

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

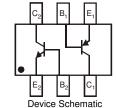
Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

MMDT4146

COMPLEMENTARY NPN / PNP SMALL SIGNAL SURFACE MOUNT TRANSISTOR


Features

- Complementary Pair
 One 4124-Type NPN
 One 4126-Type PNP
- Epitaxial Planar Die Construction
- Ideal for Medium Power Amplification and Switching
- Ultra-Small Surface Mount Package
- Lead Free/RoHS Compliant (Note 3)
- "Green" Device (Note 4 and 5)

Mechanical Data

- Case: SOT-363
- Case Material: Molded Plastic, "Green" Molding Compound, Note 5. UL Flammability Classification Rating 94V-0
- Moisture Sensitivity: Level 1 per J-STD-020D
- Terminals: Matte Tin Finish annealed over Alloy 42 leadframe (Lead Free Plating) Solderable per MIL-STD-202, Method 208
- Terminal Connections: See Diagram
- Marking Information: See Page 4
- Ordering Information: See Page 4
- Weight: 0.006 grams (approximate)

E1, B1, C1 = PNP4126 Section E2, B2, C2 = NPN4124 Section

100 1101

Maximum Ratings, NPN 4124 Section @TA = 25°C unless otherwise specified

Characteristic	Symbol	Value	Unit
Collector-Base Voltage	V_{CBO}	30	V
Collector-Emitter Voltage	V_{CEO}	25	V
Emitter-Base Voltage	V _{EBO}	5.0	V
Collector Current – Continuous (Note 1)	lc	200	mA

Maximum Ratings, PNP 4126 Section @TA = 25°C unless otherwise specified

Characteristic	Symbol	Value	Unit
Collector-Base Voltage	V_{CBO}	-25	V
Collector-Emitter Voltage	V _{CEO}	-25	V
Emitter-Base Voltage	V_{EBO}	-4	V
Collector Current - Continuous (Note 1)	Ic	-200	mA

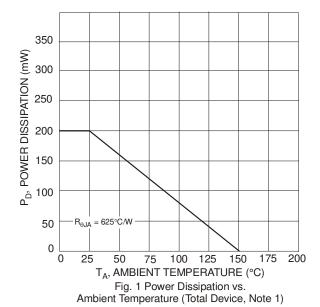
Thermal Characteristics – Total Device

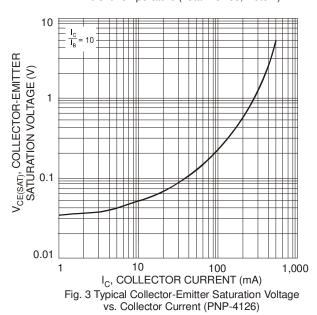
Characteristic		Symbol	Value	Unit
Power Dissipation	(Note 1, 2)	P_{D}	200	mW
Thermal Resistance, Junction to Ambient	(Note 1)	$R_{ heta JA}$	625	°C/W

Notes:

- 1. Device mounted on FR-4 PCB, 1 inch x 0.85 inch x 0.062 inch; pad layout as shown on Diodes Inc. suggested pad layout document AP02001, which can be found on our website at http://www.diodes.com/datasheets/ap02001.pdf.
- 2. Maximum combined dissipation.
- 3. No purposefully added lead.
- 4. Diodes Inc.'s "Green" policy can be found on our website at http://www.diodes.com/products/lead_free/index.php.
- Product manufactured with Date Code UO (week 40, 2007) and newer are built with Green Molding Compound. Product manufactured prior to Date Code UO are built with Non-Green Molding Compound and may contain Halogens or Sb2O3 Fire Retardants.

Electrical Characteristics, NPN 4124 Section @TA = 25°C unless otherwise specified


Characteristic	Symbol	Min	Max	Unit	Test Condition				
OFF CHARACTERISTICS (Note 6)									
Collector-Base Breakdown Voltage	$V_{(BR)CBO}$	30		V	$I_C = 10\mu A, I_E = 0$				
Collector-Emitter Breakdown Voltage	$V_{(BR)CEO}$	25	_	V	$I_C = 1.0 \text{mA}, I_B = 0$				
Emitter-Base Breakdown Voltage	$V_{(BR)EBO}$	5.0	_	V	$I_E = 10 \mu A, I_C = 0$				
Collector Cutoff Current	I _{CBO}		50	nA	$V_{CB} = 20V, I_{E} = 0V$				
Emitter Cutoff Current	I _{EBO}		50	nA	$V_{EB} = 3.0V, I_{C} = 0V$				
ON CHARACTERISTICS (Note 6)									
DC Current Gain	h	120	360	_	$I_C = 2.0 \text{mA}, V_{CE} = 1.0 \text{V}$				
Do Guiletti Gairi	h _{FE}	60			$I_C = 50 \text{mA}, V_{CE} = 1.0 \text{V}$				
Collector-Emitter Saturation Voltage	$V_{CE(SAT)}$	_	0.30	V	$I_C = 50 \text{mA}, I_B = 5.0 \text{mA}$				
Base-Emitter Saturation Voltage	$V_{BE(SAT)}$		0.95	V	$I_C = 50 \text{mA}, I_B = 5.0 \text{mA}$				
SMALL SIGNAL CHARACTERISTICS									
Output Capacitance	C_{obo}		4.0	pF	$V_{CB} = 5.0V$, $f = 1.0MHz$, $I_E = 0$				
Input Capacitance	Cibo		8.0	pF	$V_{EB} = 0.5V$, $f = 1.0MHz$, $I_{C} = 0$				
Small Signal Current Gain	h _{fe}	120	480	_	$V_{CE} = 1.0V, I_{C} = 2.0mA,$				
Official Guiterit Gain	rite	120	700		f = 1.0kHz				
Current Gain-Bandwidth Product	f⊤	300	_	MHz	$V_{CE} = 20V, I_{C} = 10mA,$				
	''			1411 12	f = 100MHz				
Noise Figure	NF	_	5.0	dB	$V_{CE} = 5.0V, I_C = 100 \mu A,$				
110.00 1 190.10	141				$R_S = 1.0k\Omega$, $f = 1.0kHz$				


Electrical Characteristics, PNP 4126 Section @TA = 25°C unless otherwise specified

Characteristic	Symbol	Min	Max	Unit	Test Condition				
OFF CHARACTERISTICS (Note 6)									
Collector-Base Breakdown Voltage	$V_{(BR)CBO}$	-25	_	V	$I_C = -10\mu A, I_E = 0$				
Collector-Emitter Breakdown Voltage	$V_{(BR)CEO}$	-25	_	V	$I_C = -1.0 \text{mA}, I_B = 0$				
Emitter-Base Breakdown Voltage	$V_{(BR)EBO}$	-4.0	_	V	$I_E = -10\mu A, I_C = 0$				
Collector Cutoff Current	I _{CBO}		-50	nA	$V_{CB} = -20V, I_E = 0V$				
Emitter Cutoff Current	I _{EBO}		-50	nA	$V_{EB} = -3.0V, I_C = 0V$				
ON CHARACTERISTICS (Note 6)									
DC Current Gain	h _{FE}	120	360	_	$I_C = -2.0 \text{mA}, V_{CE} = -1.0 \text{V}$				
Do Guitetit Gairi		60	—		$I_C = -50 \text{mA}, V_{CE} = -1.0 \text{V}$				
Collector-Emitter Saturation Voltage	V _{CE(SAT)}	_	-0.40	V	$I_C = -50 \text{mA}, I_B = -5.0 \text{mA}$				
Base-Emitter Saturation Voltage	$V_{BE(SAT)}$		-0.95	٧	$I_C = -50 \text{mA}, I_B = -5.0 \text{mA}$				
SMALL SIGNAL CHARACTERISTICS									
Output Capacitance	C_{obo}	_	4.5	pF	$V_{CB} = -5.0V$, $f = 1.0MHz$, $I_E = 0$				
Input Capacitance	C _{ibo}	_	10	рF	$V_{EB} = -0.5V$, $f = 1.0MHz$, $I_C = 0$				
Small Signal Current Gain	h _{fe}	120	480		$V_{CE} = -1.0V$, $I_{C} = -2.0$ mA, $f = 1.0$ kHz				
Current Gain-Bandwidth Product	f _T	250	_	MHz	V _{CE} = -20V, I _C = -10mA, f = 100MHz				
Noise Figure	NF	_	4.0	dB	$V_{CE} = -5.0V$, $I_{C} = -100\mu A$, $R_{S} = 1.0k\Omega$, $f = 1.0kHz$				

Notes: 6. Short duration pulse test used to minimize self-heating effect.

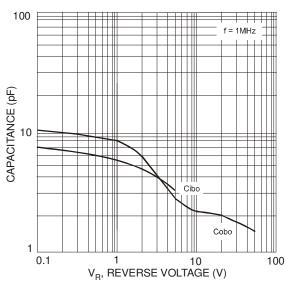
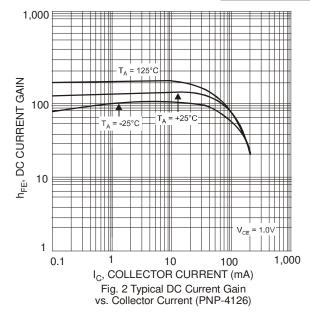
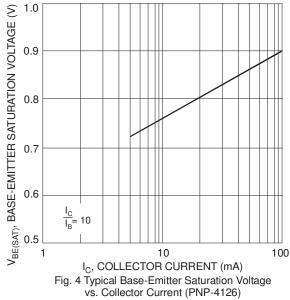
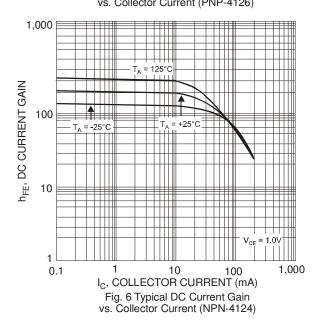





Fig. 5 Typical Capacitance Characteristics (PNP-4126)

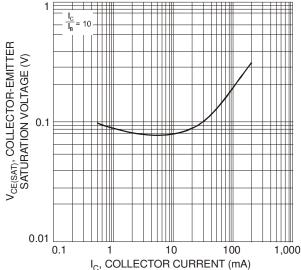
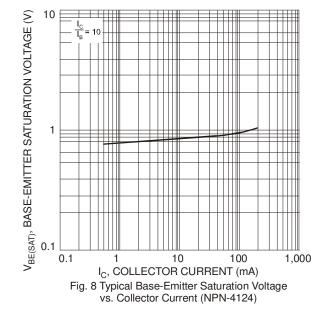
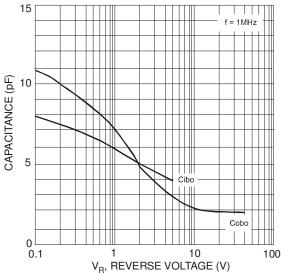
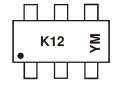



Fig. 7 Typical Collector-Emitter Saturation Voltage vs. Collector Current (NPN-4124)



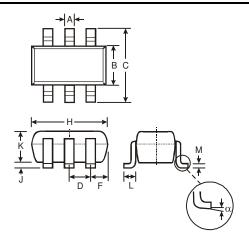

Fig. 9 Typical Capacitance Characteristics (NPN-4124)

Ordering Information (Note 7)

Part Number	Case	Packaging
MMDT4146-7-F	SOT-363	3000/Tape & Reel

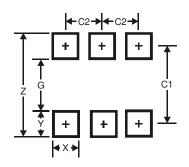
Notes: 7. For packaging details, go to our website at http://www.diodes.com/datasheets/ap02007.pdf.

Marking Information


K12 = Product Type Marking Code YM = Date Code Marking Y = Year (ex: N = 2002) M = Month (ex: 9 = September)

Date Code Key

Year	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015
Code	J	K	L	М	N	Р	R	S	Т	U	V	W	Χ	Υ	Z	Α	В	С
Month	Jan		Feb	Mar		Apr	May	,	Jun	Jul		Aug	Sep		Oct	Nov	,	Dec
Code	1		2	3		4	5		6	7		8	9		0	N		D



Package Outline Dimensions

	SOT-363							
Dim	Min	Max						
Α	0.10	0.30						
В	1.15	1.35						
С	2.00	2.20						
D	0.65 Typ							
F	0.40	0.45						
Н	1.80	2.20						
J	0	0.10						
K	0.90	1.00						
L	0.25	0.40						
М	0.10	0.22						
α	0°	8°						
All Di	mensions	in mm						

Suggested Pad Layout

Dimensions	Value (in mm)
Z	2.5
G	1.3
X	0.42
Υ	0.6
C1	1.9
C2	0.65

IMPORTANT NOTICE

Diodes Incorporated and its subsidiaries reserve the right to make modifications, enhancements, improvements, corrections or other changes without further notice to any product herein. Diodes Incorporated does not assume any liability arising out of the application or use of any product described herein; neither does it convey any license under its patent rights, nor the rights of others. The user of products in such applications shall assume all risks of such use and will agree to hold Diodes Incorporated and all the companies whose products are represented on our website, harmless against all damages.

LIFE SUPPORT

Diodes Incorporated products are not authorized for use as critical components in life support devices or systems without the expressed written approval of the President of Diodes Incorporated.