imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

MOD5234

Ethernet Core Module

100 Version with RJ-45 | 200 Version with 10-pin header

DATASHEET

handling, serial communications, motor control and

• Industrial temperature range (-40°C to 85°C)

16-bit address and data bus with 3 chip selects

engine control applications.

Customize with development kit

8MB SDRAM and 2MB Flash

49 digital I/Os

eTPU

Key Points

- Use as a high-performance single board computer or add Ethernet connectivity to a new or existing design
- The included eTPU is essentially an independent microcontroller designed for timing control, I/O

Device Connectivity

- 10/100Mbps Ethernet
- 3 UARTs, I²C, CAN, and SPI
- SD/MMC flash card ready

Performance and memory

• 32-bit 147.5 MHz Processor

Companion development kit

The following is available with the development kit:

- Customize any aspect of operation including web pages, data filtering, or custom network applications
- Development software: NB Eclipse IDE, Graphical debugger, deployment tools, and examples
- Communication software: TCP/IP stack, HTTP web server, FTP, E-mail, and flash file system
- System software: uC/OS RTOS, ANSI C/C++ compiler and linker

The following optional software modules are not included with kit and are sold separately:

- Embedded SSL & SSH Security Suite (Module License Version)
- SNMP

Specifications

Processor and Memory 32-bit Freescale ColdFire 5234 running at 147.5MHz with 8MB SDRAM and 2MB Flash

Network Interface 10/100 BaseT with RJ-45 connector (100 Version) 10-pin header (200 Version)

eTPU

The programmable I/O controller has its own core and memory system, enabling it to perform complex timing and I/O management independently of the primary CPU. The eTPU is essentially an independent microcontroller designed for timing control, I/O handling, serial communications, motor control and engine control applications.

Data I/O Interface (J1 and J2)

- Up to 3 UARTs
- Up to 49 digital I/O
- Up to 2 external timer in and up to 3 timer outputs
- Up to 4 external IRQs
- I²C interface

- CAN 2.0b controller
- SPI interface
- SD/MMC flash card ready
- eTPU

Flash Card Support

FAT32 support for SD Cards up to 8GB (requires exclusive use of SPI signals). Card types include SD/MMC (up to 2GB) and SDHC.

Serial Configurations

The UARTs can be configured in the following way:

- 3 TTL ports
- Add external level shifter for RS-232
- Add external level shifter for RS-422/485 (up to three ports)

Note: UART 0/1/2 also provides RTS/CTS hardware handshaking signals.

LEDs

Link and Speed (100 Version only, on RJ-45)

Physical Characteristics Dimensions (inches): 2.95" x 2.00" Weight: 1 oz. Mounting Holes: 2 x 0.125" dia.

Power DC Input Voltage: 3.3V @ 380mA typical

Environmental Operating Temperature -40° to 85° C

RoHS Compliance

The Restriction of Hazardous Substances guidelines ensure that electronics are manufactured with fewer environment harming materials.

Part Numbers

MOD5234 Ethernet Core Module (100 Version, with RJ-45) Part Number: MOD5234-100IR

MOD5234 Ethernet Core Module (200 Version, with 10-pin header) Part Number: MOD5234-200IR

MOD5234 LC Development Kit Part Number: NNDK-MOD5234LC-KIT Kit includes all the hardware and software you need to customize the included platform hardware. See NetBurner Store product page for package contents. Note: Includes the MOD-DEV-70 development board.

MOD5234 Development Kit

Part Number: NNDK-MOD5234-KIT Kit includes all the hardware and software you need to customize the included platform hardware. See NetBurner Store product page for package contents. Note: Includes the MOD-DEV-100 development board.

Embedded SSL & SSH Security Suite (Module License Version)

Part Number: NBLIC-SSL-MODULE Only required if you are using a development kit.

SNMP V1 (Module License Version)

Part Number: NBLIC-SNMP Available as an option if you are using a development kit.

Ordering Information

E-mail: sales@netburner.com Online Store: www.NetBurner.com

Telephone: 1-800-695-6828

Pinout and Signal Description

The 200 version board has a 10-pin header instead of an RJ-45 jack. This header enables you to relocate the jack to another location or to add a different jack with power over ethernet (PoE) capabilities to your module. Table 1 provides descriptions of pin function of the 10-pin header.

Table 1: Pinout and Signal Descriptions for JP2 Header (1)

Pin	Signal	Description			
1	TX-	Transmit -			
2	TX+	Transmit +			
3	VCC ¹	2.5V			
4	RX+	Recieve +			
5	RX-	Recieve -			
6	VCC ¹	2.5V			
7	GND	Ground			
8	N/C	Not Connected			
9	LED	Link LED			
10	LED	Speed LED			

Note:

1. Ethernet magnetics center tap voltage provided by NetBurner device

The module has two dual in-line 50 pin headers which enable you to connect to one of our standard NetBurner Carrier Boards, or a board you create on your own. Table 2 provides descriptions of pin function of the module header.

Table 2: Pinout and Signal Descriptions for J1 Connector (1)

	J1 Connector						
Pin	CPU Pin	Function 1	Function 2	General Purpose I/O	Description	Max Voltage	
1		GND			Ground	-	
2		GND			Ground	-	
3		VCC3V			Input power 3.3 VDC	3.3VDC	
4	L16	R/W			Read / NOT Write	3.3VDC	
5	B13	CS1		PCS1	Chip Select 1 ²	3.3VDC	
6	D12	CS2	SD_CS0	PCS2	Chip Select 2 ² or SDRAM Chip Select 0	3.3VDC	
7	B12	CS3	SD_CS1	PCS3	Chip Select 3 ² or SDRAM Chip Select 1	3.3VDC	
8	T7	ŌĒ			Output Enable	3.3VDC	
9	B9	BS2	CAS2		Byte Strobe for D16 to D23 (8 bits) ¹ or Column Address Strobe 2 ¹	3.3VDC	
10	C9	BS3	CAS3		Byte Strobe for D24 to D31 (8 bits) ¹ or Column Address Strobe 3 ¹	3.3VDC	
11		TIP			Transfer in Progress ²	3.3VDC	
12	R1	D16			Data Bus - Data 16 ²	3.3VDC	
13	K14	TA		PBUSCTL6	Transfer Acknowledge	3.3VDC	
14	P2	D18			Data Bus - Data 18 ²	3.3VDC	
15	P1	D17			Data Bus - Data 17 ²	3.3VDC	
16	N2	D20			Data Bus - Data 20 ²	3.3VDC	
17	N1	D19			Data Bus - Data 19 ²	3.3VDC	
18	M2	D22			Data Bus - Data 22 ²	3.3VDC	
19	M1	D21			Data Bus - Data 21 ²	3.3VDC	
20	L1	D24			Data Bus - Data 24 ²	3.3VDC	
21	M3	D23			Data Bus - Data 23 ²	3.3VDC	
22	L3	D26			Data Bus - Data 26 ²	3.3VDC	
23	L2	D25			Data Bus - Data 25 ²	3.3VDC	

Note:

1. Active low signals, such as RESET, are indicated with an overbar.

2. The TIP signal is the logical AND of *CS1, *CS2 and *CS3. TIP can used to control an external data bus buffer for the data bus signals. An example circuit design can be found on the Module Development Board schematic. An external data bus buffer is recommended for any designs that use data bus signals D16-D31.

Pin CP Pir 24 K1 25 L4 26 K3 27 K2 28 T1	n Function 1 1 D28	Function 2	Function 3	General Purpose		
25 L4 26 K3 27 K2 28 T1				I/O	Description	Max Voltage
26 K3 27 K2 28 T1	1 D27				Data Bus - Data 28 ²	3.3VDC
27 K2 28 T1	T DZ1				Data Bus - Data 27 ²	3.3VDC
28 T1	3 D30				Data Bus - Data 30 ²	3.3VDC
	2 D29				Data Bus - Data 29 ²	3.3VDC
	5 RESET				Processor Reset Input	3.3VDC
29 K4	4 D31				Data Bus - Data 31 ²	3.3VDC
30 T14	4 RSTOUT				Processor Reset Output	3.3VDC
31 M1	6 CLK_OUT				Buffer Clock Out (CLKOUT-73.728 Mhz) ³	3.3VDC
32 H1	3 A0				Data Bus - Address 0	3.3VDC
33 H1-	4 A1				Data Bus - Address 1	3.3VDC
34 H1	5 A2				Data Bus - Address 2	3.3VDC
35 H1	6 A3				Data Bus - Address 3	3.3VDC
36 G1	3 A4				Data Bus - Address 4	3.3VDC
37 G1	4 A5				Data Bus - Address 5	3.3VDC
38 G1	5 A6				Data Bus - Address 6	3.3VDC
39 F13	3 A7				Data Bus - Address 7	3.3VDC
40 F14	4 A8				Data Bus - Address 8	3.3VDC
41 F1	5 A9				Data Bus - Address 9	3.3VDC
42 E13	3 A10				Data Bus - Address 10	3.3VDC
43 E14	4 A11				Data Bus - Address 11	3.3VDC
44 E1	5 A12				Data Bus - Address 12	3.3VDC
45 E1	6 A13				Data Bus - Address 13	3.3VDC
46 D1-	4 A14				Data Bus - Address 14	3.3VDC
47 D1	5 A15				Data Bus - Address 15	3.3VDC
48	VCC3V				Input power 3.3 VDC	3.3VDC
49	GND				Ground	-
50	GND				Ground	-

Note:

1. Active low signals, such as RESET, are indicated with an overbar.

The TIP signal is the logical AND of *CS1, *CS2 and *CS3. TIP can used to control an external data bus buffer for the data bus signals. An example circuit design can be found on the Module Development Board schematic. An external data bus buffer is recommended for any designs that use data bus signals D16-D31.

3. The CLKOUT signal is 1/2 the system frequency of 147.456 MHz.

Table 3: Pinout and Signal Descriptions for J2 Connector (1)

J2 Connector							
Pin	CPU Pin	Function 1	Function 2	Fuction 3	General Purpose I/O	Description	Max Voltage
1		GND				Ground	-
2		VCC3V				Input power 3.3 VDC	3.3VDC
3	G2	UART0_RX			PUARTL0	UART 0 Receive ²	3.3VDC
4	H2	UART0_TX			PUARTL1	UART 0 Transmit ²	3.3VDC
5	A6	TPUCH1			ETPU1	eTPU Channel 1	3.3VDC
6	A7	TPUCH0			ETPU0	eTPU Channel 0	3.3VDC
7	B4	TPUCH3			ETPU3	eTPU Channel 3	3.3VDC
8	A4	TPUCH2			ETPU2	eTPU Channel 2	3.3VDC
9	B3	TPUCH5			ETPU5	eTPU Channel 5	3.3VDC
10	A3	TPUCH4			ETPU4	eTPU Channel 4	3.3VDC
11	B2	TPUCH7			ETPU7	eTPU Channel 7	3.3VDC
12	A2	TPUCH6			ETPU6	eTPU Channel 6	3.3VDC
13	C2	TPUCH9			ETPU9	eTPU Channel 9	3.3VDC
14	B1	TPUCH8			ETPU8	eTPU Channel 8	3.3VDC
15	D2	TPUCH11			ETPU11	eTPU Channel 11	3.3VDC
16	C1	TPUCH10			ETPU10	eTPU Channel 10	3.3VDC
17	E2	TPUCH13			ETPU13	eTPU Channel 13	3.3VDC
18	D1	TPUCH12			ETPU12	eTPU Channel 12	3.3VDC
19	F2	TPUCH15			ETPU15	eTPU Channel 15	3.3VDC
20	E1	TPUCH14			ETPU14	eTPU Channel 14	3.3VDC
21	A11	UART1_RX	CAN0_RX		PUARTL4	UART 1 Receive ² or CAN 0 Receive	3.3VDC
22	A12	UART1_TX	CAN0_TX		PUARTL5	UART 1 Transmit ² or CAN 0 Transmit	3.3VDC
23	B11	UART1_RTS	UART2_RTS		PUARTL6	UART 1 Request To Send ² or UART 2 Request to Send ²	3.3VDC
24	C11	UART1_CTS	UART2_CTS		PUARTL7	UART 1 Clear To Send ² or UART 2 Clear to Send ²	3.3VDC
25	B8	SPI_CLK	I2C_SCL		PQSPI2	SPI Clock or I ² C Serial Clock ³	3.3VDC

Note:

1. Active low signals, such as RESET, are indicated with an overbar.

2. Each UART can be clocked from an internal or external source. For external clocks, each UARTn, can be clocked by the corresponding DTn_IN vnput pin.

3. If using I²C, the module must add pull-up resistors to SDA/SCL.

J2 Connector (continued)							
Pin	CPU Pin	Function 1	Function 2	Function 3	General Purpose I/O	Description	Max Voltage
26	F1	TCR_CLK			PETPU2	eTPU Time Base Clock	3.3VDC
27	C8	SPI_DIN	I2C_SDA		PQSPI1	SPI Data In or I ² C Serial Data ³	3.3VDC
28	D8	SPI_DOUT			PQSPI0	SPI Data Out	3.3VDC
29	G1	UART0_CTS			PUARTL3	UART 0 Clear To Send ²	3.3VDC
30	D9	SPI_CS0			PQSPI3	SPI Chip Select 0	3.3VDC
31	G4	TOIN	DREQ0		PTIMER1	Timer Input 0 or DMA Request 0	3.3VDC
32	J13	UTPUODIS			PETPU1	eTPU Channel Output Disable Signal (Upper)	3.3VDC
33	R10	T2OUT	DACK2		PTIMER4	Timer Output 2 or DMA Acknowledge 2	3.3VDC
34	R7	T1OUT	DACK1		PTIMER2	Timer Output 1 or DMA Acknowledge 1	3.3VDC
35	J14	LTPUODIS			PETPU0	eTPU Channel Output Disable Signal (Lower)	3.3VDC
36	G3	TOOUT	DACK0		PTIMER0	Timer Output 0 or DMA Acknowledge 0	3.3VDC
37	P7	T1IN	DREQ1	T1OUT	PTIMER3	Timer Input 1 or DMA Request 1 or Timer Output 1	3.3VDC
38	H3	UARTO_RTS			PUARTL2	UART 0 Request To Send ²	3.3VDC
39	L15	I2C_SDA	CAN0_RX		PFECI2C0	I ² C Serial Data ³ or CAN 0 Receive	3.3VDC
40	B10	SPI_CS1	SD_CKE		PQSPI4	SPI Chip Select 1 or SDRAM Clock Enable	3.3VDC
41	D10	UART2_RX			PUARTH0	UART 2 Receive ²	3.3VDC
42	L14	I2C_SCL	CAN0_TX		PFECI2C1	I ² C Serial Clock ³ or CAN 0 Transmit	3.3VDC
43	N10	IRQ1			PIRQ1	External Interrupt 1	3.3VDC
44	D11	UART2_TX			PUARTH1	UART 2 Transmit ²	3.3VDC
45	R9	IRQ3			PIRQ3	External Interrupt 3	3.3VDC
46		GND				Ground	-
47	N9	IRQ5			PIRQ5	External Interrupt 5	3.3VDC
48	R8	IRQ7			PIRQ7	External Interrupt 7	3.3VDC
49		GND				Ground	-
50		VCC3V				Input power 3.3 VDC	3.3VDC

Note:

1. Active low signals, such as RESET, are indicated with an overbar

2. Each UART can be clocked from an internal or external source. For external clocks, each UARTn, can be clocked by the corresponding DTn_IN vnput pin.

3. If using I²C, the module must add pull-up resistors to SDA/SCL.