

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

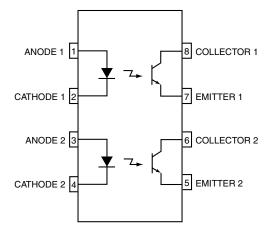
Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

November 2006

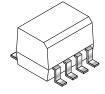
MOCD207M, MOCD208M Dual Channel Phototransistor Small Outline Surface Mount Optocouplers

Features

- Dual Channel Optocoupler
- Convenient Plastic SOIC-8 Surface Mountable Package Style
- Two channels in one compact surface mount package
- Closely Matched Current Transfer Ratios to Minimize Unit-to-Unit Variation
- Minimum V_{(BR)CEO} of 70 Volts Guaranteed
- Standard SOIC-8 Footprint, with 0.050" Lead Spacing
- Compatible with Dual Wave, Vapor Phase and IR Reflow Soldering
- High Input-Output Isolation of 2500 Vac (rms) Guaranteed
- Meets U.L. Regulatory Requirements, File #E90700, Volume 2


Applications

- Feedback control circuits
- Interfacing and coupling systems of different potentials and impedances
- General purpose switching circuits
- Monitor and detection circuits


Description

The MOCD207M/MOCD208M consist of two silicon phototransistors optically coupled to two GaAs infrared LEDs. These devices are constructed in a small outline surface mount package which conforms to the standard SOIC-8 footprint.

Schematic

Package

1

Absolute Maximum Ratings ($T_A = 25^{\circ}C$ Unless otherwise specified)

Symbol	Rating	Value	Unit
EMITTER			
I _F	Forward Current – Continuous	60	mA
I _F (pk)	Forward Current – Peak (PW = 100µs, 120pps)	1.0	Α
V _R	Reverse Voltage	6.0	V
P_{D}	LED Power Dissipation @ T _A = 25°C Derate above 25°C	90 0.8	mW mW/°C
DETECTOR	'		
V _{CEO}	Collector-Emitter Voltage	70	V
V _{CBO}	Collector-Base Voltage	70	V
V _{ECO}	Emitter-Collector Voltage	7.0	V
I _C	Collector Current-Continuous	150	mA
P_{D}	Detector Power Dissipation @ T _A = 25°C Derate above 25°C	150 1.76	mW mW/°C
TOTAL DEVICE			
V _{ISO}	Input-Output Isolation Voltage ^(1, 2) (f = 60Hz, 1 min. Duration)	2500	Vac(rms)
P_{D}	Total Device Power Dissipation @ T _A = 25°C Derate above 25°C	250 2.94	mW mW/°C
T _A	Ambient Operating Temperature Range	-40 to +100	°C
T _{stg}	Storage Temperature Range	-40 to +125	°C
T _L	Lead Soldering Temperature (1/16" from case, 10 sec. duration)	260	°C

Electrical Characteristics (T_A = 25°C unless otherwise specified)⁽³⁾

Symbol	Parameter	Test Conditions	Device	Min.	Тур.*	Max.	Unit
EMITTER		1	1		ı		ı
V _F	Input Forward Voltage	I _F = 30mA	All		1.25	1.55	V
I _R	Reverse Leakage Current	V _R = 6.0V	All		0.001	100	μΑ
С	Capacitance		All		18		pF
DETECTO	DR	•	1				1
I _{CEO}	Collector-Emitter Dark Current	$V_{CE} = 10V, T_A = 25^{\circ}C$	All		1.0	50	nA
I _{CEO}		V _{CE} = 10V, T _A = 100°C	All		1.0		μA
V _{(BR)CEO}	Collector-Emitter Breakdown Voltage	I _C = 100μA	All	70	100		V
V _{(BR)CEO}	Emitter-Collector Breakdown Voltage	I _E = 100μA	All	7.0	10		V
C _{CE}	Collector-Emitter Capacitance	f = 1.0 MHz, V _{CE} = 0V	All		7.0		pF
COUPLE	D		•	•			!
CTR	Current Transfer Ratio, Collector to Emitter ⁽⁴⁾	I _F = 10mA, V _{CE} = 5V	MOCD207M	100		200	%
			MOCD208M	40		125	
		$I_F = 1$ mA, $V_{CE} = 5$ V	MOCD207M	34			
			MOCD208M	13			
V _{CE (sat)}	Collector-Emitter Saturation Voltage	$I_C = 2.0 \text{mA}, I_F = 10 \text{mA}$	All			0.4	V
t _{on}	Turn-On Time	$I_{C} = 2.0 \text{mA}, V_{CC} = 10 \text{V},$ $R_{L} = 100 \Omega$	All		3.0		μs
t _{off}	Turn-Off Time	$I_{C} = 2.0 \text{mA}, V_{CC} = 10 \text{V},$ $R_{L} = 100 \Omega$	All		2.8		μs
t _r	Rise Time	$I_{C} = 2.0 \text{mA}, V_{CC} = 10 \text{V},$ $R_{L} = 100 \Omega$	All		1.6		μs
t _f	Fall Time	$I_{C} = 2.0 \text{mA}, V_{CC} = 10 \text{V},$ $R_{L} = 100 \Omega$	All		2.2		μs
V_{ISO}	Isolation Surge Voltage ^(1, 2)	$f = 60Hz$, $t = 1 min.$, $I_{I-O} \le 2\mu A$	All	2500			Vac(rms)
R _{ISO}	Isolation Resistance ⁽²⁾	V _{I-O} = 500V	All	10 ¹¹			Ω
C _{ISO}	Isolation Capacitance ⁽²⁾	$V_{I-O} = 0V$, $f = 1MHz$	All		0.2		pF

^{*}Typical values at $T_A = 25$ °C

Note:

- 1. Input-Output Isolation Voltage, V_{ISO} , is an internal device dielectric breakdown rating.
- 2. For this test, Pins 1, 2, 3 and 4 are common and Pins 5, 6, 7 and 8 are common.
- 3. Always design to the specified minimum/maximum electrical limits (where applicable).
- 4. Current Transfer Ratio (CTR) = $I_C/I_F \times 100\%$.

Typical Performance Curves

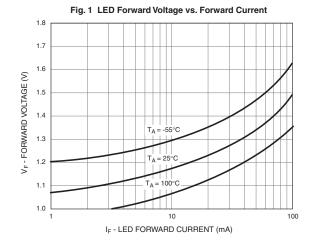


Fig. 3 Output Current vs. Ambient Temperature

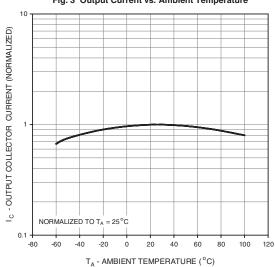


Fig. 2 Output Curent vs. Input Current

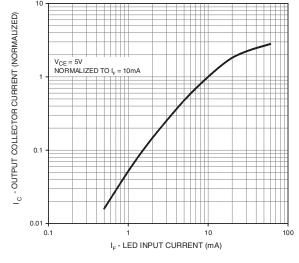


Fig. 4 Output Current vs. Collector - Emitter Voltage

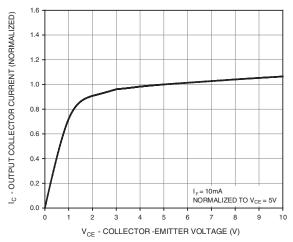
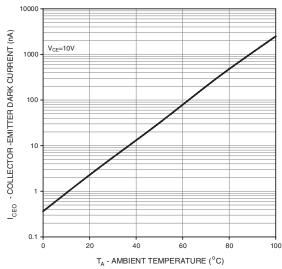
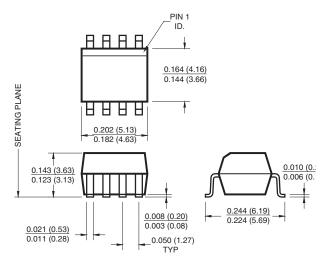
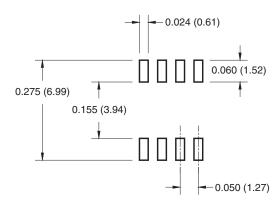
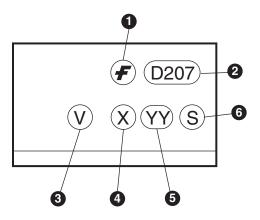




Fig. 5 Dark Current vs. Ambient Temperature

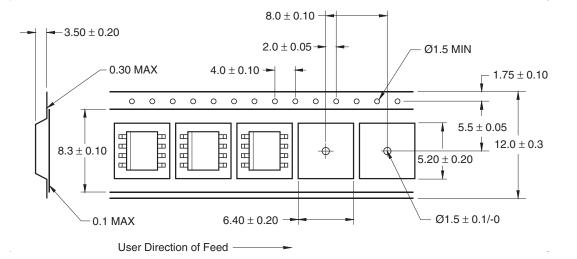

Package Dimensions

Surface Mount

Lead Coplanarity: 0.004 (0.10) MAX


8-Pin Small Outline

Ordering Information


Option	Order Entry Identifier	Description		
V	V	VDE Approved		
D1	D1	Tape & Reel (500 units per reel), 16mm width carrier tape		
D1V	D1V	VDE Approved, Tape & Reel (500 units per reel), 16mm width carrier tape		
D2	D2	Tape & Reel (2500 units per reel), 16mm width carrier tape		
D2V	D2V	VDE Approved, Tape & Reel (2500 units per reel), 16mm width carrier tape		
R1	R1	Tape & Reel (500 units per reel), 12mm width carrier tape		
R1V	R1V	VDE Approved, Tape & Reel (500 units per reel), 12mm width carrier tape		
R2	R2	Tape & Reel (2500 units per reel), 12mm width carrier tape		
R2V	R2V	VDE Approved, Tape & Reel (2500 units per reel), 12mm width carrier tape		

Marking Information

Definitions			
1	Fairchild logo		
2	Device number		
3	VDE mark (Note: Only appears on parts ordered with VDE option – See order entry table)		
4	One digit year code, e.g., '3'		
5	Two digit work week ranging from '01' to '53'		
6	Assembly package code		

Carrier Tape Specifications

Reflow Profile

FAIRCHILD SEMICONDUCTOR TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx™ ActiveArray™ Bottomless™ Build it Now™ CoolFET™ CROSSVOLT™ DOME™ EcoSPARK™ E²CMOS™ EnSigna™ FACT® FAST® FASTr™ FPS™ FRFET™ Across the board. A	_	OCX™ OCXPro™ OCXPro™ OPTOLOGIC® OPTOPLANAR™ PACMAN™ POP™ Power247™ PowerEdge™ PowerSaver™ PowerTrench® QFET® QS™ QT Optoelectronics™ Quiet Series™ RapidConfigure™ RapidConnect™ SerDes™	SILENT SWITCHER® SMART START™ SPM™ Stealth™ SuperFET™ SuperSOT™-3 SuperSOT™-6 SuperSOT™-8 SyncFET™ TCM™ TinyBoost™ TinyBuck™ TinyBuck™ TinyPWM™ TinyPower™ TinyLogic® TINYOPTO™ TruTranslation™	UniFET™ UltraFET [®] VCX™ Wire™
The Power Franchise [®] Programmable Active Droop™		ScalarPump™	UHC [®]	
1 Togrammable 7 tours Broop				

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.

Rev. I21