

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832


Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

OPTICALLY COUPLED BILATERAL SWITCH NON-ZERO CROSSING TRIAC

APPROVALS

UL recognised, File No. E91231 under Package System 'KK'

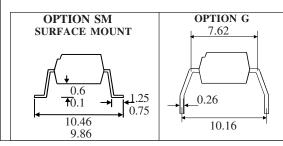
'X'SPECIFICATIONAPPROVALS

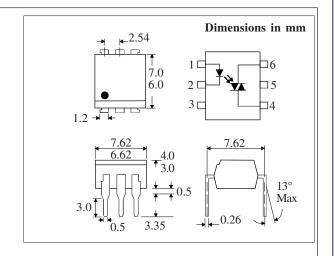
- VDE 0884 in 3 available lead forms:
 - STD
 - G form
 - SMD approved to CECC 00802

DESCRIPTION

The MOC302_ series are optically coupled isolators consisting of a Gallium Arsenide infrared emitting diode coupled with a light activated silicon bilateral switch performing the functions of a triac mounted in a standard 6 pin dual-in-line package.

FEATURE


Options:-


10mm lead spread - add G after part no. Surface mount - add SM after part no. Tape&reel - add SMT&R after part no.

- High Isolation Voltage (5.3kV_{RMS},7.5kV_{PK}) 400V Peak Blocking Voltage
- All electrical parameters 100% tested
- Custom electrical selections available

APPLICATIONS

- **CRTs**
- Power Triac Driver
- Motors
- Consumer appliances
- **Printers**

ABSOLUTE MAXIMUM RATINGS (25 $^{\circ}$ C unless otherwise noted)

Storage Temperature	-55°C-+150°C
Operating Temperature	$-40^{\circ}\text{C} - +100^{\circ}\text{C}$
Lead Soldering Temperature	260°C
(1.6mm from case for 10 seconds	s)

INPUTDIODE

Forward Current	50mA
Reverse Voltage	6V
Power Dissipation	70mW
(derate linearly 0.93mW/°C above 25°	<u>C</u>)

OUTPUT PHOTO TRIAC

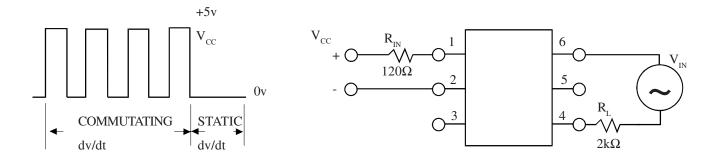
Off-State Output Terminal Voltage	400V
Forward Current (Peak)	1A
Power Dissipation	300mW
(derate linearly 4.0mW/°C above 25°C)	-

POWER DISSIPATION

Total Power Dissipation	330mW
(derate linearly 4.4mW/°C above 2	5°C)

ISOCOM COMPONENTS 2004 LTD

Unit 25B, Park View Road West, Park View Industrial Estate, Brenda Road Hartlepool, Cleveland, TS25 1UD Tel: (01429) 863609 Fax: (01429) 863581


DB91045 17/7/08

ELECTRICAL CHARACTERISTICS ($\rm T_{_{A}}$ = 25°C Unless otherwise noted)

	PARAMETER	MIN	TYP	MAX	UNITS	TEST CONDITION
Input	Forward Voltage (V_F) Reverse Current (I_R)		1.2	1.5 100	V µA	$I_{F} = 10\text{mA}$ $V_{R} = 6V$
Output	Peak Off-state Current (I _{DRM}) Peak Blocking Voltage (V _{DRM}) On-state Voltage (V _{TM}) Critical rate of rise of off-state Voltage (dv/dt) (note 1) Critical rate of rise of commutating Voltage (dv/dt) (note 1)	400	1.5 10 0.2	100	nA V V V/μs V/μs	$V_{DRM} = 400 \text{V (note 1)}$ $I_{DRM} = 100 \text{nA}$ $I_{TM} = 100 \text{mA (peak)}$ $I \text{ load} = 15 \text{mA,}$
	voltage (avvat) (note 1)	0.1	0.2		ν/μο	$V_{IN} = 30V \text{ (fig 1.)}$
Coupled	Input Current to Trigger (I _{FT})(note 2) MOC3020 MOC3021 MOC3022 MOC3023			30 15 10 5	mA mA mA	$V_D = 3V \text{ (note 2)}$
	$Holding Current , either direction (I_{_{\! H}})$	100			μΑ	
	Input to Output Isolation Voltage $V_{\rm ISO}$	5300 7500			$egin{array}{c} V_{_{RMS}} \ V_{_{PK}} \end{array}$	See note 3 See note 3

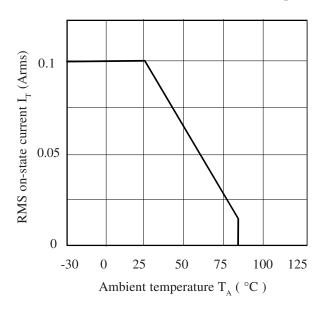
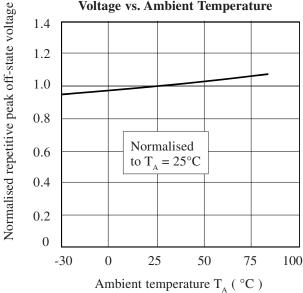
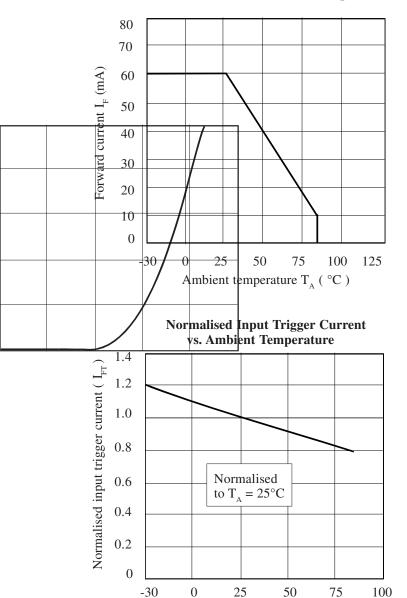

Note 1. Test voltage must be applied within dv/dt rating. Note 2. Guaranteed to trigger at an I_F value less than or equal to max. I_{FT} , recommended I_F lies between Rated I_{FT} and absolute max. I_{FT} . Note 3. Measured with input leads shorted together and output leads shorted together.

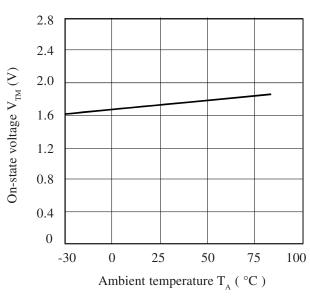
FIGURE 1



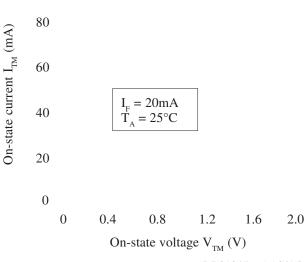
17/7/08 DB91045m-AAS/A5


RMS On-state Current vs. Ambient Temperature

Normalised Repetitive Peak Off-state Voltage vs. Ambient Temperature



Forward Current vs. Ambient Temperature



Ambient temperature T_A (°C)

On-state Voltage vs. Ambient Temperature

On-state Current vs. On-state Voltage

100