

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

8-pin SOIC Dual-Channel Phototransistor Output Optocoupler

These devices consist of two gallium arsenide infrared emitting diodes optically coupled to two monolithic silicon phototransistor detectors, in a surface mountable, small outline, plastic package. They are ideally suited for high-density applications, and eliminate the need for through-the-board mounting.

Features

- Closely Matched Current Transfer Ratios
- Minimum BV_{CEO} of 70 V Guaranteed
 - MOCD207M, MOCD208M
- Minimum BV_{CEO} of 30 V Guaranteed
 - MOCD211M, MOCD213M, MOCD217M
- Low LED Input Current Required for Easier Logic Interfacing – MOCD217M
- Convenient Plastic SOIC-8 Surface Mountable Package Style, with 0.050" Lead Spacing
- Safety and Regulatory Approvals:
 - UL1577, 2,500 VAC_{RMS} for 1 Minute
 - DIN-EN/IEC60747-5-5, 565 V Peak Working Insulation Voltage
- These are Pb-Free Devices

Applications

- Feedback Control Circuits
- Interfacing and Coupling Systems of Different Potentials and Impedances
- General Purpose Switching Circuits
- Monitor and Detection Circuits

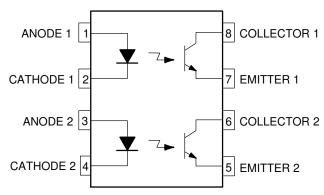
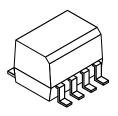
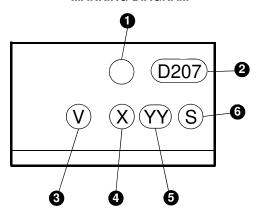



Figure 1. Schematic


ON Semiconductor®

www.onsemi.com

SOIC8 M SUFFIX CASE 751DZ

MARKING DIAGRAM

- 1 Logo
- 2 Device Number
- 3 DIN EN/IEC60747–5–5 Option (only appears on component ordered with this option)
- 4 One-Digit Year Code, e.g., "4"
- 5 Digit Work Week, Ranging from "01" to "53"
- 6 Assembly Package Code

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 7 of this data sheet.

Safety and Insulation Ratings

As per DIN EN/IEC 60747–5–5, this optocoupler is suitable for "safe electrical insulation" only within the safety limit data. Compliance with the safety ratings shall be ensured by means of protective circuits.

Parameter	Characteristics	
Installation Classifications per DIN VDE 0110/1.89 Table 1, For Rated	< 150 V _{RMS}	I–IV
Mains Voltage	< 300 V _{RMS}	I–III
Climatic Classification	55/100/21	
Pollution Degree (DIN VDE 0110/1.89)	2	
Comparative Tracking Index	175	

Symbol	Parameter	Value	Unit
V _{PR}	Input–to–Output Test Voltage, Method A, $V_{IORM} \times 1.6 = V_{PR}$, Type and Sample Test with $t_m = 10$ s, Partial Discharge < 5 pC	904	V _{peak}
	Input–to–Output Test Voltage, Method B, $V_{IORM} \times 1.875 = V_{PR}$, 100% Production Test with $t_m = 1 \text{ s}$, Partial Discharge < 5 pC	1060	V _{peak}
V _{IORM}	Maximum Working Insulation Voltage	565	V _{peak}
V _{IOTM}	Highest Allowable Over-Voltage	4000	V _{peak}
	External Creepage	≥4	mm
	External Clearance	≥4	mm
DTI	Distance Through Insulation (Insulation Thickness)	≥0.4	mm
T _S	Case Temperature (Note 1)	150	°C
I _{S,INPUT}	Input Current (Note 1)	200	mA
P _{S,OUTPUT}	Output Current (Note 1)	300	mW
R _{IO}	Insulation Resistance at T _S , V _{IO} = 500 V (Note 1)	>10 ⁹	Ω

^{1.} Safety limit values – maximum values allowed in the event of a failure.

ABSOLUTE MAXIMUM RATINGS (T_A = 25°C unless otherwise noted)

Symbol	Rating	Value	Unit
TOTAL DEVIC	DE	·	•
T _{STG}	Storage Temperature	-40 to +125	°C
T _A	Ambient Operating Temperature	-40 to +100	°C
TJ	Junction Temperature	-40 to +125	°C
T _{SOL}	Lead Solder Temperature	260 for 10 seconds	°C
P_{D}	Total Device Power Dissipation @ T _A = 25°C	240	mW
	Derate Above 25°C	2.94	mW/°C
EMITTER	•	•	
I _F	Continuous Forward Current	60	mA
I _F (pk)	Forward Current – Peak (PW = 100 μs, 120 pps)	1.0	Α
V_{R}	Reverse Voltage	6.0	V
P_{D}	LED Power Dissipation @ T _A = 25°C	90	mW
	Derate Above 25°C	0.8	mW/°C
DETECTOR			
I _C	Continuous Collector Current	150	mA
V_{CEO}	Collector–Emitter Voltage – MOCD207M, MOCD208M	70	V
	- MOCD211M, MOCD213M, MOCD217M	30	V
V _{ECO}	Emitter-Collector Voltage	7	V
P_{D}	Detector Power Dissipation @ T _A = 25°C	150	mW
	Derate Above 25°C	1.76	mW/°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted)

Symbol	Parameter	Device	Test Conditions	Min	Тур	Max	Unit
EMITTER	•	•		•	•		•
V _F	Input Forward Voltage	MOCD217M	I _F = 1 mA	_	1.05	1.3	V
		MOCD213M	I _F = 10 mA	_	1.15	1.5	V
		MOCD207M, MOCD208M, MOCD211M	I _F = 30 mA	-	1.25	1.5	V
I _R	Reverse Leakage Current	All	V _R = 6 V	_	0.001	100	μΑ
C _{IN}	Input Capacitance	All		_	18	-	pF
DETECTO	R	•		•	•		•
I _{CEO}	Collector-Emitter Dark Current	All	V _{CE} = 10 V, T _A = 25°C	_	1.0	50	nA
			V _{CE} = 10 V, T _A = 100°C	_	1.0	_	μΑ
BV _{CEO} Collector–Emitter Breakdown Voltage		MOCD211M, MOCD213M, MOCD217M	Ι _C = 100 μΑ	30	100	-	V
		MOCD207M, MOCD208M	I _C = 100 μA	70	100	-	V
BV _{ECO}	Emitter–Collector Breakdown Voltage	All	I _E = 100 μA	7	10	ı	V
C _{CE}	Collector-Emitter Capacitance	All	f = 1.0 MHz, V _{CE} = 0	_	7	_	pF
COUPLED							
CTR	Collector-Output Current	MOCD207M	I _F = 10 mA, V _{CE} = 5 V	100	_	200	%
		MOCD208M	I _F = 10 mA, V _{CE} = 5 V	40	_	125	%
		MOCD211M	I _F = 10 mA, V _{CE} = 5 V	20	_	-	%
		MOCD213M	I _F = 10 mA, V _{CE} = 5 V	100	-	-	%
		MOCD217M	I _F = 1 mA, V _{CE} = 5 V	100	_	-	%
V _{CE(SAT)}	Collector–Emitter Saturation Voltage	MOCD207M, MOCD208M, MOCD211M, MOCD213M	$I_C = 2 \text{ mA}, I_F = 10 \text{ mA}$	-	_	0.4	V
		MOCD217M	$I_C = 100 \mu A, I_F = 1 mA$	_	_	0.4	V
t _{on}	Turn-On Time	All	I_C = 2 mA, V_{CC} = 10 V, R_L = 100 Ω (Figure 7)	-	7.5	-	μS
t _{off}	Turn-Off Time	All	I_C = 2 mA, V_{CC} = 10 V, R_L = 100 Ω (Figure 7)	-	5.7	-	μs
t _r	Rise Time	All	I_C = 2 mA, V_{CC} = 10 V, R_L = 100 Ω (Figure 7)	-	3.2	-	μS
t _f	Fall Time	All	I_C = 2 mA, V_{CC} = 10 V, R_L = 100 Ω (Figure 7)	-	4.7	-	μS
ISOLATION	N						
V _{ISO}	Input-Output Isolation Voltage	All	t = 1 Minute	2500	_	_	VAC _{RMS}
C _{ISO}	Isolation Capacitance	All	V _{I-O} = 0 V, f = 1 MHz	_	0.2	_	pF
R _{ISO}	Isolation Resistance	All	V _{I-O} = ±500 VDC, T _A = 25°C	10 ¹¹	_	_	Ω

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

TYPICAL CHARACTERISTICS

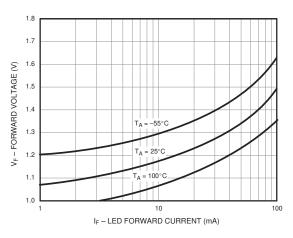


Figure 2. LED Forward Voltage vs. Forward Current

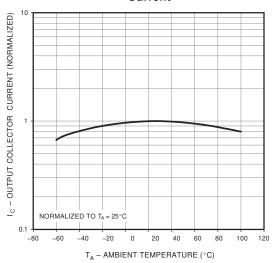


Figure 4. Output Current vs. Ambient Temperature

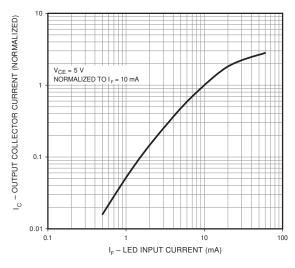


Figure 3. Output Current vs. Input Current

Figure 5. Output Current vs. Collector-Emitter Voltage

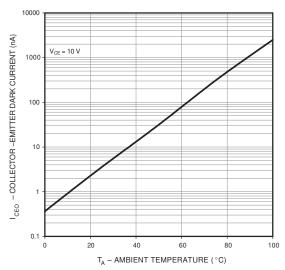


Figure 6. Dark Current vs. Ambient Temperature

SWITCHING TIME TEST CIRCUIT AND WAVEFORMS

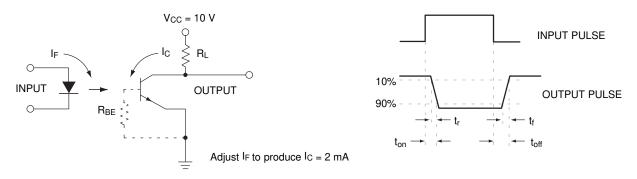
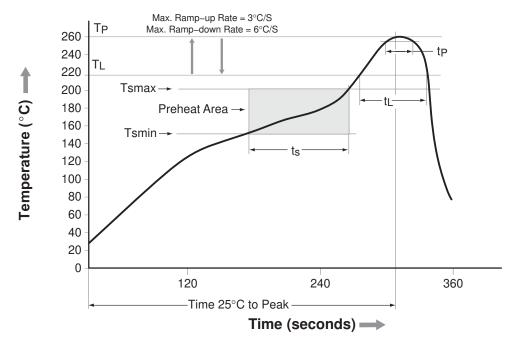
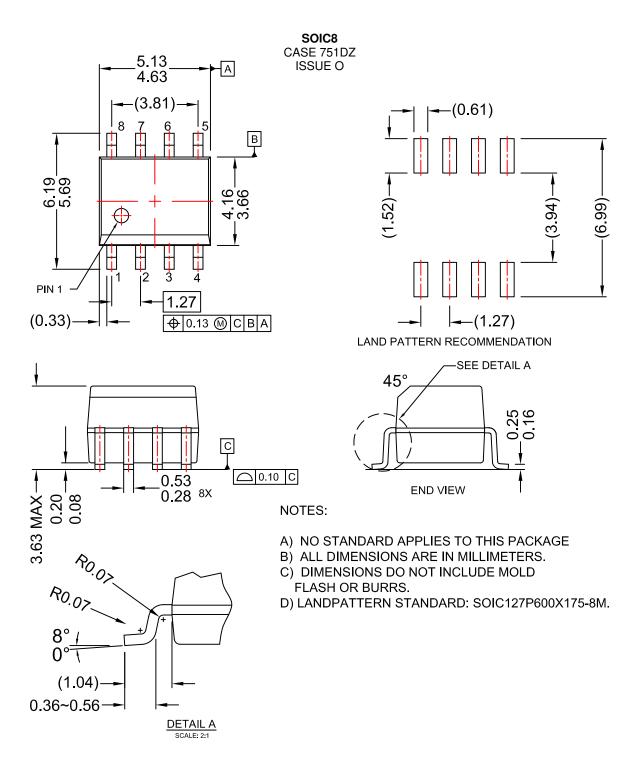


Figure 7. Switching Time Test Circuit and Waveforms

REFLOW PROFILE




Figure 8. Reflow Profile

Profile Feature	Pb-Free Assembly Profile
Temperature Minimum (Tsmin)	150°C
Temperature Maximum (Tsmax)	200°C
Time (t _S) from (Tsmin to Tsmax)	60 – 120 seconds
Ramp-up Rate (t _L to t _P)	3°C/second maximum
Liquidous Temperature (T _L)	217°C
Time (t _L) Maintained Above (T _L)	60 – 150 seconds
Peak Body Package Temperature	260°C +0°C / -5°C
Time (t _P) within 5°C of 260°C	30 seconds
Ramp-down Rate (T _P to T _L)	6°C/second maximum
Time 25°C to Peak Temperature	8 minutes maximum

ORDERING INFORMATION

Part Number	Package	Shipping		
MOCD207M	Small Outline 8–Pin	100 Units / Tube		
MOCD207R2M	Small Outline 8-Pin	2500 Units / Tape & Reel		
MOCD207VM	Small Outline 8-Pin, DIN EN/IEC60747-5-5 Option	100 Units / Tube		
MOCD207R2VM	Small Outline 8-Pin, DIN EN/IEC60747-5-5 Option	2500 Units / Tape & Reel		
MOCD208M	Small Outline 8–Pin	100 Units / Tube		
MOCD208R2M	Small Outline 8–Pin	2500 Units / Tape & Reel		
MOCD208VM	Small Outline 8-Pin, DIN EN/IEC60747-5-5 Option	100 Units / Tube		
MOCD208R2VM	Small Outline 8-Pin, DIN EN/IEC60747-5-5 Option	2500 Units / Tape & Reel		
MOCD211M	Small Outline 8–Pin	100 Units / Tube		
MOCD211R2M	Small Outline 8–Pin	2500 Units / Tape & Reel		
MOCD211VM	Small Outline 8-Pin, DIN EN/IEC60747-5-5 Option	100 Units / Tube		
MOCD211R2VM	Small Outline 8-Pin, DIN EN/IEC60747-5-5 Option	2500 Units / Tape & Reel		
MOCD213M	Small Outline 8–Pin	100 Units / Tube		
MOCD213R2M	Small Outline 8–Pin	2500 Units / Tape & Reel		
MOCD213VM	Small Outline 8-Pin, DIN EN/IEC60747-5-5 Option	100 Units / Tube		
MOCD213R2VM	Small Outline 8-Pin, DIN EN/IEC60747-5-5 Option	2500 Units / Tape & Reel		
MOCD217M	Small Outline 8–Pin	100 Units / Tube		
MOCD217R2M	Small Outline 8-Pin	2500 Units / Tape & Reel		
MOCD217VM	Small Outline 8-Pin, DIN EN/IEC60747-5-5 Option	100 Units / Tube		
MOCD217R2VM	Small Outline 8–Pin, DIN EN/IEC60747–5–5 Option	2500 Units / Tape & Reel		

PACKAGE DIMENSIONS

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor and severally, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and ho

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative