

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

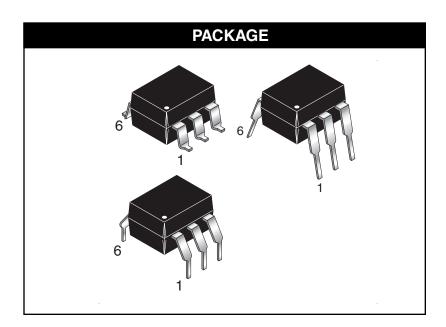
We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

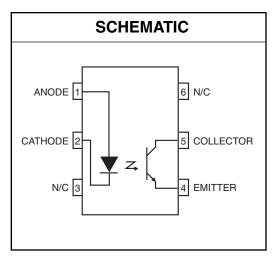
Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China





MOC8111 MOC8112 MOC8113

DESCRIPTION

The MOC811X series consists of a Gallium Arsenide IRED coupled with an NPN phototransistor. The base of the transistor is not bonded to an external pin for improved noise immunity

FEATURES

- High isolation voltage
 5300 VAC RMS—1 minute
- High BV_{CEO} minimum 70 Volts
- Current transfer ratio in selected groups:

MOC8111: 20% min.

MOC8112: 50% min.

MOC8113: 100% min.

- · Maximum switching time in saturation specified
- Underwriters Laboratory (UL) recognized (File #E90700)
- VDE recognized (File #94766)

APPLICATIONS

- Power Supply Regulators
- Digital Logic Inputs
- Microprocessor Inputs
- Appliance Sensor Systems
- Industrial Controls

ABSOLUTE MAXIMUM RATINGS (T _A =25°C Unless otherwise specified)				
Parameter	Symbol	Value	Unit	
INPUT LED				
Forward Current – Continuous	I _F	90	mA	
Forward Current – Peak (PW = 1µs, 300pps)	I _F (pk)	3	Α	
Reverse Voltage	V _R	6	Volts	
LED Power Dissipation @ T _A = 25°C	P _D	135	mW	
Derate above 25°C	FD FD	1.8	mW/°C	
OUTPUT TRANSISTOR				
Detector Power Dissipation @ T _A = 25°C		200	mW	
Derate above 25°C	P _D	2.67	mW/°C	
TOTAL DEVICE				
Total Device Power Dissipation @ T _A = 25°C		260	mW	
Derate above 25°C	P _D	3.5	mW/°C	
Ambient Operating Temperature Range	T _{OPR}	-55 to +100	°C	
Storage Temperature Range	T _{STG}	-55 to +150	°C	
Lead Soldering Temperature	т	T 000		
(1/16" from case, 10 sec. duration)	T _{SOL}	260	°C	

MOC8111 MOC8112 MOC8113

ELECTRICAL CHARACTERISTICS (T_A = 25°C Unless otherwise specified)

INDIVIDUAL COMPONENT CHARACTERISTICS							
Parameter	Test Conditions	Symbol	Device	Min	Тур	Max	Unit
EMITTER							
Input Forward Voltage	I _F = 60 mA		All		1.35	1.65	V
Input Forward Voltage	I _F = 10 mA	⊢ V _F			1.15	1.50	
Reverse Voltage	I _R = 10 μA	V _R	All	6.0	15		٧
Canacitanas	V _F = 0 V, f = 1.0 MHz	CJ	All		50		pF
Capacitance	V _F = 1 V, f = 1.0 MHz				65		
Reverse Leakage Current	V _R = 3.0 V	I _R	All		.35	10	μΑ
DETECTOR							
Breakdow Voltage Collector to Emitter	$I_C = 1.0 \text{ mA}, I_F = 0$	BV _{CEO}	All	70			V
Breakdow Voltage Emitter to Collector	I _E = 100 μA, I _F = 0	BV _{ECO}	All	7			V
Leakage Current Collector to Emitter	V _{CE} = 10 V, I _F = 0	I _{CEO}	All		5	50	V
Capacitance Collector to Emitter	V _{CE} = 0 V, f = 1 MHz	C _{CE}	All		8		pF

ISOLATION CHARACTERISTICS						
Characteristic	Test Conditions	Symbol	Min	Тур	Max	Units
Input-Output Isolation Voltage	f = 60 Hz, t = 1 min.	V _{ISO}	5300			V _{RMS}
Isolation Resistance	V _{I-O} = 500 VDC	R _{ISO}	10 ¹¹			Ω
Isolation Capacitance	V _{I-O} = 0, f = 1 MHz	C _{ISO}		0.5		pF

TRANSFER CHARACTERISTICS (T _A = 25°C Unless otherwise specified)								
DC CHARACTERISTICS	Test Conditions	Symbol	Device	Min	Тур	Max	Units	
			MOC8111	20				
Output/Input Current Transfer Ratio	$I_F = 10 \text{ mA}, V_{CE} = 5V$	CTR	MOC8112	50			%	
· idio			MOC8113	100				
Collector-Emitter Saturation Voltage	I _F = 10 mA, I _C = 2.5 mA	V _{CE(SAT)}	All		0.27	0.4	٧	
AC CHARACTERISTICSØ	Test Conditions	Symbol	Device	Min	Тур	Max	Units	
Non-Saturated Switching Times								
Turn-On Time	$R_L = 100 \Omega, I_C = 2 \text{ mA},$	t _{on}	All		6.0	10	μS	
Turn-Off Time	V _{CC} = 10 V See Figure 7	t _{off}	All		5.5	10	μS	
Saturated Switching Times								
Turn-On Time	$I_F = 20 \text{ mA}, V_{CE} = 0.4 \text{ V}$		MOC8111		3.0	5.5	μS	
	$I_F = 10 \text{ mA}, V_{CE} = 0.4 \text{ V}$	t _{on}	MOC812, MOC8113		4.2	8.0] μ3	
Rise-Time	$I_F = 20 \text{ mA}, V_{CE} = 0.4 \text{ V}$		MOC8111	MOC8111 2.0		4.0	μS	
nise-Tillie	$I_F = 10 \text{ mA}, V_{CE} = 0.4 \text{ V}$	t _r	MOC812, MOC8113		3.0	6.0) μδ	
Turn-Off Time	$I_F = 20 \text{ mA}, V_{CE} = 0.4 \text{ V}$	+	MOC8111		18	34	μS	
Turr-On Time	$I_F = 10 \text{ mA}, V_{CE} = 0.4 \text{ V}$	t _{off}	MOC812, MOC8113		23	39] μο	
Fall-Time	$I_F = 20 \text{ mA}, V_{CE} = 0.4 \text{ V}$	+.	MOC8111		11	20	μS	
raii-Tiitie	$I_F = 10 \text{ mA}, V_{CE} = 0.4 \text{ V}$	t _f	MOC812, MOC8113		14	24] "	

MOC8111 MOC8112 MOC8113

TYPICAL PERFORMANCE CURVES

Fig. 1 LED Forward Voltage vs. Forward Current

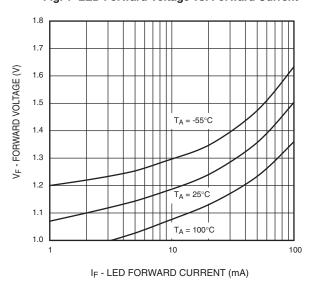


Fig. 3 Normalized CTR vs. Ambient Temperature

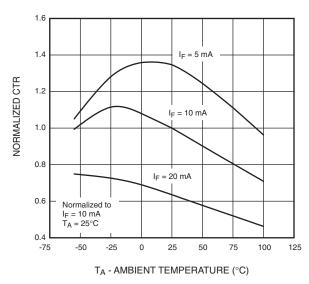


Fig. 2 Normalized CTR vs. Forward Current

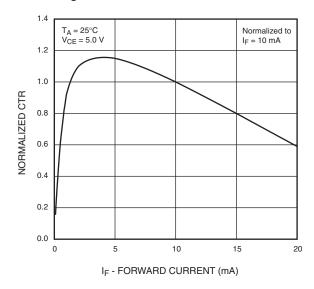


Fig. 4 Collector Emitter Saturation Voltage vs Collector Current

100

100 $I_F = 2.5 \text{ mA}$ $I_F = 20 \text{ mA}$ $I_F = 20 \text{ mA}$ $I_F = 10 \text{ mA}$ $I_C - COLLECTOR CURRENT (mA)$

MOC8111 MOC8112 MOC8113

TYPICAL PERFORMANCE CURVES (continued)

Fig. 5 Switching Speed vs. Load Resistor

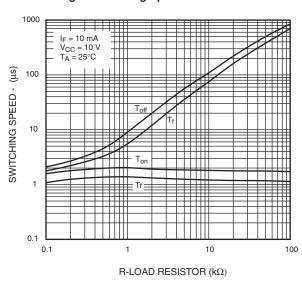
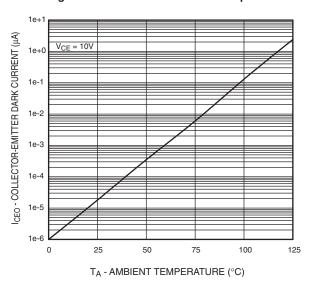
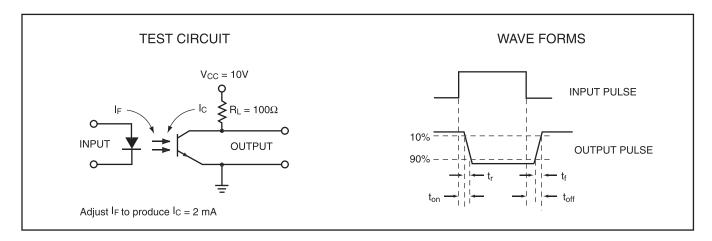
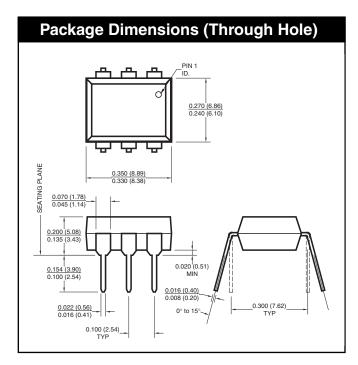
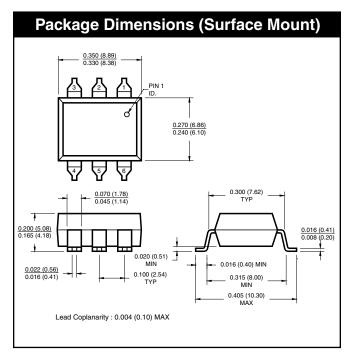
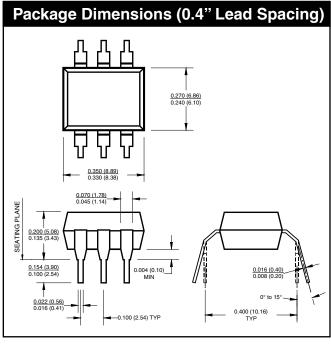
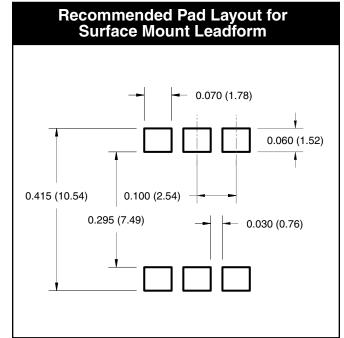


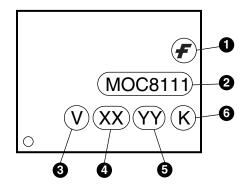
Fig. 6 Dark current vs. Ambient Temperature.


Figure 7. Switching Time Test Circuit and Waveforms

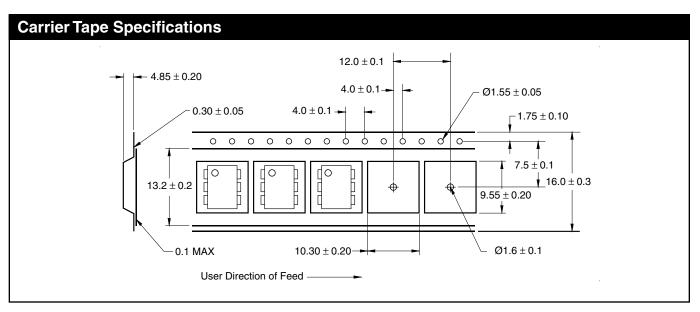


NOTEAll dimensions are in inches (millimeters)

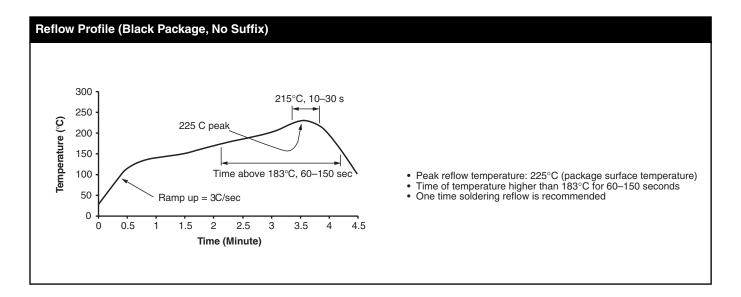


MOC8111 MOC8112 MOC8113

ORDERING INFORMATION1


Option	Example Part Number	Description
No Suffix	MOC8111	Through Hole
S	MOC8111S	Surface Mount Lead Bend
SD	MOC8111SD	Surface Mount; Tape and Reel
W	MOC8111W	0.4" Lead Spacing
300	MOC8111300	VDE 0884
300W	MOC8111300W	VDE 0884, 0.4" Lead Spacing
3S	MOC81113S	VDE 0884, Surface Mount
3SD	MOC81113SD	VDE 0884, Surface Mount, Tape and Reel

MARKING INFORMATION



Definitions				
1	Fairchild logo			
2	Device number			
3	VDE mark (Note: Only appears on parts ordered with VDE option – See order entry table)			
4	Two digit year code, e.g., '03'			
5	Two digit work week ranging from '01' to '53'			
6	Assembly package code			

NOTEAll dimensions are in inches (millimeters)

MOC8111 MOC8112 MOC8113

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.