imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Preferred Devices

Product Preview **Thyristor Surge Protectors** High Voltage Bidirectional TSPD

These Thyristor Surge Protective devices (TSPD) prevent overvoltage damage to sensitive circuits by lightning, induction and power line crossings. They are breakover-triggered crowbar protectors. Turn-off occurs when the surge current falls below the holding current value.

Secondary protection applications for electronic telecom equipment at customer premises.

Features

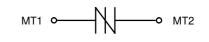
- High Surge Current Capability: 50 A 10 x 1000 µsec, for Controlled Temperature Environments
- The MMT05B350T3 is used to help equipment meet various regulatory requirements including: Bellcore 1089, ITU K.20 and K.21, IEC 950, UL 1459 and 1950 and FCC Part 68
- Bidirectional Protection in a Single Device
- Little Change of Voltage Limit with Transient Amplitude or Rate
- Freedom from Wearout Mechanisms Present in Non–Semiconductor Devices
- Fail–Safe, Shorts When Overstressed, Preventing Continued Unprotected Operation
- Surface Mount Technology (SMT)
- 🔊 Indicates UL Recognized File #E210057
- Pb-Free Package is Available

MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)

Rating	Symbol	Value	Unit
Off-State Voltage - Maximum	V _{DM}	300	V
Maximum Pulse Surge Short Circuit Current Non–Repetitive Double Exponential Decay Waveform (–25°C Initial Temperature) (Notes 1 and 2) 2 x 10 μsec 8 x 20 μsec 10 x 160 μsec 10 x 360 μsec 10 x 560 μsec 10 x 700 μsec 10 x 1000 μsec	IPPS1 IPPS2 IPPS3 IPPS4 IPPS5 IPPS6 IPPS7	$\pm 150 \\ \pm 150 \\ \pm 100 \\ \pm 100 \\ \pm 70 \\ \pm 70 \\ \pm 50 \\ \pm 50 \\ \pm 50 \\ \pm 100 \\ \pm$	A(pk)
Non-Repetitive Peak On-State Current 60 Hz Full Sign Wave	I _{TSM}	32	A(pk)
Maximum Non-Repetitive Rate of Change of On-State Current Exponential Waveform, < 100 A	di/dt	± 300	A/μs

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

1. Allow cooling before testing second polarity.


2. Measured under pulse conditions to reduce heating.

This document contains information on a product under development. ON Semiconductor reserves the right to change or discontinue this product without notice.

ON Semiconductor®

http://onsemi.com

BIDIRECTIONAL TSPD (%) 50 AMP SURGE, 350 VOLTS

SMB (No Polarity) (Essentially JEDEC DO-214AA) CASE 403C

MARKING DIAGRAMS

A = Assembly Location Y = Year WW = Work Week RPBM = Specific Device Code = Pb-Free Package

(Note: Microdot may be in either location)

ORDERING INFORMATION

Device	Package	Shipping [†]
MMT05B350T3	SMB	12 mm Tape & Reel (2.5 K/Reel)
MMT05B350T3G	SMB (Pb–Free)	12 mm Tape & Reel (2.5 K/Reel)

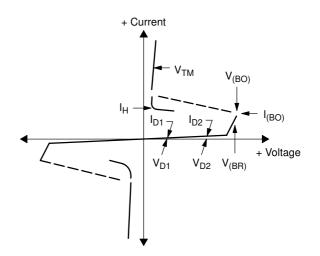
+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

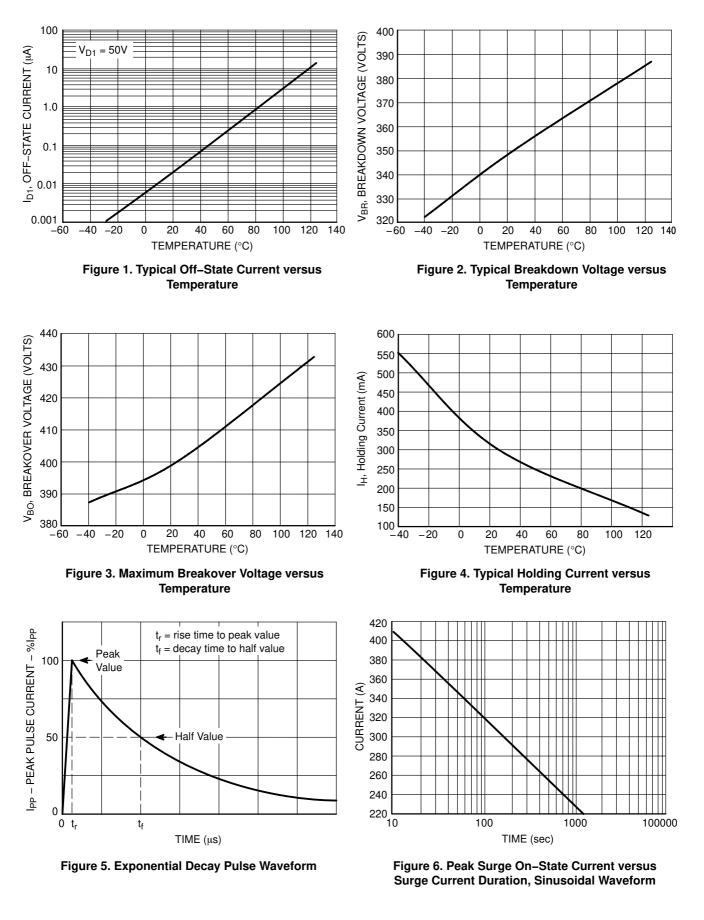
Preferred devices are recommended choices for future use and best overall value.

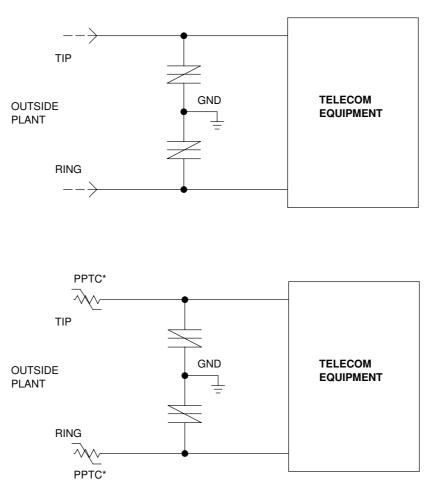
THERMAL CHARACTERISTICS

Characteristic	Symbol	Мах	Unit
Operating Temperature Range Blocking or Conducting State	T _{J1}	-40 to +125	°C
Overload Junction Temperature – Maximum Conducting State Only	T _{J2}	+175	°C
Maximum Lead Temperature for Soldering Purposes 1/8" from Case for 10 Seconds	ΤL	260	°C

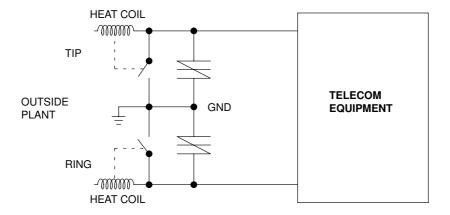
ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted)

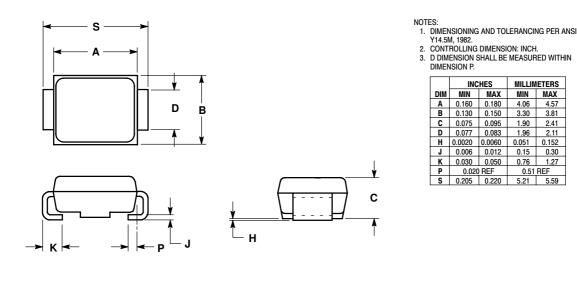

Devices are bidirectional. All electrical parameters apply to forward and reverse polarities.


Characteristics	Symbol	Min	Тур	Max	Unit
Breakover Voltage (Both polarities) (dv/dt = 100 V/μs, I _{SC} = 1.0 A, Vdc = 1000 V) (+65°C)	V _(BO)			400 412	V
Breakover Voltage (Both polarities) (f = 60 Hz, I_{SC} = 1.0 A(rms), V_{OC} = 1000 V(rms), R_I = 1.0 k Ω , t = 0.5 cycle) (Note 3) (+65°C)	V _(BO)	_	-	400 412	V
	d)//dT.	-	0.12		V/°C
Breakover Voltage Temperature Coefficient	dV _(BO) /dT _J	-	-	-	
Breakdown Voltage ($I_{(BR)} = 1.0 \text{ mA}$) Both polarities	V _(BR)	-	350	-	V
Off State Current (V_{D1} = 50 V) Both polarities (V_{D2} = V_{DM}) Both polarities	I _{D1} I _{D2}			2.0 5.0	μΑ
On–State Voltage (I _T = 1.0 A) (PW \leq 300 µs, Duty Cycle \leq 2%) (Note 3)	V _T	-	1.6	3.0	V
Breakover Current (f = 60 Hz, V_{DM} = 1000 V(rms), R_S = 1.0 k Ω) Both polarities	I _{BO}	-	475	-	mA
	Ι _Η	150 130	270 -	- -	mA
Critical Rate of Rise of Off–State Voltage (Linear waveform, V_D = Rated V_{BR} , T_J = 25°C)	dv/dt	2000	-	-	V/µs
Capacitance (f = 1.0 MHz, 50 Vdc, 1.0 V rms Signal) (f = 1.0 MHz, 2.0 Vdc, 1.0 V rms Signal)	C _O		14 27	18 30	pF


3. Measured under pulse conditions to reduce heating.

Voltage Current Characteristic of TSPD (Bidirectional Device)


Symbol	Parameter
I _{D1} , I _{D2}	Off State Leakage Current
V_{D1}, V_{D2}	Off State Blocking Voltage
V _{BR}	Breakdown Voltage
V _{BO}	Breakover Voltage
I _{BO}	Breakover Current
Ι _Η	Holding Current
V _{TM}	On State Voltage



*Polymeric PTC (positive temperature coefficient) overcurrent protection device

PACKAGE DIMENSIONS

SMB CASE 403C-01 ISSUE A

SOLDERING FOOTPRINT* 2.743 0.108 ↓ 2.159 ↓

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

 $\left(\frac{\text{mm}}{\text{inches}}\right)$

SCALE 8:1

0.085

ON Semiconductor and use registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death agsociated with such unintended or unauthorized use perfect and statical was negligent regarding the design or manufacture of the part. SCILC is an Equal Opportunit/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 431-22 700-0010

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81–3–5773–3850

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

MMT05B350T3/D