imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

MMSZ4xxxET1G Series, SZMMSZ4xxxET1G Series

Zener Voltage Regulators

500 mW SOD-123 Surface Mount

Three complete series of Zener diodes are offered in the convenient, surface mount plastic SOD-123 package. These devices provide a convenient alternative to the leadless 34-package style.

Features

- 500 mW Rating on FR-4 or FR-5 Board
- Wide Zener Reverse Voltage Range 1.8 V to 43 V
- Package Designed for Optimal Automated Board Assembly
- Small Package Size for High Density Applications
- ESD Rating of Class 3 (> 16 kV) per Human Body Model
- Peak Power 225 W (8 x 20 µs)
- AEC-Q101 Qualified and PPAP Capable
- SZ Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements
- Pb-Free Packages are Available*

Mechanical Characteristics:

CASE: Void-free, transfer-molded, thermosetting plastic case **FINISH:** Corrosion resistant finish, easily solderable

MAXIMUM CASE TEMPERATURE FOR SOLDERING PURPOSES: 260°C for 10 Seconds

POLARITY: Cathode indicated by polarity band **FLAMMABILITY RATING:** UL 94 V-0

MAXIMUM RATINGS

Rating	Symbol	Мах	Unit
Peak Power Dissipation @ 20 μs (Note 1) @ T _L ≤ 25°C	P _{pk}	225	W
Total Power Dissipation on FR–5 Board, (Note 2) @ T _L = 75°C Derated above 75°C	P _D	500 6.7	mW mW/°C
Thermal Resistance, (Note 3) Junction-to-Ambient	R_{\thetaJA}	340	°C/W
Thermal Resistance, (Note 3) Junction-to-Lead	$R_{\theta JL}$	150	°C/W
Junction and Storage Temperature Range	T _J , T _{stg}	–55 to +150	°C

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

1. Nonrepetitive current pulse per Figure 11.

- 2. FR-5 = 3.5×1.5 inches, using the minimum recommended footprint.
- 3. Thermal Resistance measurement obtained via infrared Scan Method.

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor®

http://onsemi.com

SOD-123 CASE 425 STYLE 1

MARKING DIAGRAM

xxx = Device Code (Refer to page 2)

M = Date Code

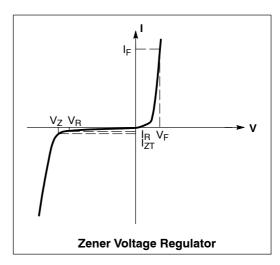
= Pb-Free Package

(Note: Microdot may be in either location)

ORDERING INFORMATION

Device	Package	Shipping [†]
MMSZ4xxxET1G	SOD-123 (Pb-Free)	3,000 / Tape & Reel
SZMMSZ4xxxET1G	SOD-123 (Pb-Free)	3,000 / Tape & Reel
MMSZ4xxxET3G	SOD-123 (Pb-Free)	10,000 / Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

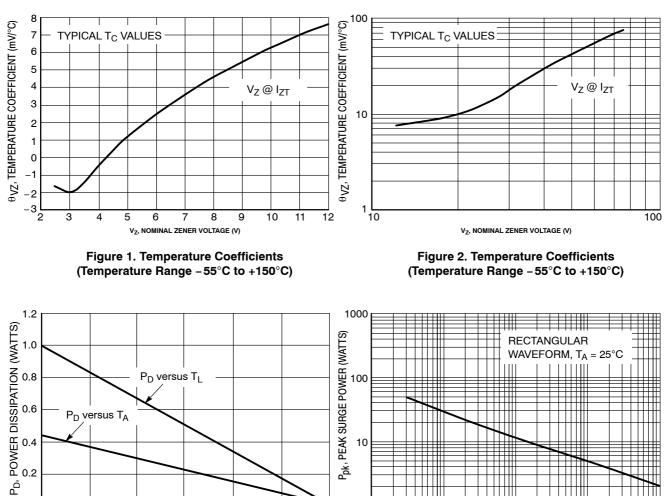

DEVICE MARKING INFORMATION

See specific marking information in the device marking column of the Electrical Characteristics table on page 2 of this data sheet.

MMSZ4xxxET1G Series, SZMMSZ4xxxET1G Series

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted, V_F = 0.95 V Max. @ I_F = 10 mA)

Symbol	Parameter			
VZ	Reverse Zener Voltage @ I _{ZT}			
I _{ZT}	Reverse Current			
I _R	Reverse Leakage Current @ VR			
V _R	Reverse Voltage			
١ _F	Forward Current			
V _F	Forward Voltage @ I _F			


ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted, V_F = 0.9 V Max. @ I_F = 10 mA)

		Zener Voltage (Note 1)				Leakage Current	
Device*	Device	V _Z (V)			@ I _{ZT}	I _R @ V _R	
	Marking	Min	Nom	Max	μΑ	μΑ	v
MMSZ4680ET1G	CF8	2.09	2.2	2.31	50	4	1
MMSZ4684ET1G	CG3	3.13	3.3	3.47	50	7.5	1.5
MMSZ4688ET1G	CG7	4.47	4.7	4.94	50	10	3
MMSZ4689ET1G	CG8	4.85	5.1	5.36	50	10	3
MMSZ4690ET1G	CG9	5.32	5.6	5.88	50	10	4
MMSZ4691ET1G	CH1	5.89	6.2	6.51	50	10	5
MMSZ4692ET1G	CH2	6.46	6.8	7.14	50	10	5.1
MMSZ4693ET1G	СНЗ	7.13	7.5	7.88	50	10	5.7
MMSZ4697ET1G	CH7	9.50	10	10.50	50	1	7.6
MMSZ4699ET1G	CH9	11.40	12	12.60	50	0.05	9.1
MMSZ4701ET1G	CJ2	13.3	14	14.7	50	0.05	10.6
MMSZ4702ET1G	CJЗ	14.25	15	15.75	50	0.05	11.4
MMSZ4703ET1G	CJ4	15.20	16	16.80	50	0.05	12.1
MMSZ4705ET1G	CJ6	17.10	18	18.90	50	0.05	13.6
MMSZ4709ET1G	CK1	22.80	24	25.20	50	0.01	18.2
MMSZ4711ET1G	СКЗ	25.65	27	28.35	50	0.01	20.4
MMSZ4717ET1G	CK9	40.85	43	45.15	50	0.01	32.6

1. Nominal Zener voltage is measured with the device junction in thermal equilibrium at $T_L = 30^{\circ}C \pm 1^{\circ}C$. *Include SZ-prefix devices where applicable.

MMSZ4xxxET1G Series, SZMMSZ4xxxET1G Series

TYPICAL CHARACTERISTICS

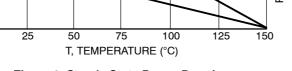
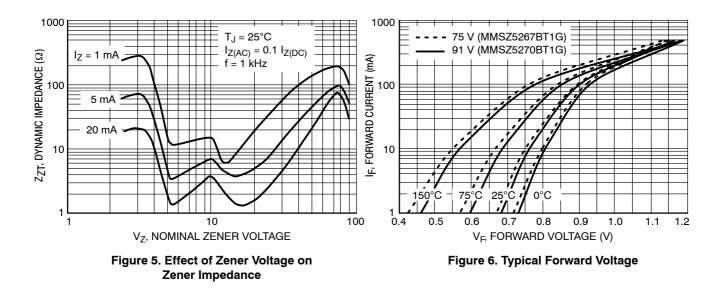


Figure 3. Steady State Power Derating


0 L

PW, PULSE WIDTH (ms)
Figure 4. Maximum Nonrepetitive Surge Power

10

100

1000

1 ∟ 0.1

MMSZ4xxxET1G Series, SZMMSZ4xxxET1G Series

1000 1000 R, LEAKAGE CURRENT (µA) TA 25 С 0 V BIAS 100 C, CAPACITANCE (pF) 1 V BIAS 10 100 1 +150°C BIAS AT 0.1 50% OF V_Z NOM 0.01 10 25°C 0.001 55°C 0.0001 1 0.00001 100 10 60 90 10 0 20 30 40 50 70 80 1 VZ, NOMINAL ZENER VOLTAGE (V) VZ, NOMINAL ZENER VOLTAGE (V) Figure 7. Typical Capacitance Figure 8. Typical Leakage Current 100 100 $T_A = 25^{\circ}C$ $T_A = 25^{\circ}C$ ZENER CURRENT (mA) ZENER CURRENT (mA) 10 10 1 1 0.01 0.01 ō 12 30 70 90 2 4 6 8 10 10 50 V_Z, ZENER VOLTAGE (V) V₇, ZENER VOLTAGE (V) Figure 9. Zener Voltage versus Zener Current Figure 10. Zener Voltage versus Zener Current (12 V to 91 V) (V_Z Up to 12 V) 100 PEAK VALUE I_{RSM} @ 8 μs 90 **OF PEAK PULSE CURRENT** PULSE WIDTH (tp) IS DEFINED 80 AS THAT POINT WHERE THE 70 PEAK CURRENT DECAY = 8 µs

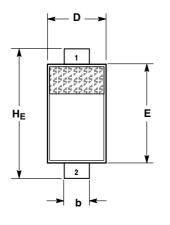
TYPICAL CHARACTERISTICS

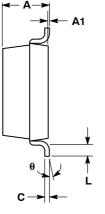
t, TIME (μs) Figure 11. 8 \times 20 μs Pulse Waveform

40

20

HALF VALUE I_{RSM}/2 @ 20 μs

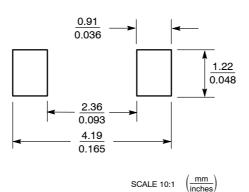

60


80

60 50

PACKAGE DIMENSIONS

SOD-123 CASE 425-04 ISSUE G


NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14 5M 1982

2. CONTROLLING DIMENSION: INCH.

	MILLIMETERS			INCHES		
DIM	MIN	NOM	MAX	MIN	NOM	MAX
Α	0.94	1.17	1.35	0.037	0.046	0.053
A1	0.00	0.05	0.10	0.000	0.002	0.004
b	0.51	0.61	0.71	0.020	0.024	0.028
C			0.15			0.006
D	1.40	1.60	1.80	0.055	0.063	0.071
E	2.54	2.69	2.84	0.100	0.106	0.112
HE	3.56	3.68	3.86	0.140	0.145	0.152
L	0.25			0.010		
θ	0°		10°	0°		10°

PIN 1. CATHODE 2. ANODE

SOLDERING FOOTPRINT*

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and I are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death agsociated with such unintended or unauthorized use payers that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunit/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Decer: 421-22-200-2010

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative