

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

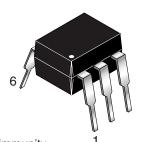
We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

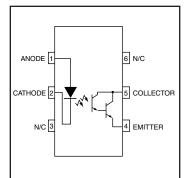
Email & Skype: info@chipsmall.com Web: www.chipsmall.com

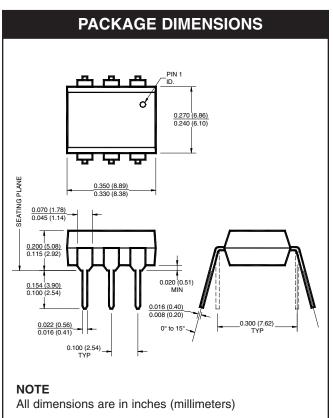
Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China


MOC8030 MOC8050

DESCRIPTION

The MOC8030 and MOC8050 are photodarlington-type optically coupled optocouplers. The devices have a gallium arsenide infrared emitting diode coupled with a silicon darlington phototransistor.


FEATURES


- High BV_{CEO}
 - -Minimum 80 V
- High current transfer ratio -300% (MOC8030)
 - -500% (MOC8050)
- No base connection for improved noise immunity
- Underwriters Laboratory (UL) recognized File# E90700

- Appliances, measuring instruments
- I/O interface for computers
- Programmable controllers
- Portable electronics
- Interfacing and coupling systems of different potentials and impedance
- · Solid state relays

ABSOLUTE MAXIMUM RATINGS (T _A = 25°C Unless otherwise specified.)					
Parameter	Symbol	Value	Units		
TOTAL DEVICE	_	FF to . 150	00		
Storage Temperature	T _{STG}	-55 to +150	°C		
Operating Temperature	T _{OPR}	-55 to +100	°C		
Lead Solder Temperature	T _{SOL}	260 for 10 sec	°C		
Total Device Power Dissipation @ T _A = 25°C	В	250	mW		
Derate above 25°C	$ P_{D}$	2.94	mW/°C		
Input-Output Isolation Voltage	V _{ISO}	5300	Vac(rms)		
EMITTER		60	mA		
DC/Average Forward Input Current	I _F	00	IIIA		
Reverse Input Voltage	V _R	3	V		
LED Power Dissipation @ T _A = 25°C	В	120	mW		
Derate above 25°C	P _D	1.41	mW/°C		
DETECTOR	V	80	V		
Collector-Emitter Voltage	V _{CEO}	80	V		
Detector Power Dissipation @ T _A = 25°C	В	150	mW		
Derate above 25°C	- P _D	1.76	mW/°C		
Continuous Collector Current	I _C	150	mA		

MOC8030 MOC8050

ELECTRICAL CHARACTERISTICS ($T_A = 25$ °C Unless otherwise specified.)

INDIVIDUAL COMPONENT CHARACTERISTICS						
Parameter	Test Conditions	Symbol	Min	Typ**	Max	Unit
EMITTER	/I 10 m 1\	V		1.15	2	V
Input Forward Voltage	$(I_F = 10 \text{ mA})$	V _F		1.15		V
Input Capacitance	$(V_F = 0, f = 1 MHz)$	C _{IN}		18		pF
Reverse Leakage Current	$(V_R = 3.0 V)$	I _R		0.05	10	μA
DETECTOR	/I 10 m A)	D)/	00			\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
Collector-Emitter Breakdown Voltage	$(I_C = 1.0 \text{ mA})$	BV _{CEO}	80			V
Emitter-Collector Breakdown Voltage	$(I_E = 100 \mu A)$	BV _{ECO}	5			V
Collector-Emitter Dark Current	(V _{CE} = 60 V)	I _{CEO}			1	μA

TRANSFER CHARACTERISTICS						
DC Characteristic	Test Conditions	Symbol	Min	Typ**	Max	Units
Current Transfer Ratio,	MOC8030 ($I_F = 10 \text{ mA}, V_{CE} = 1.5 \text{ V}$)	CTR	300			%
Collector-Emitter	MOC8050 ($I_F = 10 \text{ mA}, V_{CE} = 1.5 \text{ V}$)	CIR	500			/0

TRANSFER CHARACTERISTICS						
Characteristic	Test Conditions	Symbol	Min	Typ**	Max	Units
SWITCHING TIMES Turn-on Time	$(V_{CC} = 10 \text{ V}, R_1 = 100\Omega, I_F = 5 \text{ mA})$	t _{on}		3.5		μs
Turn-off Time	(VCC- 10 V, 11L - 10032, 1F - 3 111A)	t _{off}		95		μs

ISOLATION CHARACTERISTICS						
Characteristic	Test Conditions	Symbol	Min	Typ**	Max	Units
Input-Output Isolation Voltage	$(I_{I-O} \le 1 \mu A, 1 min.)$	V _{ISO}	7500			Vac(pk)
	$(I_{I-O} \le 1 \mu A, 1 min.)$		5300			Vac(rms)
Isolation Resistance	(V _{I-O} = 500 VDC)	R _{ISO}	10 ¹¹			Ω
Isolation Capacitance	(f = 1 MHz)	C _{ISO}		0.5		pf

Note

^{**} Typical values at T_A = 25°C

MOC8030 MOC8050

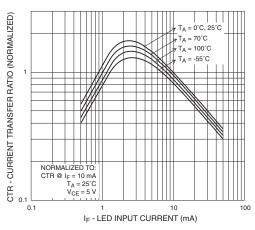


Fig. 1 Output Current vs. Input Current

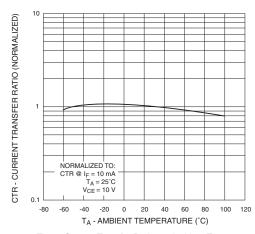


Fig. 2 Current Transfer Ratio vs. Ambient Temperature

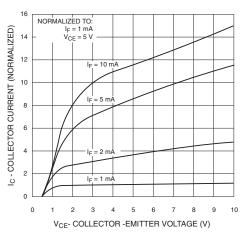


Fig. 3 Collector Current vs. Collector-Emitter Voltage

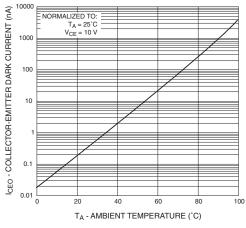


Fig. 4 Dark Current vs. Ambient Temperature

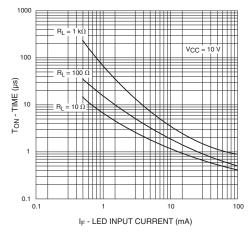
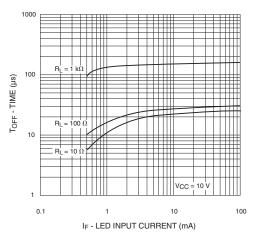
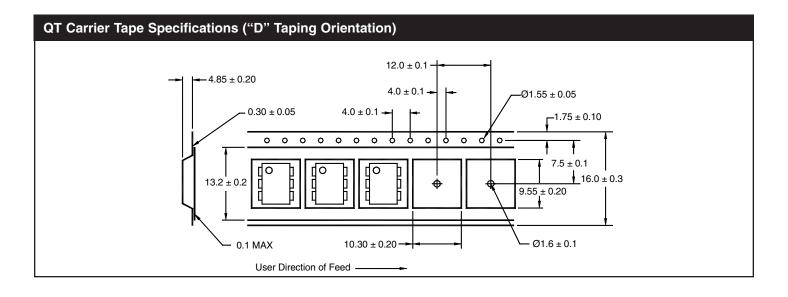


Fig. 5 Turn-On Time vs. Input Current




Fig. 6 Turn-Off Time vs. Input Current

MOC8030 MOC8050

ORDERING INFORMATION

Option	Order Entry Identifier	Description
S	.S	Surface Mount Lead Bend
SD	.SD	Surface Mount; Tape and reel
W	.W	0.4" Lead Spacing
300	.300	VDE 0884
300W	.300W	VDE 0884, 0.4" Lead Spacing
3S	.3S	VDE 0884, Surface Mount
3SD	.3SD	VDE 0884, Surface Mount, Tape & Reel

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body,or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.