

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

'eescale Semiconductor

Technical Data

RF Power LDMOS Transistors

N-Channel Enhancement-Mode Lateral MOSFETs

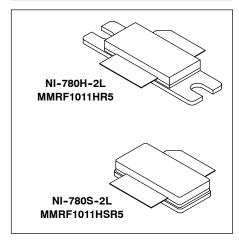
RF power transistors designed for applications operating at frequencies between 1200 and 1400 MHz, 1% to 12% duty cycle. These devices are suitable for use in pulse applications, such as L- Band radar.

• Typical Pulse Performance: V_{DD} = 50 Vdc, I_{DQ} = 150 mA, P_{out} = 330 W Peak (39.6 W Avg.), f = 1400 MHz, Pulse Width = 300 μ sec, Duty Cycle = 12%

Power Gain — 18 dB Drain Efficiency — 60.5%

• Capable of Handling 5:1 VSWR @ 50 Vdc, 1400 MHz, 330 W Peak Power

Features


- Characterized with Series Equivalent Large-Signal Impedance Parameters
- Internally Matched for Ease of Use
- Qualified Up to a Maximum of 50 V_{DD} Operation
- · Integrated ESD Protection
- Greater Negative Gate-Source Voltage Range for Improved Class C Operation
- In Tape and Reel. R5 Suffix = 50 Units, 56 mm Tape Width, 13-inch Reel.

Document Number: MMRF1011H Rev. 0, 7/2014

√RoHS

MMRF1011HR5 MMRF1011HSR5

1400 MHz, 330 W, 50 V PULSE L-BAND RF POWER MOSFETS

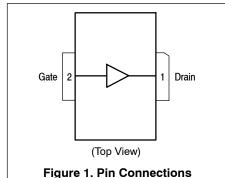


Table 1. Maximum Ratings

Rating	Symbol	Value	Unit
Drain-Source Voltage	V _{DSS}	-0.5, +100	Vdc
Gate-Source Voltage	V _{GS}	-6.0, +10	Vdc
Storage Temperature Range	T _{stg}	- 65 to +150	°C
Case Operating Temperature	T _C	150	°C
Operating Junction Temperature (1,2)	TJ	225	°C

Table 2. Thermal Characteristics

Characteristic	Symbol	Value (2,3)	Unit
Thermal Resistance, Junction to Case Case Temperature 65°C, 330 W Peak, 300 μsec Pulse Width, 12% Duty Cycle	$Z_{ heta JC}$	0.13	°C/W

- 1. Continuous use at maximum temperature will affect MTTF.
- 2. MTTF calculator available at http://www.freescale.com/rf. Select Software & Tools/Development Tools/Calculators to access MTTF calculators by product.
- 3. Refer to AN1955, *Thermal Measurement Methodology of RF Power Amplifiers*. Go to http://www.freescale.com/rf. Select Documentation/Application Notes AN1955.

Table 3. ESD Protection Characteristics

Test Methodology	Class
Human Body Model (per JESD22-A114)	1C
Machine Model (per EIA/JESD22-A115)	A
Charge Device Model (per JESD22-C101)	IV

Table 4. Electrical Characteristics (T_A = 25°C unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit
Off Characteristics	<u> </u>				
Gate-Source Leakage Current (V _{GS} = 5 Vdc, V _{DS} = 0 Vdc)	I _{GSS}	_	_	10	μAdc
Drain-Source Breakdown Voltage (V _{GS} = 0 Vdc, I _D = 100 mA)	V _{(BR)DSS}	100	_	_	Vdc
Zero Gate Voltage Drain Leakage Current (V _{DS} = 50 Vdc, V _{GS} = 0 Vdc)	I _{DSS}	_	_	50	μAdc
Zero Gate Voltage Drain Leakage Current (V _{DS} = 90 Vdc, V _{GS} = 0 Vdc)	I _{DSS}	_	_	2.5	mA
On Characteristics				_	
Gate Threshold Voltage (V_{DS} = 10 Vdc, I_D = 662 μ Adc)	V _{GS(th)}	0.9	1.6	2.4	Vdc
Gate Quiescent Voltage (V _{DD} = 50 Vdc, I _D = 150 mAdc, Measured in Functional Test)	V _{GS(Q)}	1.5	2.4	3	Vdc
Drain-Source On-Voltage (V _{GS} = 10 Vdc, I _D = 1.63 Adc)	V _{DS(on)}	_	0.26	_	Vdc
Dynamic Characteristics ⁽¹⁾				•	1
Reverse Transfer Capacitance (V _{DS} = 50 Vdc ± 30 mV(rms)ac @ 1 MHz, V _{GS} = 0 Vdc)	C _{rss}	_	0.6	_	pF
Output Capacitance (V _{DS} = 50 Vdc ± 30 mV(rms)ac @ 1 MHz, V _{GS} = 0 Vdc)	C _{oss}	_	350	_	pF
Input Capacitance (V _{DS} = 50 Vdc, V _{GS} = 0 Vdc ± 30 mV(rms)ac @ 1 MHz)	C _{iss}	_	330	_	pF

Functional Tests (In Freescale Test Fixture, 50 ohm system) V_{DD} = 50 Vdc, I_{DQ} = 150 mA, P_{out} = 330 W Peak (39.6 W Avg.), f = 1400 MHz, Pulsed, 300 μ sec Pulse Width, 12% Duty Cycle

Power Gain	G _{ps}	16.5	18	19.5	dB
Drain Efficiency	η_{D}	59(2)	60.5 ⁽²⁾	_	%
Input Return Loss	IRL	_	-12	-9	dB

Pulse RF Performance (In Freescale Application Test Fixture, 50 ohm system) V_{DD} = 50 Vdc, I_{DQ} = 150 mA, P_{out} = 330 W Peak (39.6 W Avg.), f1 = 1200 MHz, f2 = 1300 MHz and f3 = 1400 MHz, 300 μ sec Pulse Width, 12% Duty Cycle, t_r = 50 ns

Relative Insertion Phase	ΔΦ	_	10	_	٥	
Gain Flatness	G _F	_ 0.5 _				
Pulse Amplitude Droop	D _{rp}	=	_	dB		
Harmonic 2nd and 3rd	H2 & H3	— - 20 —			dBc	
Spurious Response		65				
Load Mismatch Stability (VSWR = 3:1 at all Phase Angles)	VSWR-S	All Spurs Below -60 dBc				
Load Mismatch Tolerance (VSWR = 5:1 at all Phase Angles)	VSWR-T	No Degradation in Output Power				

- 1. Part internally matched both on input and output.
- 2. Drain efficiency is calculated by: $\eta_D = \frac{100 \times P_{out}}{V_{DD} \times I_{peak}}$ where: $I_{peak} = (I_{AVG} I_{DQ}) / Duty Cycle (%) + I_{DQ}$.

MMRF1011HR5 MMRF1011HSR5

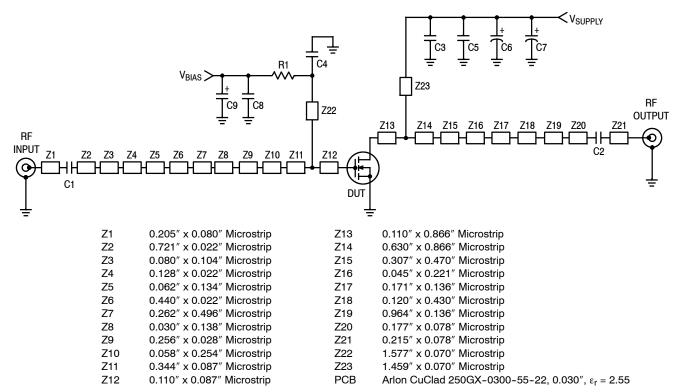


Figure 2. MMRF1011HR5(HSR5) Test Circuit Schematic

Table 5. MMRF1011HR5(HSR5) Test Circuit Component Designations and Values

Part	Description	Part Number	Manufacturer
C1	43 pF Chip Capacitor	ATC100B430JT500XT	ATC
C2	18 pF Chip Capacitor	ATC100B180JT500XT	ATC
C3	33 pF Chip Capacitor	ATC100B330JT500XT	ATC
C4	27 pF Chip Capacitor	ATC100B270JT500XT	ATC
C5	2.2 μF, 100 V Chip Capacitor	2225X7R225KT3AB	ATC
C6	470 μF, 63 V Electrolytic Capacitor	EMVY630GTR471MMH0S	Multicomp
C7	330 pF, 63 V Electrolytic Capacitor	EMVY630GTR331MMH0S	Multicomp
C8	0.1 μF, 35 V Chip Capacitor	CDR33BX104AKYS	Kemet
C9	10 μF, 35 V Tantalum Capacitor	T491D106K035AT	Kemet
R1	10 Ω, 1/4 W Chip Resistor	CRCW120610R0FKEA	Vishay

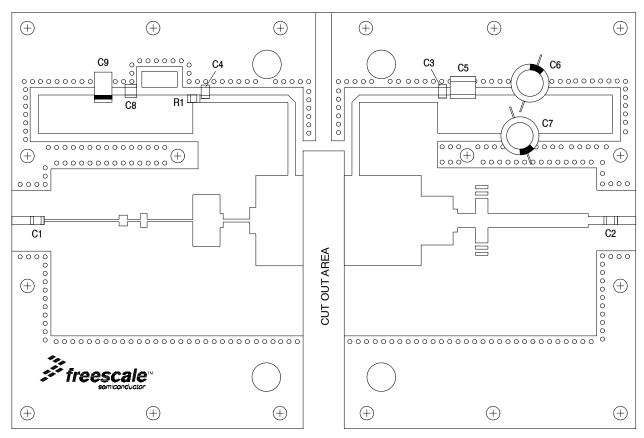


Figure 3. MMRF1011HR5(HSR5) Test Circuit Component Layout

TYPICAL CHARACTERISTICS

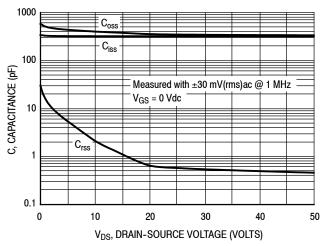


Figure 4. Capacitance versus Drain-Source Voltage

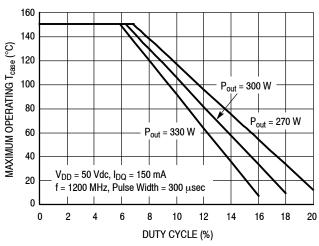


Figure 5. Safe Operating Area

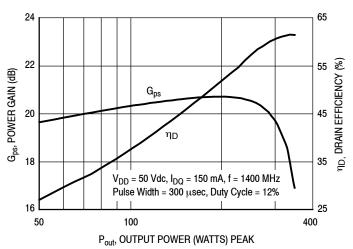


Figure 6. Power Gain and Drain Efficiency versus Output Power

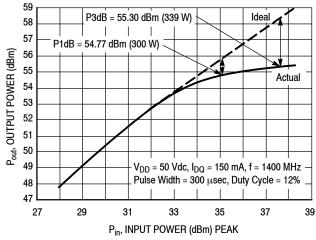


Figure 7. Output Power versus Input Power

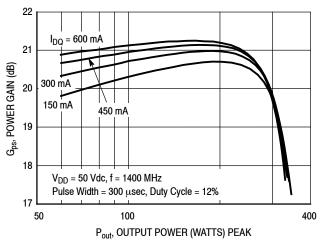


Figure 8. Power Gain versus Output Power

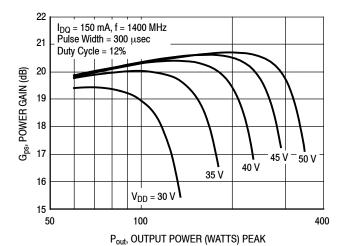
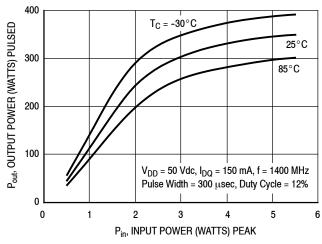



Figure 9. Power Gain versus Output Power

TYPICAL CHARACTERISTICS

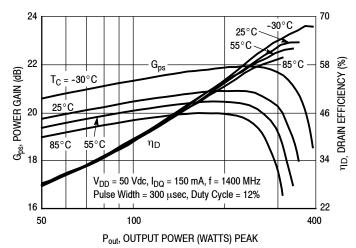


Figure 10. Output Power versus Input Power

Figure 11. Power Gain and Drain Efficiency versus Output Power

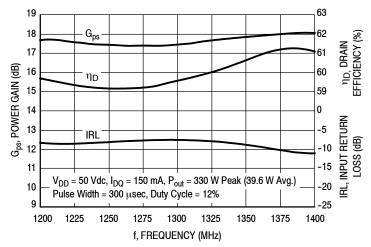
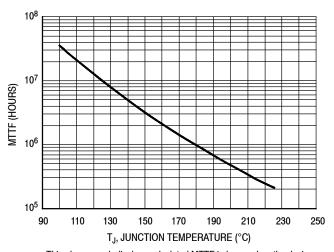
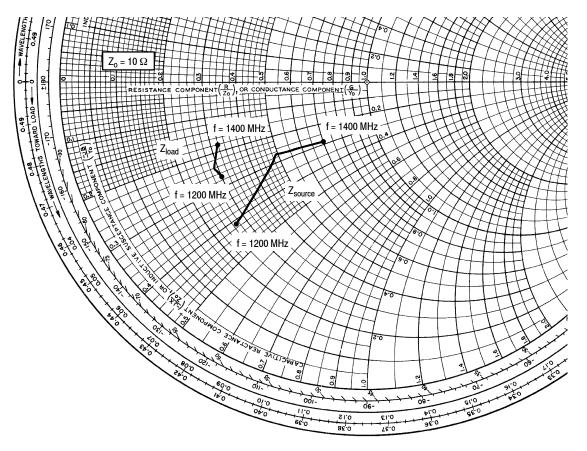



Figure 12. Broadband Performance @ Pout = 330 Watts Peak



This above graph displays calculated MTTF in hours when the device is operated at V $_{DD}$ = 50 Vdc, P $_{out}$ = 330 W Peak, Pulse Width = 300 μsec , Duty Cycle = 12%, and η_D = 60.5%.

MTTF calculator available at http://www.freescale.com/rf. Select Software & Tools/Development Tools/Calculators to access MTTF calculators by product.

Figure 13. MTTF versus Junction Temperature

 V_{DD} = 50 Vdc, I_{DQ} = 150 mA, P_{out} = 330 W Peak

f MHz	Z _{source} Ω	Z _{load} Ω
1200	2.70 - j4.10	2.97 - j2.66
1300	4.93 - j2.66	2.85 - j2.40
1400	7.01 - j2.87	3.17 - j1.78

Z_{source} = Test circuit impedance as measured from gate to ground.

 $Z_{load} \quad = \quad \text{Test circuit impedance as measured} \\ \quad \text{from drain to ground.}$

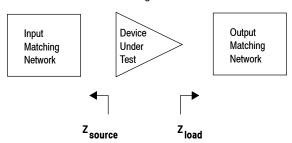
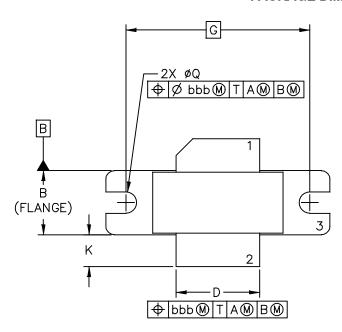
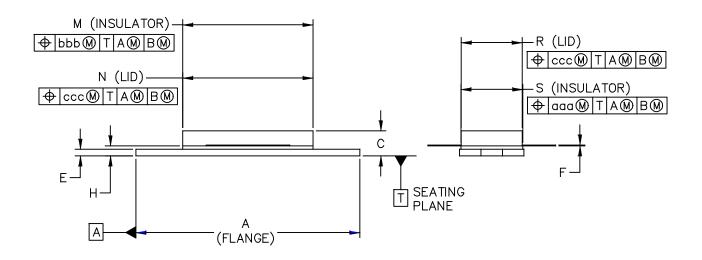




Figure 14. Series Equivalent Source and Load Impedance

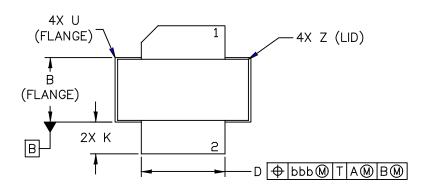
PACKAGE DIMENSIONS

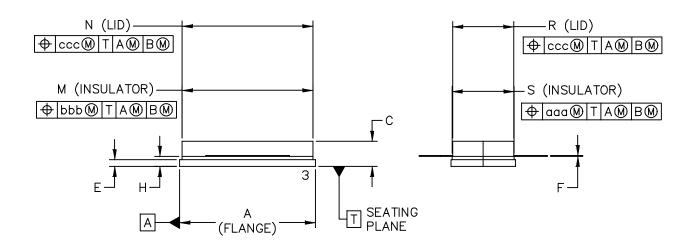
© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	MECHANICA	L OUTLINE	PRINT VERSION NOT TO SCA			
TITLE:		DOCUMENT NO): 98ASB15607C	REV: G		
NI-780		CASE NUMBER: 465-06 31 MAR 200				
		STANDARD: NON-JEDEC				

NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M-1994.
- 2. CONTROLLING DIMENSION: INCH.
- 3. DELETED
- 4. DIMENSION H IS MEASURED .030 (.762) AWAY FROM PACKAGE BODY.

STYLE 1:


PIN 1. DRAIN


2. GATE

3. SOURCE

	INCH	MILLIMETER			INCH	М	ILLIMETER
DIM	MIN MAX	MIN MAX	DIM	MIN	MAX	MIN	MAX
Α	1.335 – 1.345	33.91 – 34.16	R	.365	375	9.2	7 – 9.53
В	.380 – .390	9.65 — 9.91	S	.365	375	9.2	7 – 9.52
С	.125 – .170	3.18 – 4.32	aaa	_	.005 —	_	0.127 —
D	.495 – .505	12.57 – 12.83	bbb	_	.010 —	_	0.254 —
Е	.035 – .045	0.89 — 1.14	ccc	_	.015 —	_	0.381 —
F	.003006	0.08 _ 0.15	_	_		_	
G	1.100 BSC	27.94 BSC	_	_		_	
Н	.057067	1.45 _ 1.7	_	_		_	
K	.170 – .210	4.32 _ 5.33	_	_		_	
М	.774786	19.66 — 19.96	_	_		_	
N	.772 – .788	19.6 – 20	_	_		_	
Q	ø.118 – ø.138	ø3 – ø3.51	_	_		_	
© F	REESCALE SEMICONDUCTOR, : ALL RIGHTS RESERVED.	INC. MECHANICA	L OUT	LINE	PRINT VERS	SION NO	T TO SCALE
TITLE:		DOCUMENT NO: 98ASB15607C RE			REV: G		
	NI-78	CASE NUMBER: 465-06 31 MAR 20				31 MAR 2005	
			STANI	DARD: NO	N-JEDEC		

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	MECHANICAL OUTLINE		PRINT VERSION NO	OT TO SCALE		
TITLE:		DOCUMENT NO): 98ASB16718C	REV: H		
NI-780S		CASE NUMBER: 465A-06 31 MAR				
		STANDARD: NO	N-JEDEC			

NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M-1994.
- 2. CONTROLLING DIMENSION: INCH.
- 3. DELETED
- 4. DIMENSION H IS MEASURED .030 (0.762) AWAY FROM PACKAGE BODY.

STYLE 1:

PIN 1. DRAIN

2. GATE3. SOURCE

		INCH	1	MIL	LIME	TER			INCH		MILLIMETER		
DIM	MIN		MAX	MIN		MAX	DIM	MIN	М	AX	MIN		MAX
Α	.805	_	.815	20.45	_	20.7	U	_	0	10	_	-	1.02
В	.380	_	.390	9.65	_	9.91	Z	_	03	30	_	_	0.76
С	.125	_	.170	3.18	_	4.32	aaa	_	.005	_	_	0.127	_
D	.495	_	.505	12.57	_	12.83	bbb	_	.010	_	-	0.254	-
E	.035	_	.045	0.89	_	1.14	ccc	_	.015 -	_	-	0.381	_
F	.003	_	.006	0.08	_	0.15	-	_	_	_	_	_	_
Н	.057	_	.067	1.45	_	1.7	-	_	_	_	_	_	_
K	.170	_	.210	4.32	_	5.33	-	_	_	_	_	_	_
М	.774	_	.786	19.61	_	20.02	-	_	_	_	_	_	_
N	.772	_	.788	19.61	_	20.02	-	_	_	_	_	_	_
R	.365	_	.375	9.27	_	9.53	-	_	_	_	_	_	_
S	.365	_	.375	9.27	_	9.52	_	_		_	-	_	_
© F	REESCALE S ALL RIG		ONDUCTOR, : RESERVED.	INC.	ME	CHANICA	L OUT	LINE	PRINT	VERS	SION NO	T TO S	CALE
TITLE:	TITLE:					DOCUMENT NO: 98ASB16718C REV: H			ł				
NI-780S					CASE	NUMBER	R: 465A—	26		31 MA	R 2005		
STANDARD: NON-JEDEC													
STANDAND, NON-VEDEC													

PRODUCT DOCUMENTATION AND SOFTWARE

Refer to the following resources to aid your design process.

Application Notes

• AN1955: Thermal Measurement Methodology of RF Power Amplifiers

Engineering Bulletins

• EB212: Using Data Sheet Impedances for RF LDMOS Devices

Software

• Electromigration MTTF Calculator

For Software, do a Part Number search at http://www.freescale.com, and select the "Part Number" link. Go to the Software & Tools tab on the part's Product Summary page to download the respective tool.

REVISION HISTORY

The following table summarizes revisions to this document.

Revision	Date	Description
0	July 2014	Initial Release of Data Sheet

How to Reach Us:

Home Page: freescale.com

Web Support: freescale.com/support

Information in this document is provided solely to enable system and software implementers to use Freescale products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document.

Freescale reserves the right to make changes without further notice to any products herein. Freescale makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including "typicals," must be validated for each customer application by customer's technical experts. Freescale does not convey any license under its patent rights nor the rights of others. Freescale sells products pursuant to standard terms and conditions of sale, which can be found at the following address: freescale.com/SalesTermsandConditions.

Freescale and the Freescale logo are trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. All other product or service names are the property of their respective owners.

© 2014 Freescale Semiconductor, Inc.

Document Number: MMRF1011H Rev. 0, 7/2014