imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Freescale Semiconductor

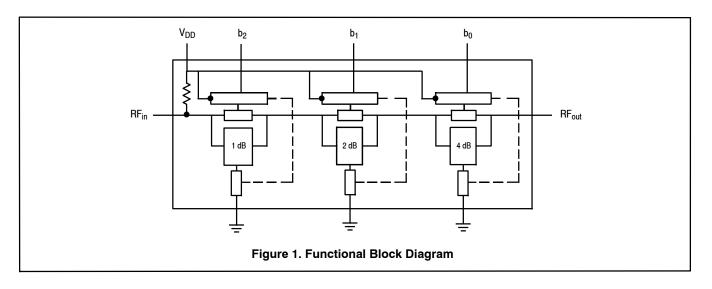
Technical Data

3-Bit Digital Step Attenuator

The MMT20303H is an integrated 3-bit digital step attenuator with a 1 dB step size. It is controlled via a 3-bit parallel interface and operates from a 3 to 5 V supply. The MMT20303H is suitable for 3G/4G small cell transmitter and mobile radio applications using frequencies from 50 to 4000 MHz.

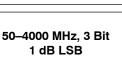
Features

- Frequency: 50–4000 MHz
- Maximum RF Input Power: 30 dBm (CW)
- Typical IIP3 > 50 dBm
- Programmable Attenuator with 7 dB Maximum Range, 1 dB Step Size
- Low Insertion Loss
- ±0.1 dB Typical Bit Error
- Excellent Consistency over Temperature and Supply Voltage
- Single 3 to 5 V Supply
- 50 Ohm Operation
- P1dB Independent of Control Voltage
- 3-bit Digital Control
- TTL/CMOS Interface Compatible
- · Cost-effective 16-pin, 3 mm QFN Surface Mount Plastic Package


Table 1. Typical Performance (1)

Characteristic	Symbol	250 MHz	900 MHz	4000 MHz	Unit
Insertion Loss	IL	-0.6	-0.7	-1.3	dB
Attenuation Accuracy (Worst Case State)	—	+0.1, -0.1	+0.1, 0	+0.1, -0.1	dB
Third Order Intercept Input Point ⁽²⁾	IIP3	47	54	52	dBm
Power Input @ 1 dB Compression	P1dB	30	35 (3)	35 (3)	dBm

1. V_{DD} = 5 Vdc, T_A = 25°C, 50 ohm system, application circuit tuned for specific frequency.


2. Two-tone input power = +13 dBm each tone.

3. Operate within specified maximum rating.

Document Number: MMT20303H Rev. 0, 12/2015

VRoHS

MMT20303HT1

QFN 3×3 PLASTIC

Table 2. Maximum Ratings

Rating	Symbol	Value	Unit
Supply Voltage	V _{DD}	6	V
RF Input Power	P _{in}	30	dBm
Storage Temperature Range	T _{stg}	65 to +150	°C
Case Operating Temperature Range	Τ _C	–40 to +85	°C
Junction Temperature	TJ	175	°C

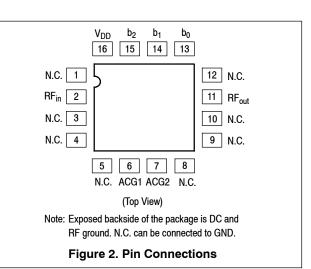
Table 3. Electrical Characteristics (V_{DD} = 5 Vdc, 900 MHz, T_A = 25°C, 50 ohm system, in Freescale Application Circuit)

Characteristic	Symbol	Min	Тур	Max	Unit
Insertion Loss 1 (50–900 MHz)	IL ₁	—	0.6	1.0	dB
Insertion Loss 2 (1000–2500 MHz)	IL ₂	—	0.8	—	dB
Insertion Loss 3 (2500–4000 MHz)	IL ₃	—	1.2	—	dB
Input Return Loss (S11)	IRL		20		dB
Output Return Loss (S22)	ORL	—	20	—	dB
Attenuation Control Maximum Range	ΔR	—	7	—	dB
Attenuation Step	۵R۲	_	1	—	dB
Attenuation Accuracy	—	—	0.1	0.25	dB
Turn-on Time	t _{on}	—	60	—	ns
Turn-off Time	t _{off}	—	100	_	ns
Power Output @ 1dB Compression	P1dB	—	35	—	dBm
Third Order Input Intercept Point @ 5 V	IIP3 ₅	—	50	—	dBm
Third Order Input Intercept Point @ 3 V	IIP3 ₃	_	50	_	dBm
Max Input Voltage Logic Low @ 100 µA, 3 V	V _{IL}	—	_	0.8	V
Min Input Voltage Logic High @ 100 μA, 3 V	V _{IH}	2.3	_	_	V
Supply Current @ 5 V	I _{DD}	_	2	3	mA

Test Methodology	Class
Human Body Model (per JESD22-A114)	1A
Machine Model (per EIA/JESD22-A115)	A
Charge Device Model (per JESD22-C101)	III

Table 5. Moisture Sensitivity Level

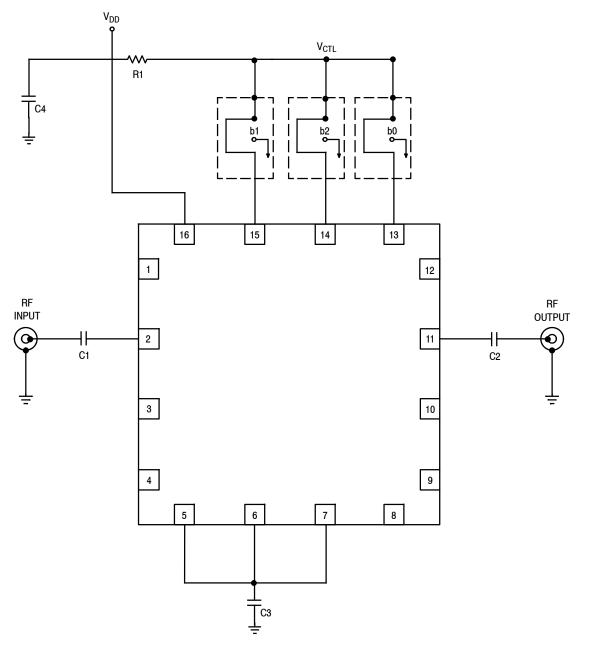
Test Methodology	Rating	Package Peak Temperature	Unit
Per JESD22-A113, IPC/JEDEC J-STD-020	1	260	°C


Table 6. Ordering Information

Device	Tape and Reel Information	Package
MMT20303HT1	T1 Suffix = 1,000 Units, 12 mm Tape Width, 7-inch Reel	QFN 3 × 3

Table 7. Functional Pin Description

Pin Number	Pin Function	Pin Description
1, 3, 4, 5, 8, 9, 10, 12	N.C.	No Connection
2	RF _{in}	RF Input
6, 7	ACG (1)	AC Ground
11	RF _{out}	RF Output
13	b ₀	Attenuator Bit 0 (active low)
14	b ₁	Attenuator Bit 1 (active low)
15	b ₂	Attenuator Bit 2 (active low)
16	V _{DD}	Supply Voltage
14 15 16	b ₁ b ₂	Attenuator Bit 1 (activ Attenuator Bit 2 (activ Supply Voltage


1. AC ground connection for operation below 700 MHz.

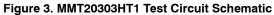
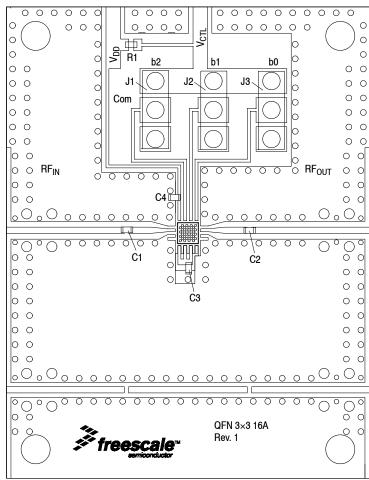


Table 8. Logic Truth Table

b ₂	b ₁	b ₀	State	Attenuation (dB)
Н	Н	Н	111	0
L	Н	Н	011	1
Н	L	Н	101	2
L	L	Н	001	3
Н	Н	L	110	4
L	Н	L	010	5
Н	L	L	100	6
L	L	L	000	7

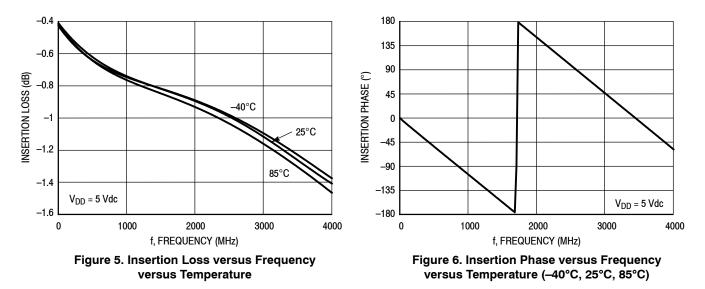
50 OHM APPLICATION CIRCUIT: 50-4000 MHz, 5 VOLT OPERATION



Part Description		Part Number	Manufacturer
C1, C2, C4	0.1 µF Chip Capacitors	GRM155R61A104KA01D	Murata
C3	3300 pF Chip Capacitor	GRM1557U1A332JA01D	Murata
J1, J2, J3	3-pin Header	22-28-8360	Molex
R1	1000 Ω , 1/16 W Chip Resistor	RC0402FR-071KL	Yageo
PCB	Rogers RO4350B, 0.010", $\epsilon_r = 3.66$	M60818	MTL

MMT20303HT1

50 OHM APPLICATION CIRCUIT: 50-4000 MHz, 5 VOLT OPERATION


PCB actual size: 1.25" × 1.62".

Part	Description	Part Number	Manufacturer
C1, C2, C4	0.1 µF Chip Capacitors	GRM155R61A104KA01D	Murata
C3	3300 pF Chip Capacitor	GRM1557U1A332JA01D	Murata
J1, J2, J3	3-pin Header	22-28-8360	Molex
R1	1000 Ω, 1/16 W Chip Resistor	RC0402FR-071KL	Yageo
PCB	Rogers RO4350B, 0.010", $\epsilon_r = 3.66$	M60818	MTL

(Test Circuit Component Designations and Values table repeated for reference.)

50 OHM APPLICATION CIRCUIT: 50-4000 MHz, 5 VOLT OPERATION

50 OHM APPLICATION CIRCUIT: 50-4000 MHz, 5 VOLT OPERATION

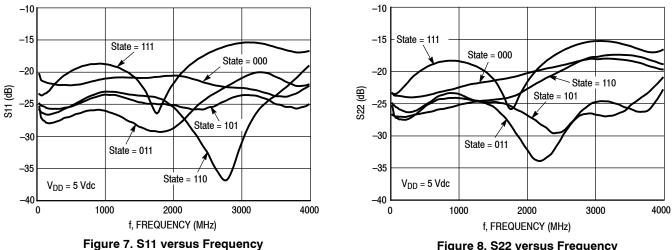
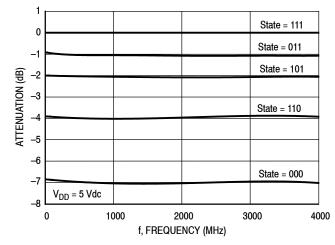
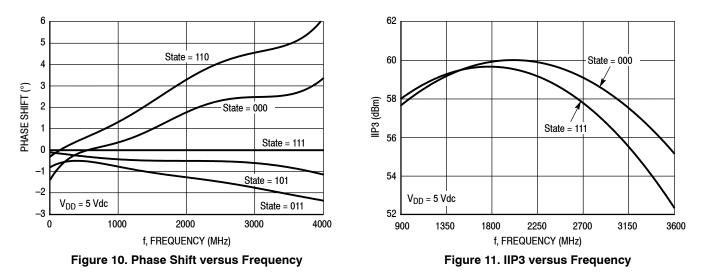



Figure 8. S22 versus Frequency



Attenuation Error Due to Temperature

Major Setting	Temperature Range	∆Attenuation due to Temperature
0 dB	–40°C to 85°C	±0 dB
1 dB		±0.08 dB
2 dB		±0.08 dB
4 dB		±0.08 dB
7 dB		±0.20 dB

Figure 9. Attenuation versus Frequency

50 OHM APPLICATION CIRCUIT: 50-4000 MHz, 5 VOLT OPERATION

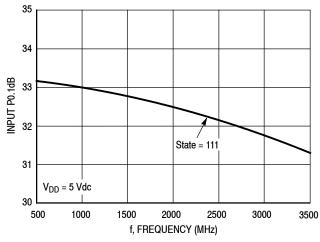
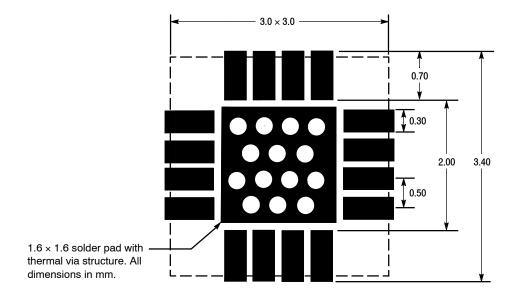
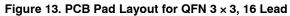
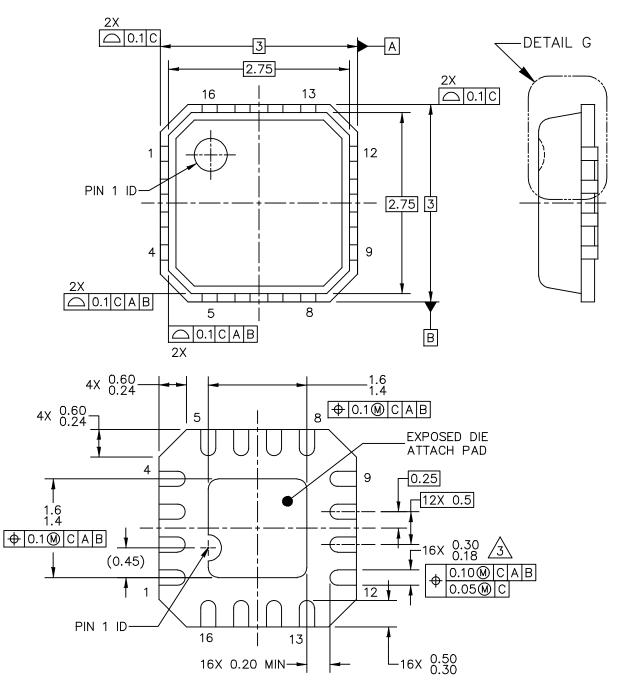
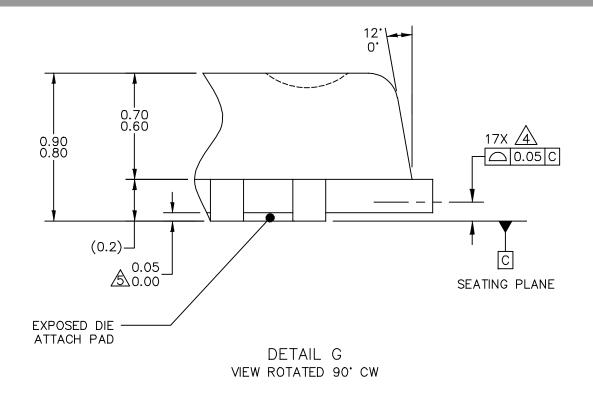



Figure 12. Input P0.1dB versus Frequency


Figure 14. Product Marking

PACKAGE DIMENSIONS

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	MECHANICAL OU	TLINE	PRINT VERSION NOT TO SCALE
TITLE: QFN (PUNCH)),	DOCUME	NT NO: 98ASA00598D REV: 0
THERMALLY ENHÁNCED		STANDAF	RD: NON-JEDEC
3 X 3 X 0.85, 0.5 PITCH,	16 TERMINAL		20 MAY 2013

MMT20303HT1

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	MECHANICAL OU	TLINE	PRINT VERSION NOT TO) SCALE
TITLE: QFN (PUNCH)),	DOCUMEN	NT NO: 98ASA00598D	REV: 0
THERMALLY ENHANCED		STANDAR	D: NON-JEDEC	
3 X 3 X 0.85, 0.5 PITCH,	16 IERMINAL		20 N	MAY 2013

NOTES:

1. ALL DIMENSIONS ARE IN MILLIMETERS.

2. DIMENSIONING AND TOLERANCING PER ASME Y14.5M-2009.

THIS DIMENSION APPLIES TO METALIZED TERMINAL AND IS MEASURED BETWEEN 0.15 AND 0.30MM FROM TERMINAL TIP.

A BILATERAL COPLANARITY ZONE APPLIES TO THE EXPOSED PAD AS WELL AS THE TERMINALS.

A This dimension applies only for terminals.

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	MECHANICAL OU	TLINE	PRINT VERSION NOT TO SCALE
TITLE: QFN (PUNCH)),	DOCUME	NT NO: 98ASA00598D REV: O
THERMALLY ENHANCED		STANDAF	RD: NON-JEDEC
3 X 3 X 0.85, 0.5 PITCH,	16 TERMINAL		20 MAY 2013

MMT20303HT1

PRODUCT DOCUMENTATION AND TOOLS

Refer to the following resources to aid your design process.

Application Notes

- AN1955: Thermal Measurement Methodology of RF Power Amplifiers
- **Development Tools**
- Printed Circuit Boards

To Download Resources Specific to a Given Part Number:

- 1. Go to http://www.freescale.com/rf
- 2. Search by part number
- 3. Click part number link
- 4. Choose the desired resource from the drop down menu

FAILURE ANALYSIS

At this time, because of the physical characteristics of the part, failure analysis is limited to electrical signature analysis. In cases where Freescale is contractually obligated to perform failure analysis (FA) services, full FA may be performed by third party vendors with moderate success. For updates contact your local Freescale Sales Office.

REVISION HISTORY

The following table summarizes revisions to this document.

Revision	Date	Description
0	Dec. 2015	Initial release of data sheet

How to Reach Us:

Home Page: freescale.com

Web Support: freescale.com/support Information in this document is provided solely to enable system and software implementers to use Freescale products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document.

Freescale reserves the right to make changes without further notice to any products herein. Freescale makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including "typicals," must be validated for each customer application by customer's technical experts. Freescale does not convey any license under its patent rights nor the rights of others. Freescale sells products pursuant to standard terms and conditions of sale, which can be found at the following address: freescale.com/SalesTermsandConditions.

Freescale and the Freescale logo are trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. All other product or service names are the property of their respective owners.

© 2015 Freescale Semiconductor, Inc.

