imall

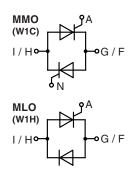
Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China



LIXYS

AC Controller Modules

Preliminary Data

V _{RRM} V _{DRM} V	Туре	
800	MMO 110-08io7	MLO 110-08io7
1200	MMO 110-12io7	MLO 110-12io7
1400	MMO 110-14io7	MLO 110-14io7
	V _{DRM} V 800 1200	V _{DRM} V 800 MMO 110-08io7 1200 MMO 110-12io7

Symbol	Conditions		Maximum F	atings
I _{rms} I _{trms}	$T_{c} = 85^{\circ}C, 50 - 400 \text{ Hz}, \text{ module}$		112 81	A
I _{TAVM}	$T_{c} = 85^{\circ}C$; (180° sine)	51	A
I _{tsm}	$T_{VJ} = 45^{\circ}C$ $V_{R} = 0$	t = 10 ms (50 Hz), si t = 8.3 ms (60 Hz), si		A A
	$T_{VJ} = 125^{\circ}C$ $V_{R} = 0$	t = 10 ms (50 Hz), si t = 8.3 ms (60 Hz), si		A A
l²t	$T_{VJ} = 45^{\circ}C$ $V_{R} = 0$	t = 10 ms (50 Hz), si t = 8.3 ms (60 Hz), si		A²s A²s
	$T_{VJ} = 125^{\circ}C$ $V_{B} = 0$	t = 10 ms (50 Hz), si t = 8.3 ms (60 Hz), si		A²s A²s
(di/dt) _{cr}	T _{vJ} = 125°C f = 50 Hz, t _P = 200 μs	repetitive, $I_T = 50 A$	100	A/µs
	$V_{D} = {}^{2}/_{3} V_{DRM}$ $I_{G} = 0.45 A$ $di_{g}/dt = 0.45 A/\mu s$	non repetitive, $I_T = I_{TAV}$	м 500	A/µs
(dv/dt) _{cr}	$T_{VJ} = 125^{\circ}C; V_{DR} = {}^{2}/_{3}$ $R_{GK} = \infty;$ method 1 (lir	1000	V/µs	
P _{GM}	T _{vJ} = 125°C	t _p = 30 μs	10	W
	$I_{T} = I_{TAVM}$	$t_p = 300 \ \mu s$	5	W
P _{GAVM}			0.5	W
V _{RGM}			10	V
T _{VJ} T _{VJM} T _{stg}			-40+150 150 -40+125	0° 0° 0°
V _{ISOL}	50/60 Hz, RMS I _{ISOL} ≤ 1 mA	t = 1 min t = 1 s	2500 3000	V~ V~
M _d	Mounting torque (M4)	1.52.0/1418 N	lm/lb.in.	
Weight	typ.		18	g

Features

- Thyristor controller for AC (circuit W1C acc. to IEC) for mains frequency
- Isolation voltage 3000 V~

I_{RMS} = **112 A**

V_{RRM} = 800-1400 V

- Planar glass passivated chips
- Low forward voltage drop
- · Lead suitable for PC board solering

Applications

- Switching and control of single and three phase AC circuits
- Light and temperature control
- Softstart AC motor controller
- Solid state switches

Advantages

- Easy to mount with two screws
- · Space and weight savings
- Improved temperature and power cycling
- · High power density
- · Small and light weight

Data according to IEC 60747 and to a single thyristor/diode unless otherwise stated.

IXYS reserve the right to change limits, conditions and dimensions.

241

LIXYS

Symbol	Conditions	Characterist	Characteristic Values		
I _D , I _R	$T_{VJ} = 125^{\circ}C; V_{R} = V_{RRM}; V_{D} = V_{DRM}$	≤	5 mA		
V _T	I _T = 150 A; T _{VJ} = 25°C	≤ 1.5	57 V		
ν _{το} r _τ	For power-loss calculations only	0.8 5	85 V 5.6 mΩ		
V _{gt}	$V_{\rm D} = 6 \text{ V} \qquad T_{\rm VJ} = 25^{\circ}\text{C}$ $T_{\rm VJ} = -40^{\circ}\text{C}$.5 V .9 V		
I _{GT}			00 mA 00 mA		
V _{gd} I _{gd}	$T_{VJ} = 125^{\circ}C; V_{D} = {}^{2}\!/_{3} V_{DRM}$	≤ 0 ≤	0.2 V 1 mA		
I.	$T_{VJ} = 25^{\circ}C; t_{P} = 10 \ \mu s$ $I_{G} = 0.45 \ A; di_{G}/dt = 0.45 \ A/\mu s$	≤ 20	00 mA		
I _H	$T_{VJ} = 25^{\circ}C; V_{D} = 6 V; R_{GK} = \infty$	≤ 10	00 mA		
t _{gd}	$T_{VJ} = 25^{\circ}C; V_{D} = \frac{1}{2} V_{DRM}$ $I_{G} = 0.45 A; di_{G}/dt = 0.45 A/\mu s$	≤	2 µs		
R _{thJC}	per thyristor; DC per module		0.8 K/W 0.4 K/W		
R _{thCH}	per thyristor; sine 180° el per module	typ. 0. typ. 0.0			
d _s d _A a	Creeping distance on surface Creepage distance in air Max. allowable acceleration	17	.2 mm 7.0 mm 50 m/s ²		

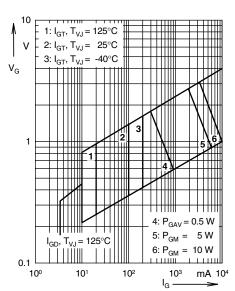
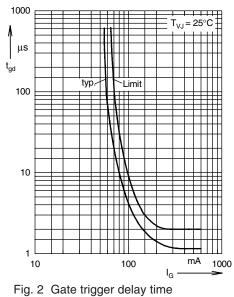
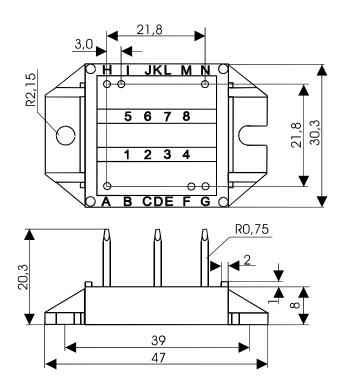




Fig. 1 Gate trigger characteristics

Dimensions in mm (1 mm = 0.0394")

