

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

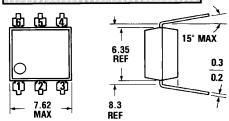
We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

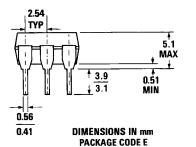
Contact us

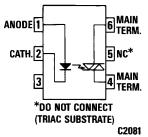
Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China







MOC3020 MOC3021 MOC3022 MOC3023

PACKAGE DIMENSIONS

Equivalent Circuit

DESCRIPTION

The MOC3020, MOC3021, MOC3022 and MOC3023 are optically isolated triac driver devices. These devices contain a GaAs infrared emitting diode and a light activated silicon bilateral switch, which functions like a triac. This is designed for interfacing between electronic controls and power triacs to control resistive and inductive loads for 240 VAC operations.

FEATURES

- Excellent I_{FT} stability—IR emitting diode has low degradation
- High isolation voltage—minimum 7500 VAC peak
 Underwriters Laboratory (UL) recognized—File #E90700

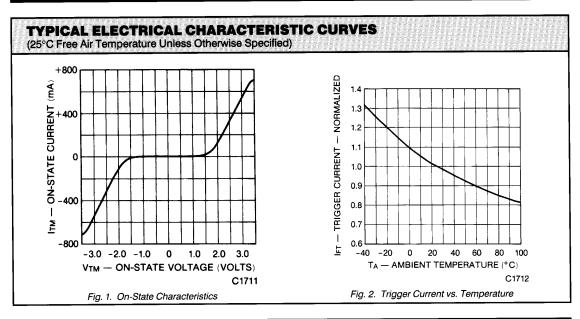
APPLICATIONS

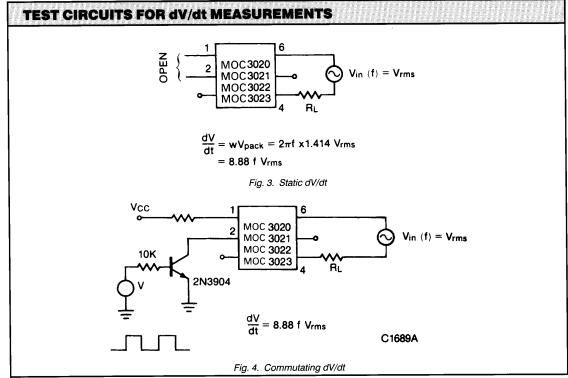
- European applications for 240 VAC
- Triac driver
- Industrial controls
- Traffic lights
- Vending machines
- Motor control
- Solid state relay

ST1603

TOTAL PACKAGE	INPUT DIODE
Storage temperature	Forward DC current 50 mA
Operating temperature40°C to 100°C	Reverse voltage 3 \
Lead temperature	Peak forward current
(soldering, 10 sec) 260°C	(1 μ s pulse, 300 pps)
	Power dissipation (25°C ambient) 100 mV
	Derate linearly (above 25°C ambient) 1.33 mW/°C
	OUTPUT DRIVER
	Off-state output terminal voltage 400 Volt
	On-state RMS current T _A =25°C 100 m/
	(Full cycle, 50 to 60 Hz) T _A =70°C 50 m/
	Peak nonrepetitive surge current 1.2
	(PW=10 ms, DC=10%)
	Total power dissipation (25°C ambient) 300 mV
	Derate above 25°C 4.0 mW/°

ELECTRO-OPTICAL CHARACTERISTICS (25°C Temperature Unless Otherwise Specified)


CHARACTERISTIC	SYMBOL	MIN.	TYP.	MAX.	UNITS	TEST CONDITIONS
INPUT DIODE Forward voltage	$V_{\scriptscriptstyle F}$		1.2	1.50	٧	I _F =10 mA
Junction capacitance	C,		50		pF	$V_F=0 V, f=1 MHz$
Reverse leakage current	I _R	*		100	μΑ	V _B =3.0 V
OUTPUT DETECTOR Peak blocking current, either direction	I _{DRM}	_	10	100	nA	V _{DRM} =400 V, Note 1
Peak on-state voltage, either direction	V _{TM}	_	2.5	3.0	Volts	I _{TM} =100 mA Peak


DC CHARACTER	ISTICS	SYMBOL	MIN.	TYP.	MAX.	UNITS	TEST CONDITIONS
LED trigger current (current required	MOC3020	l _{et}	_	_	30	mA	Main terminal
to latch output)	MOC3021	I _{FT}		_	15	mA	voltage=3.0 V, R _ι =150Ω
	MOC3022	I _{FT}	_		10	mA	
	MOC3023	I _{FT}	_	_	5	mA	
Holding current		I _H	_	100	_	μΑ	Either direction

CHARACTERISTICS	SYMBOL	MIN.	TYP.	MAX.	UNITS	TEST CONDITIONS
dv/dt RATING Critical rate of rise of off-state voltage	dv/dt	_	12	_	V/μs	Static dv/dt, T _A =85°C (see Fig. 3)
Critical rate of rise of commutating voltage	dv/dt	_	0.2	_	V/μs	Commutating dv/dt I _{LOAD} =15 mA (see Fig. 4)

	210122	STICS	70		HAUTO	TEST CONDITIONS
CHARACTERISTICS	SYMBOL	MIN.	TYP.	MAX.	UNITS	TEST CONDITIONS
Isolation voltage	V _{iso}	5300			$V_{AC}RMS$	I _{i-0} ≤1 μA, 1 Minute
	V _{iso}	7500			V _{AC} PEAK	l _{⊦o} ≤1 μA, 1 Minute
Isolation resistance	R _{iso}	10"			ohms	V _{I-O} =500 VDC
Isolation capacitance	C _{iso}	-	0.5		pF	f=1 MHz

Note 1: Ratings apply to either polarity of pin 6 — referenced to pin 4. Voltages must be applied within dv/dt rating.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.