imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

DC to 40 GHz MMIC Medium Power Voltage Controlled Attenuator

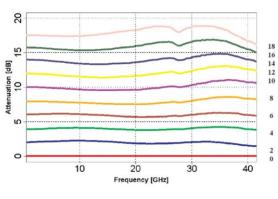
Features

- Wideband operation: DC to 40 GHz
- Low Insertion Loss (<3 dB)
- Good Input/Output Match
- Medium Attenuation (max. 17 dB)
- Size: 1640 x 920 mm

Description

The MMS005AA is a medium-power DC-40 GHz PHEMT FET attenuator. The performance of the device is controlled by two bias voltages, Vseries and Vshunt. The bias voltages control the match and attenuation of the device when varied between -1V and +0.5V DC. For additional information please refer to the tables of recommended bias settings optimized for flat insertion loss and flat attenuation.

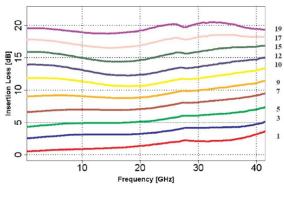
Application


The MMS005AA MMIC voltage controlled attenuator is ideal for high frequency and broadband applications in test equipment, commercial and military systems. The attenuator is especially suited for applications needing a moderate amount of adjustable attenuation and fast attenuation control from DC to millimeter frequencies. The device is also useful as a general purpose building block in communications systems.

Parameter	Description	Min	Тур	Мах
Attenuation (dB)	DC to 40 GHz	0	-	17
Flatness (±dB)	DC to 40 GHz	-	1	-
Insertion Loss (dB	DC to 40 GHz	-	-	3
S11 (dB)	DC to 40 GHz	-	-10	-8
S22 (dB)	DC to 40 GHz	-	-10	-8
P1dB (dBm)	1dB Gain Compression 0 to 15 dB Attenuation	8	-	-

Key Characteristics: Zo=50Ω

Optimized for Flat Attenuation (Typical)



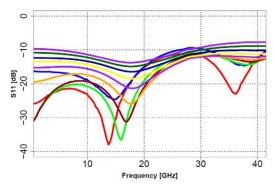
MMS005AA Attenuation

Typical on wafer measured performance

Vseries (V)	Vshunt (V)	Att. (dB)*
-0.625	0.343	18.3
-0.625	-0.287	15.9
-0.625	-0.1	13.6
-0.616	-0.456	11.6
-0.608	-0.501	9.6
-0.601	-0.544	7.5
-0.595	-0.583	5.7
-0.569	-0.622	3.8
-0.55	-0.7	1.8
0.5	-1	0

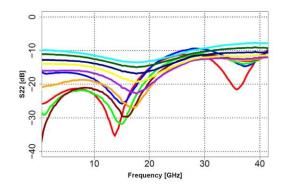
Optimized for Flat Insertion Loss (Typical)

MMS005AA Insertion Loss


Typical on wafer measured performance

Vseries (V)	Vshunt (V)	Att. (dB)*
-650	0	19.2
-0.65	-0.312	16.9
-0.65	-0.413	14.6
-0.65	-0.475	12.4
-0.641	-0.513	10.7
-0.618	-0.549	8.9
0.595	-0.583	7.1
-0.568	-0.624	5.1
-0.55	-0.7	3.3
0.5	-1	1.4

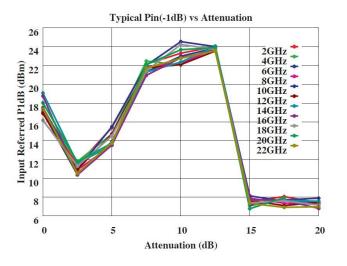
Note: (*) Midband



MMS005AA S11

Typical on wafer measured performance

MMS005AA S22



Typical on wafer measured performance

Table 1: Supplemental Specifi	ications
-------------------------------	----------


Parameter	Description	Min	Тур	Max
Vseries	Attenuation Control Voltage	-2V	-	0.5V
Vshunt	Attenuation Control Voltage	-2V	-	0.5V
Dcin	DC feedback circuit input	0 V	0.25 V	1 V
Dcout	DC feedback circuit output	0 V	0.25 V	1 V
GND	Backside Ground Plane	-	-	22dBm
Tch	Channel Temperature	-	-	150°C
Θch	Thermal Resistance (Tcase=85°C)	-	60o C/Watt	-

Typical Pin (1dB) vs Attenuation

MMS005AA Simplified Schematic Diagram

Typical on evaluated package measured performance

Pick-up and Chip Handling:

This MMIC has exposed air bridges on the top surface. **Do not pick up chip with vacuum on the die center;** handle from edges or use a collet.

ESD Handling and Bonding:

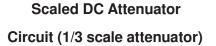
This MMIC is ESD sensitive; preventive measures should be taken during handling, die attach, and bonding.

Epoxy die attach is recommended. Please review our application note MM-APP-0001 handling and die attach recommendations, on our website for more handling, die attach and bonding information.

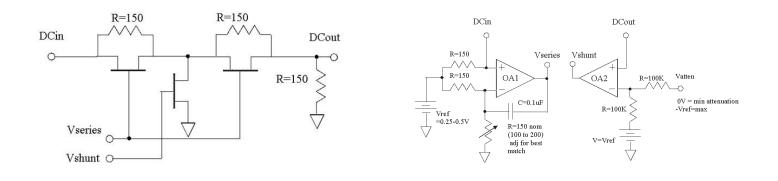
DC Feedback Circuit for Variable Attenuator:

The following feedback circuit does a good job of providing the series and shunt biases to the variable attenuator for a user-selected amount of attenuation.

The circuit references a 1/3 scale version of the microwave attenuator, which is used for the DC feedback loop. Because the devices are 1/3 the size of the unscaled attenuator, the reference impedence is 3 times larger (150W instead of 50W).

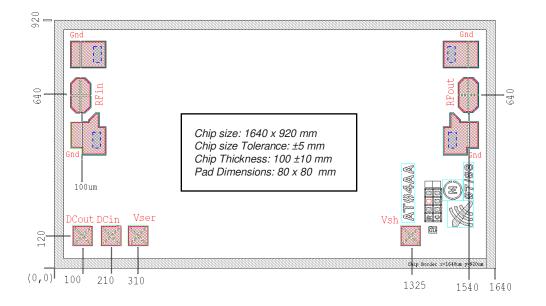

The circuit uses two ordinary opamps to provide the bias control voltages to the attenuator. Opamp OA1 senses the input impedance of the attenuator and adjusts the series FET gate voltage Vseries so that the impedance looking into the attenuator is 150W. The input impedance can be adjusted with the potentiometer shown in the schematic (Figure 8). When this feedback loop is at DC equilibrium the voltage at DCin will be Vref/2.

The second opamp OA2 adjusts the shunt FET gate voltage so that the DC output voltage DCout is equal to the voltage at the opamp negative input terminal. When 0V is applied to the negative input terminal of OA2, the attenuation is maximized.

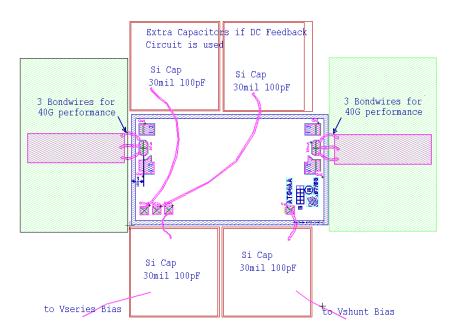

Conversely, if Vref/2 is applied at the negative input of OA2 then the attenuation is minimized.

A voltage divider with the shunt resistor terminated by the voltage Vref makes for a convienient conversion of voltage to attenuation. If the input to the divider Vatten is set to 0 volts then the negative input of OA2 will have a value of Vref/2 and the attenuator will have minimum attenuation.

Conversely, if Vatten is set to –Vref then the negative input of OA2 is set 0V and the attenuator will have maximum attenuation. This makes the calculation of Vatten easy and requires a minimum number of parts.



The DC feedback circuit to adjust the attenuator



Physical Characteristics of MMS005AA

Assembly Diagram of MMS005AA

Information contained in this document is proprietary to Microsem. This document may not be modified in any way without the express written consent of Microsemi. Product processing does not necessarily include testing of all parameters. Microsemi reserves the right to change the configuration and performance of the product and to discontinue product at any time.

Microsemi Corporate Headquarters One Enterprise, Aliso Viejo CA 92656 USA Within the USA: +1 (949) 380-6100 Sales: +1 (949) 380-6136 Fax: +1 (949) 215-4996	Microsemi Corporation (Nasdaq: MSCC) offers a comprehensive portfolio of semiconductor and system solutions for communications, defense and security, aerospace, and industrial markets. Products include high-performance and radiation-hardened analog mixed-signal integrated circuits, FPGAs, SoCs, and ASICs; power management products; timing and synchronization devices and precise time solutions, setting the world's standard for time; voice processing devices; RF solutions; discrete components; security technologies and scalable anti-tamper products; Power-over-Ethernet ICs and midspans; as well as custom design capabilities and services. Microsemi is headquartered in Aliso Viejo, Calif. and has approximately 3,400 employees globally. Learn more at www.microsemi.com .
---	--

© 2014 Microsemi Corporation. All rights reserved. Microsemi and the Microsemi logo are trademarks of Microsemi Corporation. All other trademarks and service marks are the property of their respective owners.