: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

OPTICALLY COUPLED BILATERAL SWITCH NON-ZERO CROSSING TRIAC

APPROVALS

- UL recognised, File No.E91231

Package Code " KK "

'X'SPECIFICATIONAPPROVALS

- VDE 0884 in 3 available lead form :-
- STD
- G form
- SMD approved to CECC 00802

DESCRIPTION

The MOC3009,301_series are optically coupled isolators consisting of a Gallium Arsenide infrared emitting diode coupled with a light activated silicon bilateral switch performing the functions of a triac mounted in a standard 6 pin dual-in-line package.

FEATURE

- Options :-

10 mm lead spread - add G after part no. Surface mount - add SM after part no. Tape\&reel - add SMT\&R after part no.

- High Isolation Voltage $\left(5.3 \mathrm{kV}_{\mathrm{RMS}}, 7.5 \mathrm{kV}_{\mathrm{PK}}\right)$
- 250 V Peak Blocking Voltage
- All electrical parameters 100% tested
- Custom electrical selections available

APPLICATIONS

- CRTs
- PowerTriac Driver
- Motors
- Consumer appliances
- Printers

ABSOLUTE MAXIMUM RATINGS

($25{ }^{\circ} \mathrm{C}$ unless otherwise noted)

Storage Temperature	$-55^{\circ} \mathrm{C}-+150^{\circ} \mathrm{C}$
Operating Temperature	$-40^{\circ} \mathrm{C}-+100^{\circ} \mathrm{C}$
Lead Soldering Temperature_	
(1.6mm from case for 10 seconds)	

INPUTDIODE

$$
\begin{array}{ll}
\text { Forward Current } & 50 \mathrm{~mA} \\
\text { Reverse Voltage } & 6 \mathrm{~V} \\
\text { Power Dissipation } \\
\left(\text { derate linearly } 0.93 \mathrm{~mW} /{ }^{\circ} \mathrm{C} \text { above } 25^{\circ} \mathrm{C}\right)
\end{array} 70 \mathrm{~mW}
$$

OUTPUT PHOTO TRIAC

Off-State Output Terminal Voltage 250 V
Forward Current (Peak) 1A
Power Dissipation 300 mW(derate linearly $4.0 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$)
POWERDISSIPATION
Total Power Dissipation330 mW330 mW(derate linearly $4.4 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$)

ISOCOMCOMPONENTS 2004LTD

Unit 25B, Park View Road West,
Park View Industrial Estate, Brenda Road
Hartlepool, TS25 1UD England Tel:
(01429)863609 Fax:(01429)863581 e-mail sales@isocom.co.ukhttp://www.isocom.com

ELECTRICAL CHARACTERISTICS ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ Unless otherwise noted)

PARAMETER		MIN	TYP	MAX	UNITS	TEST CONDITION
Input	Forward Voltage (V_{F}) Reverse Current $\left(\mathrm{I}_{\mathrm{R}}\right)$		1.2	$\begin{aligned} & 1.5 \\ & 100 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{R}}=6 \mathrm{~V} \end{aligned}$
Output	Peak Off-state Current ($\mathrm{I}_{\text {DRM }}$) Peak Blocking Voltage ($\mathrm{V}_{\text {DRM }}$) On-state Voltage ($\mathrm{V}_{\text {тM }}$) Critical rate of rise of off-state Voltage (dv/dt) (note 1) Critical rate of rise of commutating Voltage (dv/dt) (note 1)	$\begin{aligned} & 250 \\ & \\ & 0.1 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 10 \\ & 0.2 \end{aligned}$	$\begin{aligned} & 100 \\ & 3.0 \end{aligned}$	nA V V V/ $\mu \mathrm{s}$ $\mathrm{V} / \mu \mathrm{s}$	$\begin{aligned} & \mathrm{V}_{\mathrm{DRM}}=250 \mathrm{~V}(\text { note } 1) \\ & \mathrm{I}_{\mathrm{DRM}}=100 \mathrm{nA} \\ & \mathrm{I}_{\mathrm{TM}}=100 \mathrm{~mA}(\text { peak }) \\ & \mathrm{I} \text { load }=15 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{IN}}=30 \mathrm{~V}(\text { fig } 1 .) \end{aligned}$
Coupled	$\begin{gathered} \text { Input Current to Trigger }\left(\mathrm{I}_{\mathrm{FT}}\right)(\text { note } 2) \\ \text { MOC3009 } \\ \text { MOC3010 } \\ \text { MOC3011 } \\ \text { MOC3012 } \end{gathered}$ Holding Current, either direction (I_{H}) Input to Output Isolation Voltage $\mathrm{V}_{\text {ISo }}$	$\begin{aligned} & 5300 \\ & 7500 \end{aligned}$	100	$\begin{aligned} & 30 \\ & 15 \\ & 10 \\ & 5 \end{aligned}$	mA mA mA mA $\mu \mathrm{A}$ $\begin{aligned} & \mathrm{V}_{\mathrm{RMS}} \\ & \mathrm{~V}_{\mathrm{PK}} \end{aligned}$	$\mathrm{V}_{\mathrm{D}}=3 \mathrm{~V}(\text { note } 2)$ See note 3 See note 3

Note 1. Test voltage must be applied within dv/dt rating.
Note 2. Guaranteed to trigger at an I_{F} value less than or equal to max. I_{FT}, recommended I_{F} lies between Rated I_{FT} and absolute max. I_{FT}.
Note 3. Measured with input leads shorted together and output leads shorted together.

FIGURE 1

