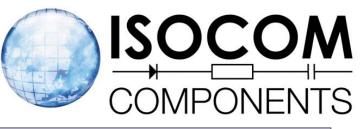
imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!



Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

MOC8101X,MOC8102X,MOC8103X, MOC8104X,MOC8105X MOC8101, MOC8102, MOC8103,MOC8104,MOC8105

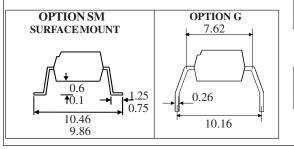
NON-BASE LEAD OPTICALLY COUPLED ISOLATOR PHOTOTRANSISTOR OUTPUT

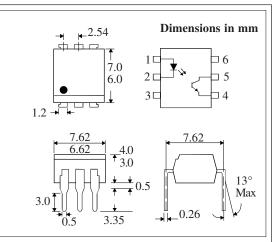
APPROVALS

- UL recognised, File No. E91231 Package Code " GG "
- 'X'SPECIFICATIONAPPROVALS
- VDE 0884 in 3 available lead form : -- STD
 - G form
 - SMD approved to CECC 00802
- Certified to EN60950 by :-Nemko - Certificate No. P01102464

DESCRIPTION

The MOC8101, MOC8102, MOC8103, MOC8104, MOC8105 series of optically coupled isolators consist of infrared light emitting diode and NPN silicon photo transistor in a standard 6 pin dual in line plastic package with the base pin unconnected.


FEATURES


- Options :-10mm lead spread - add G after part no. Surface mount - add SM after part no. Tape&reel - add SMT&R after part no.
- High Isolation Voltage (5.3kV_{RMS},7.5kV_{PK})
 Base pin unconnected for improved
- Base pin unconnected for improved bise immunity in high EMI

noise environment

APPLICATIONS

- DC motor controllers
- Industrial systems controllers
- Signal transmission between systems of different potentials and impedances

ABSOLUTEMAXIMUMRATINGS (25°C unless otherwise specified)

Storage Temperature	-55° C to $+150^{\circ}$ C
Operating Temperature	$-55^{\circ}C \text{ to} + 100^{\circ}C$
Lead Soldering Temperature	
$(1/16 \operatorname{inch} (1.6 \operatorname{mm}) \operatorname{from} \operatorname{case} \operatorname{for})$	or 10 secs) 260°C

INPUTDIODE

Forward Current	60mA
Reverse Voltage	6V
Power Dissipation	105mW

OUTPUTTRANSISTOR

Collector-emitter Voltage BV _{CEO}	30V
Emitter-collector Voltage BV _{FCO}	6V
Collector Current	50mA
Power Dissipation	160mW

POWER DISSIPATION

Total Power Dissipation ______ 200mW (derate linearly 2.67mW/°C above 25°C)

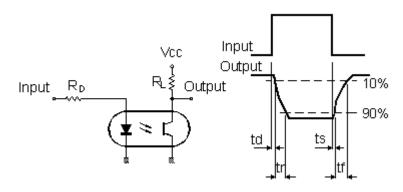
ISOCOM COMPONENTS 2004 LTD

Unit 25B, Park View Road West, Park View Industrial Estate, Brenda Road Hartlepool, Cleveland, TS25 1UD Tel: (01429) 863609 Fax :(01429) 863581

16/9/08

DB92193

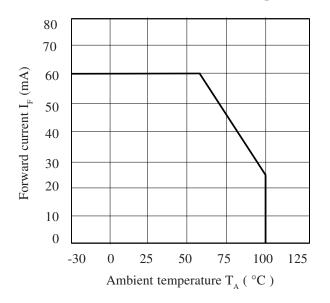
	PARAMETER	MIN	ТҮР	MAX	UNITS	TEST CONDITION
Input	Forward Voltage (V_F)	1.0	1.15	1.5	V	$I_F = 10mA$
	Reverse Current (I_R)			10	μΑ	V _R =6V
Output	Collector-emitter Breakdown (BV _{CEO}) (Note 2)	30			V	$I_c = 1mA$
	Emitter-collector Breakdown (BV _{ECO})	6			V	$I_E = 100 \mu A$
	Collector-emitter Dark Current (I_{CEO})			50	nA	$V_{CE} = 10V$
Coupled	Output Collector Current (I_c) (Note 3)					
	MOC8101	5.0		8.0	mA	$10 \text{mA I}_{\text{F}}, 10 \text{V}_{\text{CE}}$
	MOC8102	7.3		11.7	mA	$10 \text{mA I}_{\text{F}}, 10 \text{V}_{\text{CE}}$
	MOC8103	10.8		17.3	mA	$10 \text{mA I}_{\text{F}}$, 10V_{CE}
	MOC8104	16		25.6	mA	$10 \text{mAI}_{\text{F}}, 10 \text{V}_{\text{CE}}$
	MOC8105	6.5		13.3	mA	$10 \text{mAI}_{\text{F}}, 10 \text{V}_{\text{CE}}$
	$Collector-emitter Saturation Voltage V_{CE(SAT)}$		0.15	0.4	V	$5 \text{mAI}_{\text{F}}, 0.5 \text{mAI}_{\text{C}}$
	Input to Output Isolation Voltage V_{ISO}	5300			V _{RMS}	See note 1
		7500			V _{PK}	See note 1
	Input-output Isolation Resistance R _{ISO}	5x10 ¹⁰			Ω	$V_{IO} = 500 V (note 1)$
	Response Time (Rise), tr		2		μs	$V_{cc} = 5V, I_{F} = 10mA$
	Response Time (Fall), tf		2		μs	$R_L = 75\Omega$, (FIG 1)

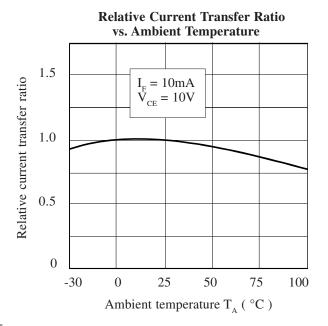

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ Unless otherwise noted)

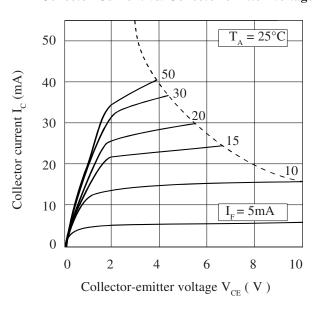
Note 1 Measured with input leads shorted together and output leads shorted together.

Note 2 Special Selections are available on request. Please consult the factory.

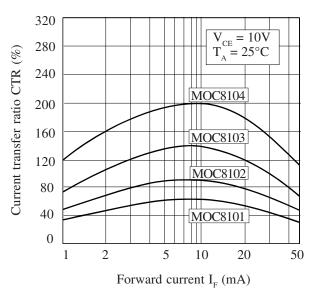
Note 3 Production testing - limits verified with pulse test

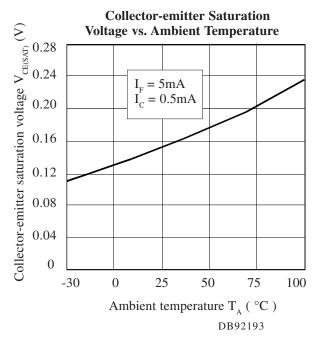

FIGURE1




Collector Power Dissipation vs. Ambient Temperature

200 200 150 100 50 -30 0 25 50 75 100 125 Ambient temperature T_A (°C)





Current Transfer Ratio vs. Forward Current

mperature Collector Current vs. Collector-emitter Voltage