

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

eescale Semiconductor

Technical Data

RF Power Field Effect Transistors

N-Channel Enhancement-Mode Lateral MOSFETs

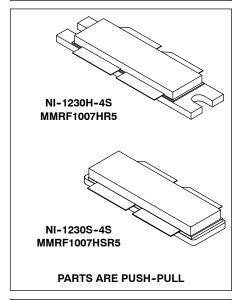
RF power transistors designed for applications operating at frequencies from 900 to 1215 MHz. These devices are suitable for use in defense and commercial pulse applications, such as IFF and DME.

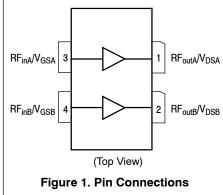
• Typical Pulse Performance: V_{DD} = 50 Vdc, I_{DQ} = 150 mA, P_{out} = 1000 W Peak (100 W Avg.), f = 1030 MHz, Pulse Width = 128 µsec, Duty Cycle = 10%

Power Gain — 20 dB Drain Efficiency — 56%

Capable of Handling 5:1 VSWR, @ 50 Vdc, 1030 MHz, 1000 W Peak Power

Features


- Characterized with Series Equivalent Large-Signal Impedance Parameters
- · Internally Matched for Ease of Use
- Qualified Up to a Maximum of 50 V_{DD} Operation
- Integrated ESD Protection
- · Designed for Push-Pull Operation
- Greater Negative Gate-Source Voltage Range for Improved Class C Operation
- In Tape and Reel. R5 Suffix = 50 Units, 56 mm Tape Width, 13-inch Reel.


Document Number: MMRF1007H Rev. 0, 12/2013

VRoHS

MMRF1007HR5 MMRF1007HSR5

965-1215 MHz, 1000 W, 50 V LATERAL N-CHANNEL BROADBAND RF POWER MOSFETs

Table 1. Maximum Ratings

Rating	Symbol	Value	Unit
Drain-Source Voltage	V _{DSS}	-0.5, +110	Vdc
Gate-Source Voltage	V _{GS}	-6.0, +10	Vdc
Storage Temperature Range	T _{stg}	-65 to +150	°C
Case Operating Temperature	T _C	150	°C
Operating Junction Temperature (1)	T _J	225	°C

1. Continuous use at maximum temperature will affect MTTF.

Table 2. Thermal Characteristics

Characteristic		Value ⁽¹⁾	Unit
Thermal Resistance, Junction to Case	$Z_{\theta JC}$		°C/W
Case Temperature 67°C, 1000 W Peak, 128 μsec Pulse Width, 10% Duty Cycle, 50 Vdc, I _{DO} = 150 mA		0.02	
Case Temperature 62°C, Mode-S Pulse Train, 80 Pulses of 32 μsec On, 18 μsec Off, Repeated Every 40 msec, 6.4% Overall Duty Cycle, 50 Vdc, I _{DQ} = 150 mA		0.07	

Table 3. ESD Protection Characteristics

Test Methodology	Class
Human Body Model (per JESD22-A114)	1B
Machine Model (per EIA/JESD22-A115)	В
Charge Device Model (per JESD22-C101)	IV

Table 4. Electrical Characteristics (T_A = 25°C unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit
Off Characteristics ⁽²⁾	•				
Gate-Source Leakage Current (V _{GS} = 5 Vdc, V _{DS} = 0 Vdc)	l _{GSS}	=	_	10	μAdc
Drain-Source Breakdown Voltage (V _{GS} = 0 Vdc, I _D = 165 mA)	V _{(BR)DSS}	110	_	_	Vdc
Zero Gate Voltage Drain Leakage Current (V _{DS} = 50 Vdc, V _{GS} = 0 Vdc)	I _{DSS}	_	_	10	μAdc
Zero Gate Voltage Drain Leakage Current (V _{DS} = 100 Vdc, V _{GS} = 0 Vdc)	I _{DSS}	_	_	100	μAdc
On Characteristics					
Gate Threshold Voltage (2) $(V_{DS} = 10 \text{ Vdc}, I_D = 1000 \mu\text{Adc})$	V _{GS(th)}	0.9	1.6	2.4	Vdc
Gate Quiescent Voltage (3) (V _{DD} = 50 Vdc, I _D = 150 mAdc, Measured in Functional Test)	$V_{GS(Q)}$	1.5	2.2	3	Vdc
Drain-Source On-Voltage (2) (V _{GS} = 10 Vdc, I _D = 2.7 Adc)	V _{DS(on)}	_	0.15	_	Vdc
Dynamic Characteristics ⁽²⁾	·				
Reverse Transfer Capacitance (V _{DS} = 50 Vdc ± 30 mV(rms)ac @ 1 MHz, V _{GS} = 0 Vdc)	C _{rss}	_	1.27	_	pF
Output Capacitance (V _{DS} = 50 Vdc ± 30 mV(rms)ac @ 1 MHz, V _{GS} = 0 Vdc)	C _{oss}	_	86.7	_	pF
Input Capacitance (V _{DS} = 50 Vdc, V _{GS} = 0 Vdc ± 30 mV(rms)ac @ 1 MHz)	C _{iss}	_	539	_	pF

Functional Tests $^{(3)}$ (In Freescale Test Fixture, 50 ohm system) V_{DD} = 50 Vdc, I_{DQ} = 150 mA, P_{out} = 1000 W Peak (100 W Avg.), f = 1030 MHz, 128 µsec Pulse Width, 10% Duty Cycle

Power Gain	G _{ps}	19	20	22	dB
Drain Efficiency	η_{D}	54	56	_	%
Input Return Loss	IRL	_	-23	-9	dB

- 1. Refer to AN1955, *Thermal Measurement Methodology of RF Power Amplifiers*. Go to http://www.freescale.com/rf. Select Documentation/Application Notes AN1955.
- 2. Each side of device measured separately.
- 3. Measurement made with device in push-pull configuration.

(continued)

Table 4. Electrical Characteristics (T_A = $25^{\circ}C$ unless otherwise noted) (continued)

Characteristic		Min	Тур	Max	Unit
Typical Performance — 1030 MHz (In Freescale 1030 MHz Test Fixture, 50 ohm system) V _{DD} = 50 Vdc, I _{DQ} = 150 mA, P _{out} = 1000 W Pea			000 W Peak		
(100 W Avg.), f = 1030 MHz, Mode-S Pulse Train, 80 Pulses of 32 µsec On,	18 μsec Off,	Repeated Ev	ery 40 msec,	6.4% Overal	I Duty Cycle

Power Gain	G _{ps}	_	19.8	_	dB
Drain Efficiency	η _D	_	59.0	_	%
Burst Droop	BD _{rp}	_	0.21	_	dB

Typical Performance — 1090 MHz (In Freescale 1090 MHz Test Fixture, 50 ohm system) V_{DD} = 50 Vdc, I_{DQ} = 150 mA, P_{out} = 1000 W Peak (100 W Avg.), f = 1090 MHz, 128 µsec Pulse Width, 10% Duty Cycle

Power Gain	G _{ps}	_	21.4	_	dB
Drain Efficiency	η_{D}	_	56.3	_	%
Input Return Loss	IRL	_	-25.3	_	dB

Figure 2. MMRF1007HR5(HSR5) Test Circuit Schematic

Table 5. MMRF1007HR5(HSR5) Test Circuit Component Designations and Values

Part	Description	Manufacturer	Part Number
Balun 1, 2	Balun Anaren	3A412	Anaren
C1, C5	22 μF, 25 V Tantalum Capacitors	TPSD226M025R	AVX
C2, C6	2.2 μF, 50 V Chip Capacitors	C1825C225J5RAC	Kemet
C3, C7	0.22 μF, 100 V Chip Capacitors	C1210C224K1RAC	Kemet
C4, C8, C17, C18, C19, C20, C21, C25	36 pF Chip Capacitors	ATC100B360JT500XT	ATC
C9	1.0 pF Chip Capacitor	ATC100B1R0CT500XT	ATC
C12, C16	0.8-8.0 pF Variable Capacitors	27291SL	Johanson
C10, C11, C13, C14, C15	5.1 pF Chip Capacitors	ATC100B5R1CT500XT	ATC
C22, C26	0.022 μF, 100 V Chip Capacitors	C1825C223K1GAC	Kemet
C23, C24, C27, C28	470 μF, 63 V Electrolytic Capacitors	MCGPR63V477M13X26-RH	Multicomp
L1, L2	Inductors 3 Turn	GA3094-AL	Coilcraft
R1, R2	1000 Ω, 1/3 W Chip Resistors	CRCW12101001FKEA	Vishay

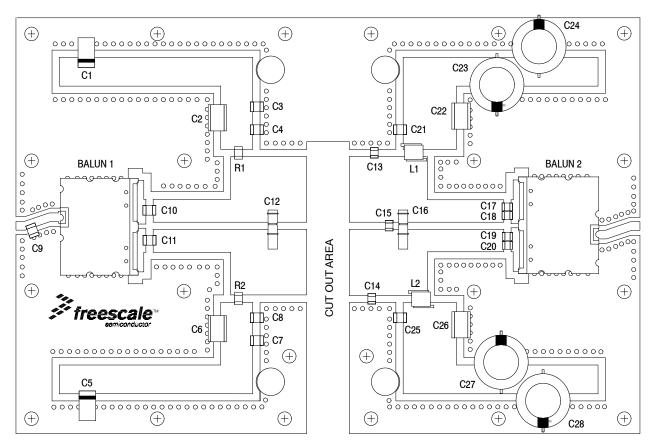
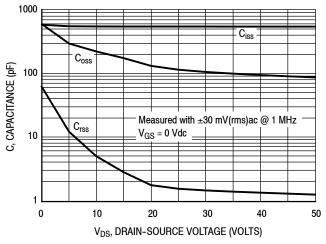



Figure 3. MMRF1007HR5(HSR5) Test Circuit Component Layout

TYPICAL CHARACTERISTICS

Note: Each side of device measured separately.

Figure 4. Capacitance versus Drain-Source Voltage

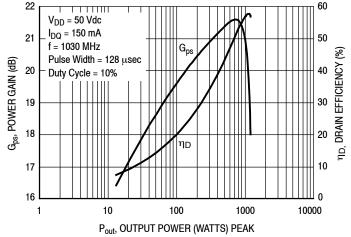


Figure 5. Power Gain and Drain Efficiency versus Output Power

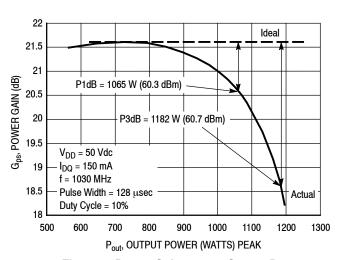


Figure 6. Power Gain versus Output Power

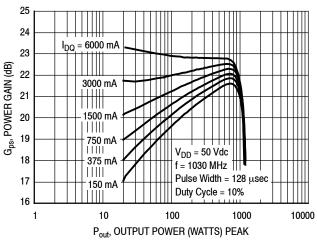


Figure 7. Power Gain versus Output Power

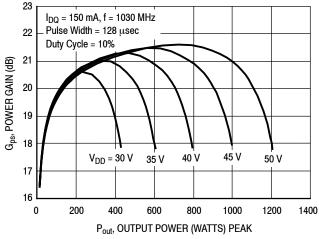


Figure 8. Power Gain versus Output Power

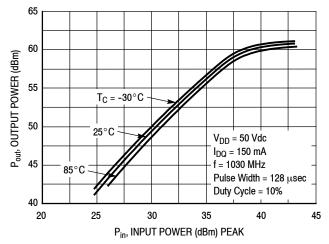
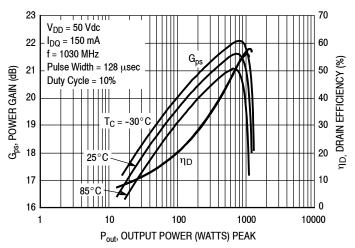
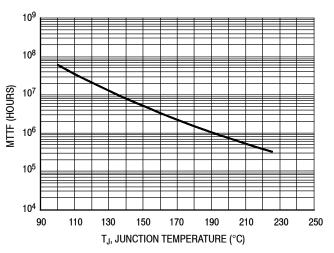
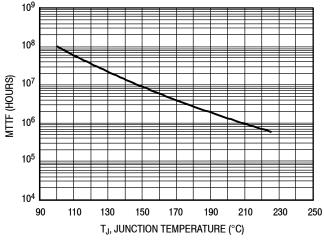


Figure 9. Output Power versus Input Power

TYPICAL CHARACTERISTICS

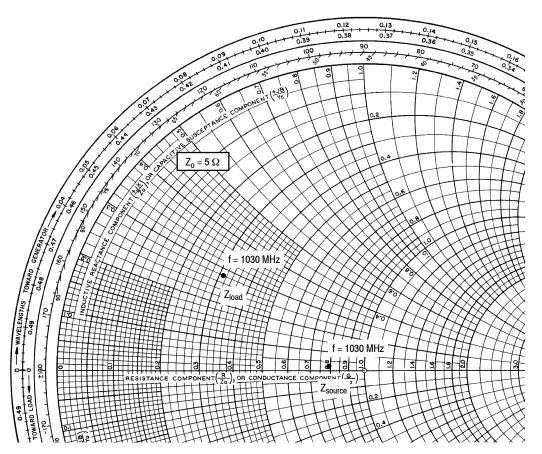




Figure 10. Power Gain and Drain Efficiency versus Output Power

This above graph displays calculated MTTF in hours when the device is operated at V $_{DD}$ = 50 Vdc, P $_{out}$ = 1000 W Peak, Pulse Width = 128 μ sec, Duty Cycle = 10%, and η_D = 56%.

MTTF calculator available at http://www.freescale.com/rf. Select Software & Tools/Development Tools/Calculators to access MTTF calculators by product.

Figure 11. MTTF versus Junction Temperature - 128 μsec, 10% Duty Cycle



This above graph displays calculated MTTF in hours when the device is operated at V $_{DD}$ = 50 Vdc, P $_{out}$ = 1000 W Peak, Mode–S Pulse Train, Pulse Width = 32 μ sec, Duty Cycle = 6.4%, and η_D = 59%.

MTTF calculator available at http://www.freescale.com/rf. Select Software & Tools/Development Tools/Calculators to access MTTF calculators by product.

Figure 12. MTTF versus Junction Temperature - Mode-S

 V_{DD} = 50 Vdc, I_{DQ} = 150 mA, P_{out} = 1000 W Peak

f	Z _{source}	Z _{load}
MHz	Ω	Ω
1030	3.93 + j0.09	1.54 + j1.42

Z_{source} = Test circuit impedance as measured from gate to gate, balanced configuration.

Z_{load} = Test circuit impedance as measured from drain to drain, balanced configuration.

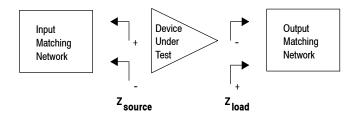


Figure 13. Series Equivalent Source and Load Impedance

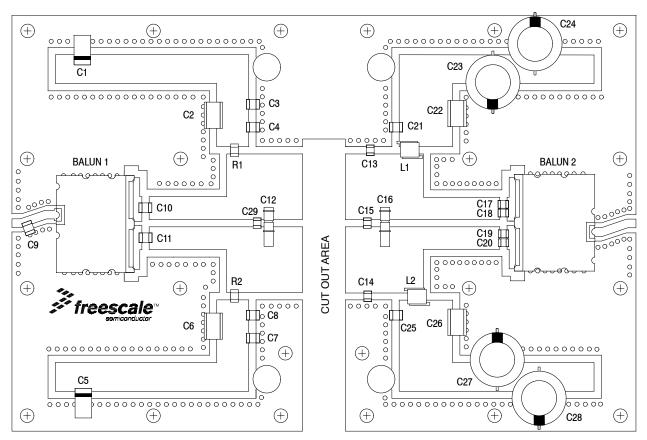


Figure 14. MMRF1007HR5(HSR5) Test Circuit Component Layout — 1090 MHz

Table 6. MMRF1007HR5(HSR5) Test Circuit Component Designations and Values — 1090 MHz

Part	Description	Manufacturer	Part Number
Balun 1, 2	Balun Anaren	3A412	Anaren
C1, C5	22 μF, 25 V Tantalum Capacitors	TPSD226M025R0200	AVX
C2, C6	2.2 μF, 50 V 1825 Chip Capacitors	C1825C225J5RAC-TU	Kemet
C3, C7	0.22 μF, 100 V Chip Capacitors	C1210C224K1RAC-TU	Kemet
C4, C8, C17, C18, C19, C20, C21, C25	36 pF Chip Capacitors	ATC100B360JT500XT	ATC
C9	1.0 pF Chip Capacitor	ATC100B1R0BT500XT	ATC
C12, C16	0.8-8.0 pF Variable Capacitors	27291SL	Johanson
C10, C11, C13, C14, C15, C29	5.1 pF Chip Capacitors	ATC100B5R1CT500XT	ATC
C22, C26	0.022 μF, 100 V Chip Capacitors	C1825C223K1GAC	Kemet
C23, C24, C27, C28	470 μF, 63 V Electrolytic Capacitors	MCGPR63V477M13X26-RH	Multicomp
L1, L2	Inductors 3 Turn	GA3094-ALC	Coilcraft
R1, R2	1000 Ω, 1/4 W Chip Resistors	CRCW12061K00FKEA	Vishay
PCB	CuClad, 0.030", ε _r = 2.55	250GX-0300-55-22	Arlon

TYPICAL CHARACTERISTICS — 1090 MHZ

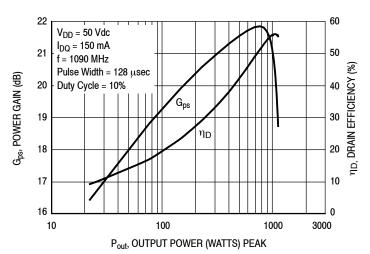
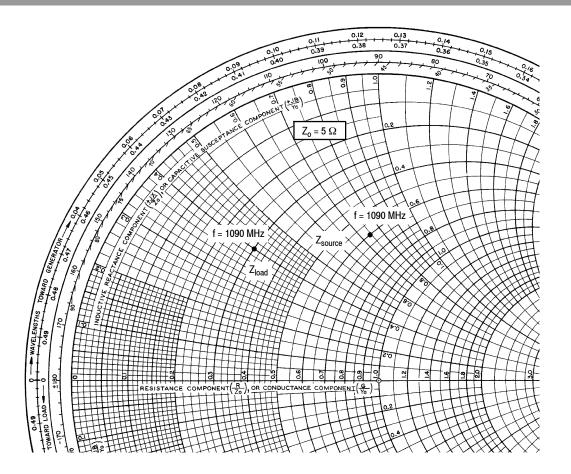



Figure 15. Power Gain and Drain Efficiency versus Output Power

V_{DD} = 50 Vdc, I_{DQ} = 150 mA, P_{out} = 1000 W Peak

f Z_{source} Z_{load}
MHz Ω Ω

 MHz
 Ω
 Ω

 1090
 2.98 + j3.68
 1.51 + j2.02

 Z_{source} = Test circuit impedance as measured from

 $\label{eq:Zload} \mbox{ gate to gate, balanced configuration.}$ $\mbox{$Z_{load}$} \quad \mbox{ = } \quad \mbox{Test circuit impedance as measured from}$

Z_{load} = Test circuit impedance as measured from drain to drain, balanced configuration.

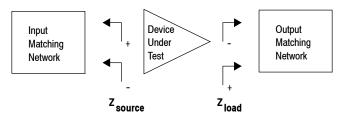
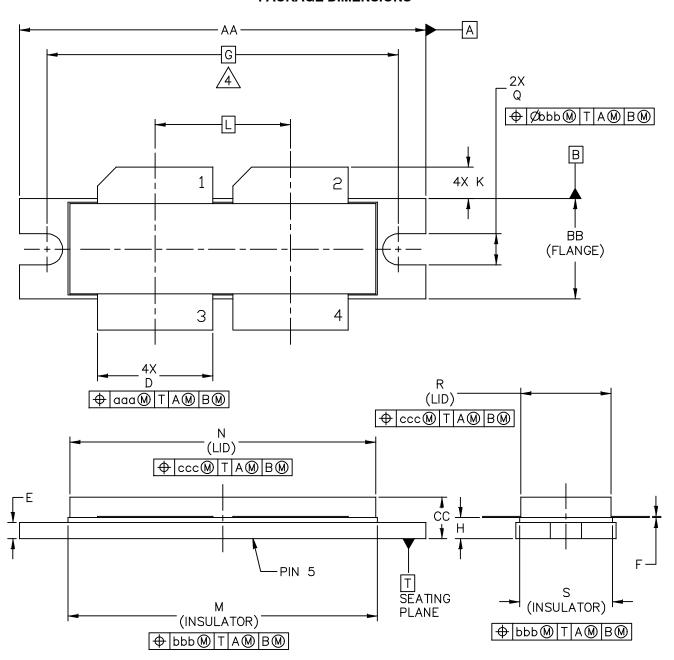
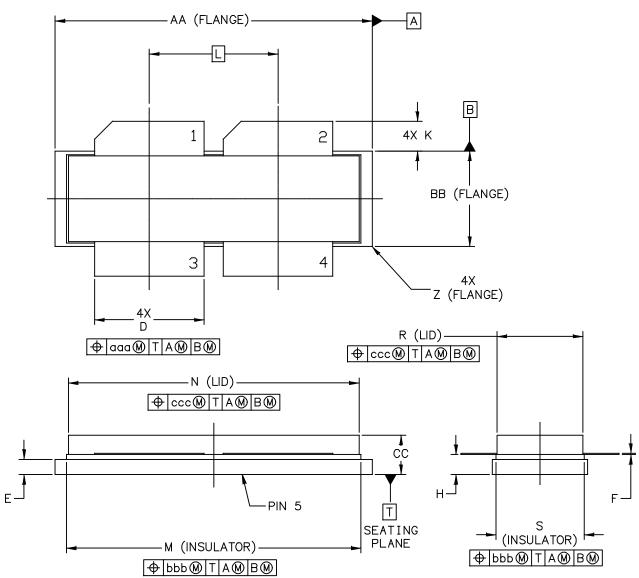



Figure 16. Series Equivalent Source and Load Impedance — 1090 MHz

PACKAGE DIMENSIONS

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	MECHANICAL OU	TLINE	PRINT VERSION NOT TO SCALE
TITLE:		DOCUME	NT NO: 98ASB16977C REV: F
NI-1230-4H		STANDAF	RD: NON-JEDEC
			28 FEB 2013


NOTES:

- 1. INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M-1994.
- 2. CONTROLLING DIMENSION: INCH
- 3. DIMENSION H IS MEASURED . 030 INCH (0.762 MM) AWAY FROM PACKAGE BODY.

RECOMMENDED BOLT CENTER DIMENSION OF 1.52 INCH (38.61 MM) BASED ON M3 SCREW.

	INCH		MILLIMETER				INCH	MILLIMETER		
DIM	MIN	MAX	MIN	MAX	DIM	MIN	MAX	MIN	MAX	
AA	1.615	1.625	41.02	41.28	N	1.218	1.242	30.94	31.55	
BB	.395	.405	10.03	10.29	Q	.120	.130	3.05	3.30	
СС	.170	.190	4.32	4.83	R	.355	.365	9.02	9.27	
D	.455	.465	11.56	11.81	S	.365	.375	9.27	9.53	
E	.062	.066	1.57	1.68						
F	.004	.007	0.10	0.18						
G	1.400	BSC	35	5.56 BSC	aaa	.013		0.33		
Н	.082	.090	2.08	2.29	bbb		.010		0.25	
K	.117	.137	2.97	3.48	ccc	.020		0.51		
L	.540 BSC		13.72 BSC							
М	1.219	1.241	30.96	31.52						
© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED. MECHANICAL OU					L OUT	TLINE PRINT VERSION NOT TO SCALE				
TITLE:	TITLE:						DOCUMENT NO: 98ASB16977C REV: F			
NI-1230-4H						STANDARD: NON-JEDEC				
					28 FEB 2013					

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	MECHANICAL OUTLINE		PRINT VERSION NOT TO SCALE			
TITLE:		DOCUMEN	NT NO: 98ARB18247C REV: G			
NI-1230-4S			STANDARD: NON-JEDEC			
			01 MAR 2013			

NOTES:

- 1. INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M-1994.
- 2. CONTROLLING DIMENSION: INCH
- 3. DIMENSION H IS MEASURED .030 INCH (0.762 MM) AWAY FROM PACKAGE BODY

	l	HES		LIMETERS		INCHES		MILLIMETERS		
DIM	MIN	MAX	MIN	MAX	DIM	MIN	MAX	MIN	MAX	
AA	1.265	1.275	32.13	32.39	R	.355	.365	9.02	9.27	
BB	.395	.405	10.03	10.29	S	.365	.375	9.27	9.53	
cc	.170	.190	4.32	4.83	Z	R.000	R.040	R0.00	R1.02	
D	.455	.465	11.56	11.81						
E	.062	.066	1.57	1.68	aaa		.013		0.33	
F	.004	.007	0.10	0.18	bbb		.010		0.25	
Н	.082	.090	2.08	2.29	ccc		.020		0.51	
K	.117	.137	2.97	3.48						
L	.540 BSC		13.72 BSC							
М	1.219	1.241	30.96	31.52						
N	1.218	1.242	30.94	31.55						
© F	© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.			MECHANICAL OUTLINE		LINE	_INE PRINT VERSION NOT TO SCALE			
TITLE:	-					DOCUMENT NO: 98ARB18247C REV: G				
	NI-1230-4S					STANDARD: NON-JEDEC				
						01 MAR 2013				

PRODUCT DOCUMENTATION

Refer to the following documents to aid your design process.

Application Notes

• AN1955: Thermal Measurement Methodology of RF Power Amplifiers

Engineering Bulletins

• EB212: Using Data Sheet Impedances for RF LDMOS Devices

REVISION HISTORY

The following table summarizes revisions to this document.

Revision	Date	Description			
0	Dec. 2013	Initial Release of Data Sheet			

How to Reach Us:

Home Page: freescale.com

Web Support: freescale.com/support

Information in this document is provided solely to enable system and software implementers to use Freescale products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document.

Freescale reserves the right to make changes without further notice to any products herein. Freescale makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including "typicals," must be validated for each customer application by customer's technical experts. Freescale does not convey any license under its patent rights nor the rights of others. Freescale sells products pursuant to standard terms and conditions of sale, which can be found at the following address: freescale.com/SalesTermsandConditions.

Freescale and the Freescale logo are trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. All other product or service names are the property of their respective owners.

© 2013 Freescale Semiconductor, Inc.

Document Number: MMRF1007H Rev. 0, 12/2013