imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

. reescale Semiconductor

Technical Data

RF Power LDMOS Transistors

N-Channel Enhancement-Mode Lateral MOSFETs

These high ruggedness devices are designed for use in high VSWR military, aerospace and defense, industrial (including laser and plasma exciters), broadcast (analog and digital), and radio/land mobile applications. They are unmatched input and output designs allowing wide frequency range utilization, between 1.8 and 600 MHz.

Typical Performance: V_{DD} = 50 Vdc, I_{DQ} = 100 mA

Signal Type	P _{out} (W)	f (MHz)	G _{ps} (dB)	η _D (%)	IRL (dB)
Pulse (100 μsec, 20% Duty Cycle)	600 Peak	230	25.0	74.6	-18
CW	600 Avg.	230	24.6	75.2	-17

- Capable of Handling a Load Mismatch of 65:1 VSWR @ 50 Vdc, 230 MHz, at all Phase Angles, Designed for Enhanced Ruggedness
 - + 600 W Pulse Peak Power, 20% Duty Cycle, 100 μsec

Features

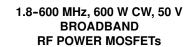
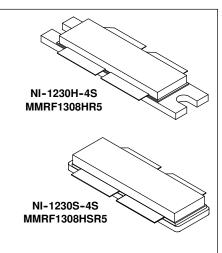
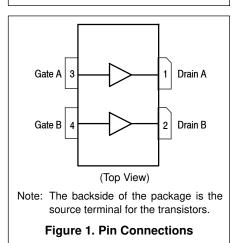

- Unmatched Input and Output Allowing Wide Frequency Range Utilization
- · Device can be used Single-Ended or in a Push-Pull Configuration
- Qualified Up to a Maximum of 50 V_{DD} Operation
- Characterized from 30 V to 50 V for Extended Power Range
- Suitable for Linear Application with Appropriate Biasing
- Integrated ESD Protection with Greater Negative Gate-Source Voltage Range for Improved Class C Operation
- Characterized with Series Equivalent Large-Signal Impedance Parameters
- In Tape and Reel. R5 Suffix = 50 Units, 56 mm Tape Width, 13-inch Reel.

Table 1. Maximum Ratings


Rating	Symbol	Value	Unit
Drain-Source Voltage	V _{DSS}	-0.5, +133	Vdc
Gate-Source Voltage	V _{GS}	-6.0, +10	Vdc
Storage Temperature Range	T _{stg}	- 65 to +150	°C
Case Operating Temperature	т _с	150	°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	1667 8.33	W W/°C
Operating Junction Temperature (1,2)	ТJ	225	°C


Document Number: MMRF1308H

MMRF1308HSR5

Table 2. Thermal Characteristics

Characteristic	Symbol	Value (2,3)	Unit
Thermal Resistance, Junction to Case Case Temperature 68°C, 600 W Peak, 100 μsec Pulse Width, 20% Duty Cycle, 100 mA, 230 MHz Case Temperature 60°C, 600 W CW, 100 mA, 230 MHz	$Z_{ extsf{ heta}JC} R_{ hetaJC}$	0.022 0.12	°C/W

1. Continuous use at maximum temperature will affect MTTF.

 MTTF calculator available at <u>http://www.freescale.com/rf</u>. Select Software & Tools/Development Tools/Calculators to access MTTF calculators by product.

 Refer to AN1955, Thermal Measurement Methodology of RF Power Amplifiers. Go to <u>http://www.freescale.com/rf</u>. Select Documentation/Application Notes – AN1955.

RoHS

Rev. 0, 7/2014

Table 3. ESD Protection Characteristics

Test Methodology		Cla	ISS				
Human Body Model (per JESD22-A114)		2					
Machine Model (per EIA/JESD22-A115)			E	3			
Charge Device Model (per JESD22-C101)			ľ	V			
Fable 4. Electrical Characteristics (T _A = 25°C unless otherwise	noted)						
Characteristic	Symbol	Min	Тур	Max	Unit		
Off Characteristics (1)			•				
Gate-Source Leakage Current (V _{GS} = 5 Vdc, V _{DS} = 0 Vdc)	I _{GSS}	_	_	1	μAdc		
Drain-Source Breakdown Voltage $(V_{GS} = 0 \text{ Vdc}, I_D = 100 \text{ mA})$	V _{(BR)DSS}	133	—	—	Vdc		
Zero Gate Voltage Drain Leakage Current $(V_{DS} = 50 \text{ Vdc}, V_{GS} = 0 \text{ Vdc})$	I _{DSS}	_	—	10	μAdc		
Zero Gate Voltage Drain Leakage Current $(V_{DS} = 100 \text{ Vdc}, V_{GS} = 0 \text{ Vdc})$	I _{DSS}	_	—	20	μAdc		
On Characteristics				L			
Gate Threshold Voltage ⁽¹⁾ (V _{DS} = 10 Vdc, I _D = 960 μAdc)	V _{GS(th)}	1.7	2.2	2.7	Vdc		
Gate Quiescent Voltage $(V_{DD} = 50 \text{ Vdc}, I_D = 100 \text{ mAdc}, \text{Measured in Functional Test})$	V _{GS(Q)}	2.0	2.5	3.0	Vdc		
Drain-Source On-Voltage (1) (V _{GS} = 10 Vdc, I _D = 2 Adc)	V _{DS(on)}	_	0.26	_	Vdc		
Dynamic Characteristics ⁽¹⁾				L			
Reverse Transfer Capacitance $(V_{DS} = 50 \text{ Vdc} \pm 30 \text{ mV}(\text{rms})ac @ 1 \text{ MHz}, V_{GS} = 0 \text{ Vdc})$	C _{rss}	_	1.60	—	pF		
Output Capacitance (V _{DS} = 50 Vdc ± 30 mV(rms)ac @ 1 MHz, V _{GS} = 0 Vdc)	C _{oss}	_	129	—	pF		
Input Capacitance (V _{DS} = 50 Vdc, V _{GS} = 0 Vdc ± 30 mV(rms)ac @ 1 MHz)	C _{iss}	—	342	—	pF		

Power Gain	G _{ps}	23.5	25.0	26.5	dB
Drain Efficiency	η _D	73.5	74.6	_	%
Input Return Loss	IRL	_	-18	-12	dB

1. Each side of device measured separately.

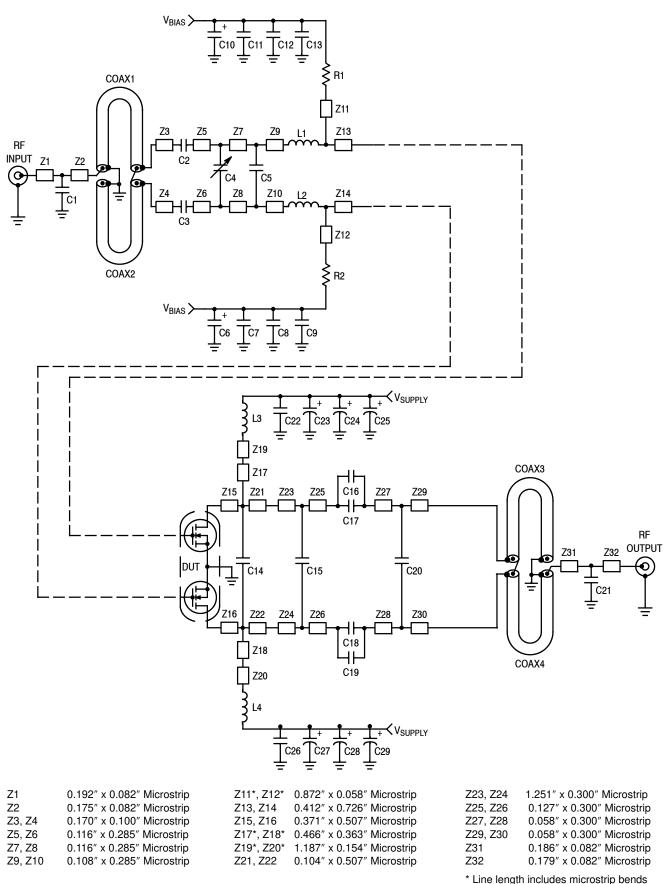


Figure 2. MMRF1308HR5(HSR5) Test Circuit Schematic - Pulse

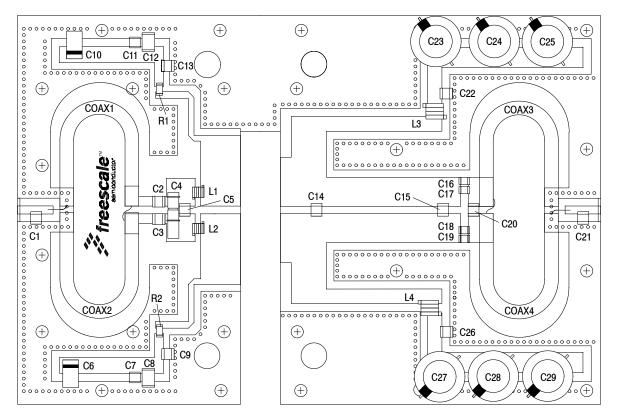
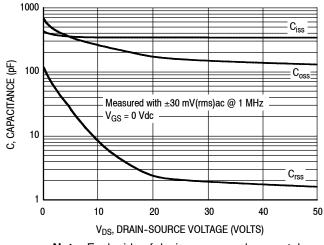
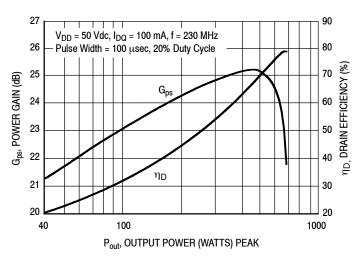
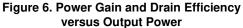



Figure 3. MMRF1308HR5(HSR5) Test Circuit Component Layout - Pulse


Part	Description	Part Number	Manufacturer
C1	12 pF Chip Capacitor	ATC100B120JT500XT	ATC
C2, C3	27 pF Chip Capacitors	ATC100B270JT500XT	ATC
C4	0.8-8.0 pF Variable Capacitor, Gigatrim	27291SL	Johanson
C5	33 pF Chip Capacitor	ATC100B330JT500XT	ATC
C6, C10	22 μF, 35 V Tantalum Capacitors	T491X226K035AT	Kemet
C7, C11	0.1 μF Chip Capacitors	CDR33BX104AKYS	AVX
C8, C12	220 nF Chip Capacitors	C1812C224K5RACTU	Kemet
C9, C13, C22, C26	1000 pF Chip Capacitors	ATC100B102JT50XT	ATC
C14	36 pF Chip Capacitor	ATC100B360JT500XT	ATC
C15	51 pF Chip Capacitor	ATC100B510GT500XT	ATC
C16, C17, C18, C19	240 pF Chip Capacitors	ATC100B241JT200XT	ATC
C20	39 pF Chip Capacitor	ATC100B390JT500XT	ATC
C21	10 pF Chip Capacitor	ATC100B100JT500XT	ATC
C23, C24, C25, C27, C28, C29	470 μF, 63 V Electrolytic Capacitors	MCGPR63V477M13X26-RH	Multicomp
Coax1, 2, 3, 4	25 Ω Semi Rigid Coax, 2.2" Shield Length	UT-141C-25	Micro Coax
L1, L2	5 nH Inductors	A02TKLC	Coilcraft
L3, L4	6.6 nH Inductors	GA3093-ALC	Coilcraft
R1, R2	10 Ω Chip Resistors	CRCW120610R0JNEA	Vishay
PCB	0.030", ε _r = 2.55	AD255A	Arlon




TYPICAL CHARACTERISTICS

Note: Each side of device measured separately.

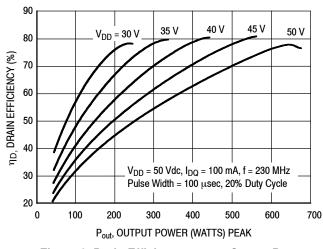


Figure 8. Drain Efficiency versus Output Power

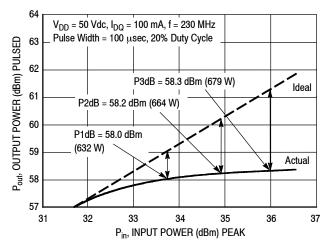
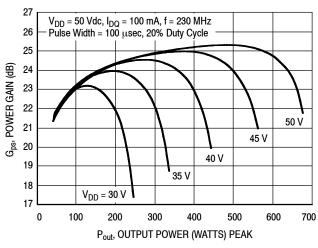
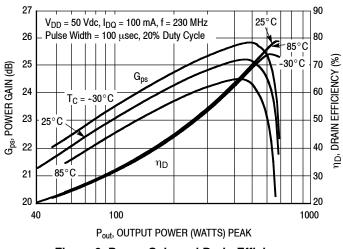
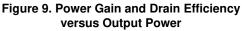
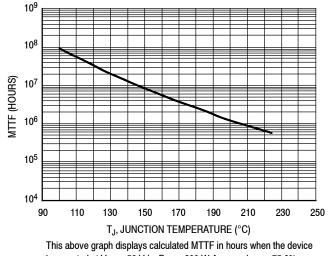
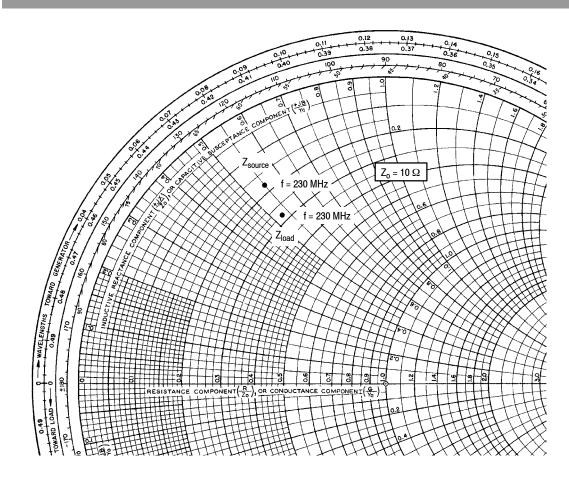


Figure 5. Output Power versus Input Power


Figure 7. Power Gain versus Output Power


TYPICAL CHARACTERISTICS

is operated at V_{DD} = 50 Vdc, P_{out} = 600 W Avg., and η_D = 75.2%.

MTTF calculator available at http://www.freescale.com/rf. Select Software & Tools/Development Tools/Calculators to access MTTF calculators by product.

 V_{DD} = 50 Vdc, I_{DQ} = 100 mA, P_{out} = 600 W Peak

f	Z _{source}	Z _{load}
MHz	Ω	Ω
230	1.78 + j5.45	2.75 + j5.30

 Z_{source} = Test circuit impedance as measured from gate to gate, balanced configuration.

Z_{load} = Test circuit impedance as measured from drain to drain, balanced configuration.

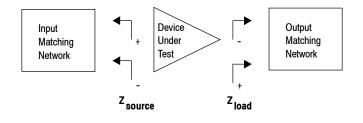
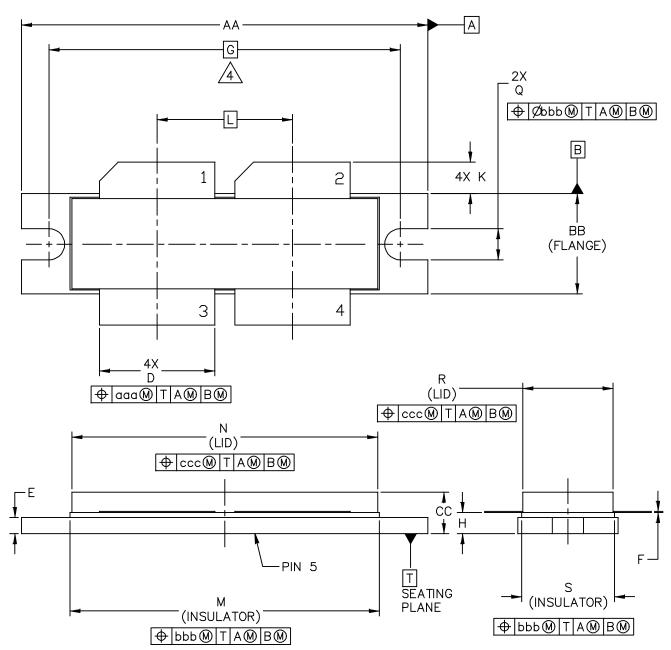
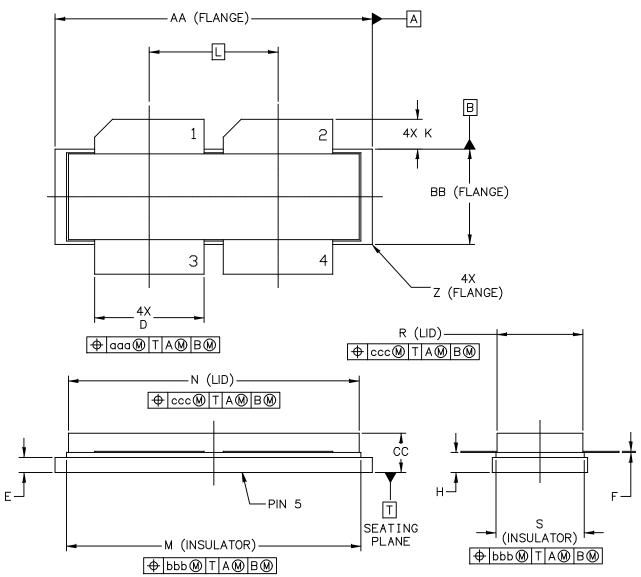



Figure 11. Series Equivalent Source and Load Impedance

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	MECHANICAL OU	TLINE	PRINT VERSION NOT TO SCALE
TITLE:		DOCUME	NT NO: 98ASB16977C REV: F
NI-1230-4H		STANDAF	RD: NON-JEDEC
			28 FEB 2013


NOTES:

- 1. INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14. 5M-1994.
- 2. CONTROLLING DIMENSION: INCH
- 3. DIMENSION H IS MEASURED . 030 INCH (0. 762 MM) AWAY FROM PACKAGE BODY.

 $\frac{4}{4}$ RECOMMENDED BOLT CENTER DIMENSION OF 1.52 INCH (38.61 MM) BASED ON M3 SCREW.

	IN	СН	MILL	IMETER		1	NCH	MILLIN	1ETER
DIM	MIN	MAX	MIN	MAX	DIM	MIN	MAX	MIN	MAX
AA	1.615	1.625	41.02	41.28	N	1.218	1.242	30.94	31.55
BB	.395	.405	10.03	10.29	Q	.120	.130	3.05	3.30
СС	.170	.190	4.32	4.83	R	.355	.365	9.02	9.27
D	.455	.465	11.56	11.81	S	.365	.375	9.27	9.53
Е	.062	.066	1.57	1.68					
F	.004	.007	0.10	0.18					
G	1.400	BSC	35.5	56 BSC	aaa	.013		0.3	33
Н	.082	.090	2.08	2.29	bbb	.010		0.25	
K	.117	.137	2.97	3.48	ccc	.020		0.51	
L	.540	BSC	13.7	72 BSC					
М	1.219	1.241	30.96	31.52					
© I	FREESCALE SEN ALL RIGHT	ICONDUCTOR, S RESERVED.	INC.	MECHANICA	L 0U1	LINE	PRINT VER	SION NOT TO	D SCALE
TITLE:						DOCUMENT	NO: 98ASB1	6977C	REV: F
NI-1230-4H STANDARD: NON-JEDEC					C				
					Ī			28	FEB 2013

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	MECHANICAL OU	TLINE	PRINT VERSION NOT TO SCALE
TITLE:		DOCUMEN	NT NO: 98ARB18247C REV: G
NI-1230-4S		STANDAF	RD: NON-JEDEC
			01 MAR 2013

NOTES:

- 1. INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M-1994.
- 2. CONTROLLING DIMENSION: INCH
- 3. DIMENSION H IS MEASURED .030 INCH (0.762 MM) AWAY FROM PACKAGE BODY

	INC	HES	MIL	LIMETERS		IN	ICHES	MILLIN	IETERS
DIM	MIN	MAX	MIN	MAX	DIM	MIN	MAX	MIN	MAX
AA	1.265	1.275	32.13	32.39	R	.355	.365	9.02	9.27
BB	.395	.405	10.03	10.29	S	.365	.375	9.27	9.53
сс	.170	.190	4.32	4.83	Z	R.000	R.040	R0.00	R1.02
D	.455	.465	11.56	11.81					
E	.062	.066	1.57	1.68	aaa		.013	0.	33
F	.004	.007	0.10	0.18	bbb	.010		0.	25
н	.082	.090	2.08	2.29	ccc	.020		0.51	
к	.117	.137	2.97	3.48					
L	.540	BSC	13.	72 BSC					
м	1.219	1.241	30.96	31.52					
N	1.218	1.242	30.94	31.55					
© F		AICONDUCTOR, S RESERVED.	INC.	MECHANICA	L OUT	LINE	PRINT VEF	SION NOT	TO SCALE
TITLE:			I			DOCUMEN	NT NO: 98ARE	318247C	REV: G
		NI-1230)—4S			STANDARD: NON-JEDEC			
								01	MAR 2013

PRODUCT DOCUMENTATION AND SOFTWARE

Refer to the following resources to aid your design process.

Application Notes

AN1955: Thermal Measurement Methodology of RF Power Amplifiers

Engineering Bulletins

• EB212: Using Data Sheet Impedances for RF LDMOS Devices

Software

• Electromigration MTTF Calculator

For Software, do a Part Number search at http://www.freescale.com, and select the "Part Number" link. Go to the Software & Tools tab on the part's Product Summary page to download the respective tool.

REVISION HISTORY

The following table summarizes revisions to this document.

Revision	Date	Description
0	July 2014	Initial Release of Data Sheet

How to Reach Us:

Home Page: freescale.com

Web Support: freescale.com/support Information in this document is provided solely to enable system and software implementers to use Freescale products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document.

Freescale reserves the right to make changes without further notice to any products herein. Freescale makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including "typicals," must be validated for each customer application by customer's technical experts. Freescale does not convey any license under its patent rights nor the rights of others. Freescale sells products pursuant to standard terms and conditions of sale, which can be found at the following address: freescale.com/SalesTermsandConditions.

Freescale and the Freescale logo are trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. All other product or service names are the property of their respective owners.

© 2014 Freescale Semiconductor, Inc.

