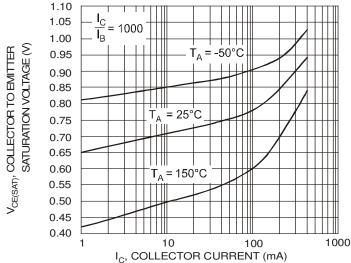


Fig. 2, Collector Emitter Saturation Voltage vs. Collector Current

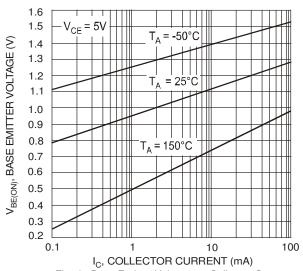
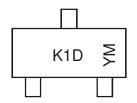


Fig. 4, Base Emitter Voltage vs. Collector Current



Ordering Information (Note 5)

Device	Packaging	Shipping
MMBT6427-7-F	SOT-23	3000/Tape & Reel

Notes: 5. For packaging details, go to our website at http://www.diodes.com/datasheets/ap02007.pdf.

Marking Information

K1D = Product Type Marking Code YM = Date Code Marking Y = Year ex: N = 2002 M = Month ex: 9 = September

Date Code Kev

Year	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
Code	J	Κ	L	М	N	Р	R	S	Т	U	٧	W	Χ	Υ	Z

Month	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Code	1	2	3	4	5	6	7	8	9	0	N	D

IMPORTANT NOTICE

Diodes Incorporated and its subsidiaries reserve the right to make modifications, enhancements, improvements, corrections or other changes without further notice to any product herein. Diodes Incorporated does not assume any liability arising out of the application or use of any product described herein; neither does it convey any license under its patent rights, nor the rights of others. The user of products in such applications shall assume all risks of such use and will agree to hold Diodes Incorporated and all the companies whose products are represented on our website, harmless against all damages.

LIFE SUPPORT

Diodes Incorporated products are not authorized for use as critical components in life support devices or systems without the expressed written approval of the President of Diodes Incorporated.