

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

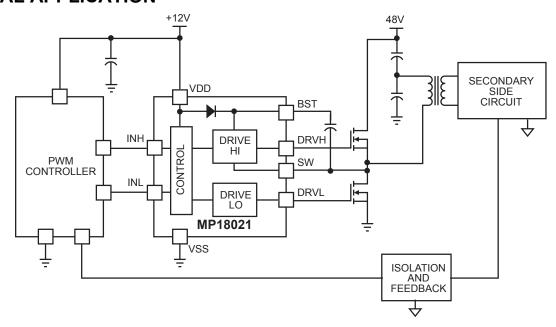
100V High Frequency Half-Bridge Gate Driver

DESCRIPTION

The MP18021 is a high frequency, 100V half bridge N-channel power MOSFET driver. Its low side and high side driver channels are independently controlled and matched with less than 5ns in time delay. Under voltage lock-out on both high side and low side supplies force their outputs low in case of insufficient supply. The integrated bootstrap diode reduces external component count.

FEATURES

- Drives N-channel MOSFET half bridge
- 100V V_{BST} voltage range
- On-chip bootstrap diode
- Typical 16ns propagation delay time
- Less than 5ns gate drive matching
- Drive 1nF load with 12ns/9ns rise/fall times with 12V VDD
- TTL compatible input
- Less than 150μA quiescent current
- UVLO for both high side and low side
- In SOIC8 EPAD and 3×3mm QFN8 Packages


APPLICATIONS

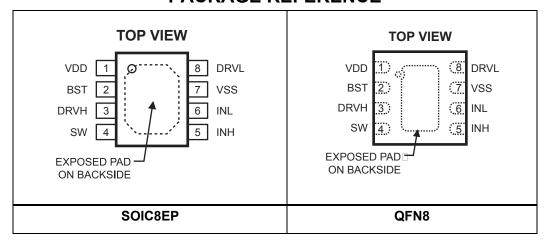
- Telecom half bridge power supplies
- Avionics DC-DC converters
- Two-switch forward converters
- Active clamp forward converters

All MPS parts are lead-free, halogen free, and adhere to the RoHS directive. For MPS green status, please visit MPS website under Quality Assurance.

"MPS" and "The Future of Analog IC Technology" are Registered Trademarks of Monolithic Power Systems, Inc.

TYPICAL APPLICATION

ORDERING INFORMATION


Part Number*	Package	Top Marking	Free Air Temperature (T _A)
MP18021HN	SOIC8EP	MP18021HN	-40°C to + 125°C
MP18021HQ	QFN8 (3x 3mm)	ABN	-40°C to + 125°C

* For Tape & Reel, add suffix –Z (e.g. MP18021HN–Z);

For RoHS compliant packaging, add suffix –LF; (e.g. MP18021HN–LF–Z) For Tape & Reel, add suffix –Z (e.g. MP18021HQ–Z);

For RoHS compliant packaging, add suffix -LF; (e.g. MP18021HQ-LF-Z)

PACKAGE REFERENCE

ABSOLUTE MAXIM	UM RATINGS (1)
Supply Voltage (V _{DD})	0.3V to +18V

ouppiy voitage (vol)	0.0 4 10 1 10 4
SW Voltage (V _{SW})	5.0V to 100V
BST Voltage (V _{BST})	0.3V to 100V
BST to SW	0.3V to +18V
DRVH to SW	0.3V to +18V
All Other Pins0.	
Continuous Power Dissipation	$(T_A = +25^{\circ}C)^{(2)}$
SOIC8 (Exposed Pad)	
QFN8 (3x3)	2.5W
Junction Temperature	150°C
Lead Temperature	260°C
Storage Temperature	-65°C to +150°C

Recommended Operating Conditions (3)

Supply Voltage V _{DD}	+9.0V to 16.0V
SW Voltage (V _{SW})	1.0V to 100V-V _{DD}
SW slew rate	<50V/nsec
Operating Junct, Temp (T	1)40°C to +140°C

Thermal Resistance (4)	$oldsymbol{ heta}_{JA}$	θ_{JC}	
SOIC8 (Exposed Pad)	48	10	°C/W
QFN8 (3x3)	50	. 12	°C/W

Notes:

- 1) Exceeding these ratings may damage the device.
- 2) The maximum allowable power dissipation is a function of the maximum junction temperature $T_J(MAX),$ the junction-to-ambient thermal resistance $\theta_{JA},$ and the ambient temperature $T_A.$ The maximum allowable continuous power dissipation at any ambient temperature is calculated by $P_D(MAX)=(T_J(MAX)-T_A)/\theta_{JA}.$ Exceeding the maximum allowable power dissipation will cause excessive die temperature, and the regulator will go into thermal shutdown. Internal thermal shutdown circuitry protects the device from permanent damage.
- The device is not guaranteed to function outside of its operating conditions.
- 4) Measured on JESD51-7, 4-layer PCB.

ELECTRICAL CHARACTERISTICS

 V_{DD} = V_{BST} - V_{SW} =12V, V_{SS} = V_{SW} = 0V, No load at DRVH and DRVL, T_A = +25°C, unless otherwise noted.

Parameter	Symbol	Condition	Min	Тур	Max	Units
Supply Currents						
VDD quiescent current	I_{DDQ}	INL=INH=0		100	150	μΑ
VDD operating current	I _{DDO}	fsw=500kHz		2.8	3.5	mA
Floating driver quiescent current	I _{BSTQ}	INL=INH=0		60	90	μΑ
Floating driver operating current	I _{BSTO}	fsw=500kHz		2.1	3	mA
Leakage Current	I_{LK}	BST=SW=100V		0.05	1	μА
Inputs						
INL/INH High				2	2.4	V
INL/INH Low			1	1.4		V
INL/INH internal pull-down	R _{IN}			185		kΩ
resistance	ı VIN			100		KS 2
Under Voltage Protection						
VDD rising threshold	V_{DDR}		7.7	8.1	8.5	V
VDD hysteresis	V_{DDH}			0.5		V
(BST-SW) rising threshold	V_{BSTR}		6.7	7.1	7.5	V
(BST-SW) hysteresis	V_{BSTH}			0.55		V
Bootstrap Diode						
Bootstrap diode VF @ 100uA	V_{F1}			0.5		V
Bootstrap diode VF @ 100mA	V_{F2}			0.9		V
Bootstrap diode dynamic R	R_D	@ 100mA		2.5		Ω
Low Side Gate Driver						
Low level output voltage	V_{OLL}	I _O =100mA		0.15	0.22	V
High level output voltage to rail	V_{OHL}	I _O =-100mA		0.45	0.6	V
Peak pull-up current	I _{OHL}	V_{DRVL} =0V, V_{DD} =12V		1.5		Α
reak pull-up current		V _{DRVL} =0V, V _{DD} =16V		2.5		Α
Dook pull down ourrent	1	$V_{DRVL}=V_{DD}=12V$		2.5		Α
Peak pull-down current	I _{OLL}	V _{DRVL} =V _{DD} =16V		3.5		Α
Floating Gate Driver						
Low level output voltage	V_{OLH}	I _O =100mA		0.15	0.22	V
High level output voltage to rail	V _{OHH}	I _O =-100mA		0.45	0.6	V
Peak pull-up current	Іонн	V _{DRVH} =0V, V _{DD} =12V		1.5		Α
T ear puil-up cuitetit		V _{DRVH} =0V, V _{DD} =16V		2.5		Α
Peak pull-down current	ı	V _{DRVH} =V _{DD} =12V		2.5		Α
r eak puil-down current	I _{OLH}	V _{DRVH} =V _{DD} =16V		3.5		Α

ELECTRICAL CHARACTERISTICS (continued)

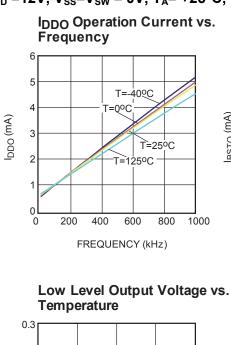
 V_{DD} = V_{BST} - V_{SW} =12V, V_{SS} = V_{SW} = 0V, No load at DRVH and DRVL, T_A = +25°C, unless otherwise noted.

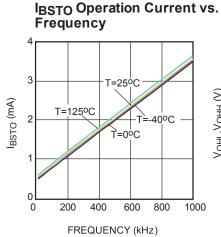
Parameter	Symbol	Condition	Min	Тур	Max	Units
Switching Spec Low Side Gate Driver						
Turn-off propagation delay INL falling to DRVL falling	T_{DLFF}			16		ns
Turn-on propagation delay INL rising to DRVL rising	T_{DLRR}			16		
DRVL rise time		C _L =1nF		12		ns
DRVL fall time		C _L =1nF		9		ns
Switching Spec Floating Gate	e Driver					
Turn-off propagation delay INL falling to DRVH falling	T_{DHFF}			16		ns
Turn-on propagation delay INL rising to DRVH rising	T_{DHRR}			16		ns
DRVH rise time		C _L =1nF		12		ns
DRVH fall time		C _L =1nF		9		ns
Switching Spec Matching						
Floating driver turn-off to low side drive turn-on	T _{MON}			1	5	ns
Low side driver turn-off to floating driver turn-on	T_{MOFF}			1	5	ns
Minimum input pulse width that changes the output	T _{PW}				50 ⁽⁵⁾	ns
Bootstrap diode turn-on or turn-off time	T _{BS}			10 ⁽⁵⁾		ns
Over Temperature Protection ⁽⁵⁾						
OTP entry threshold				160		
OTP recovery threshold				140		°C
OTP hysteresis				20		

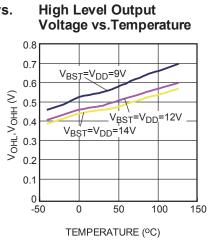
Note:

© 2015 MPS. All Rights Reserved.

⁵⁾ Derived from bench characterization. Not tested in production.


PIN FUNCTIONS


Pin#	Name	Description
1	VDD	Supply input. This pin supplies power to all the internal circuitry. A decoupling capacitor to ground must be placed close to this pin to ensure stable and clean supply.
2	BST	Bootstrap. This is the positive power supply for the internal floating high-side MOSFET driver. Connect a bypass capacitor between this pin and SW pin.
3	DRVH	Floating driver output.
4	SW	Switching node.
5	INH	Control signal input for the floating driver.
6	INL	Control signal input for the low side driver.
7	VSS, Exposed Pad	Chip ground. Connect to Exposed pad to VSS for proper thermal operation.
8	DRVL	Low side driver output.



TYPICAL PERFORMANCE CHARACTERISTICS

 V_{DD} =12V, V_{SS} = V_{SW} = 0V, T_A = +25°C, unless otherwise noted.

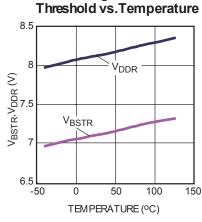
Temperature

0.3

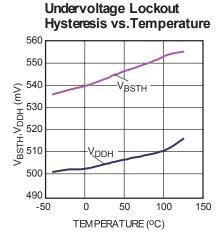
0.25

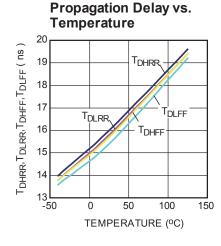
VBST=VDD=9V

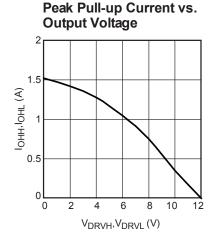
VBST=VDD=12V

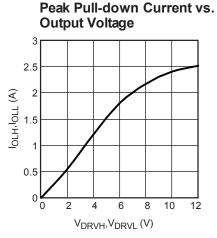

VBST=VDD=14V

0.05

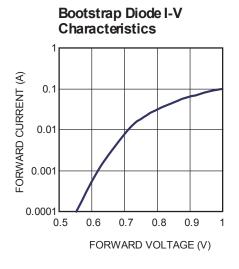

0.1

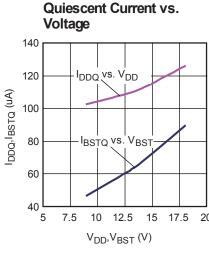

0.05

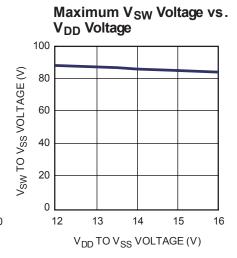

TEMPERATURE (°C)



Undervoltage Lockout

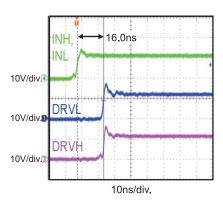


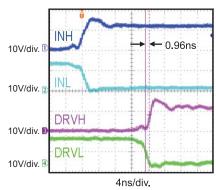


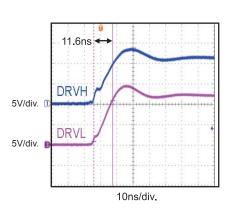


TYPICAL PERFORMANCE CHARACTERISTICS (continued)

 V_{DD} =12V, V_{SS} = V_{SW} = 0V, T_A = +25°C, unless otherwise noted.

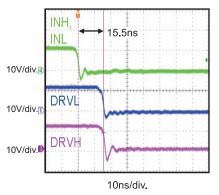


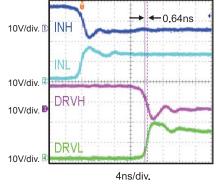


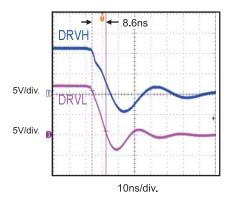

Turn-on Propagation Delay

Gate Drive Matching T_{MOFF}

Drive Rise Time (1nF Load)






Turn-off Propagation Delay

Gate Drive Matching TMON

Drive Fall Time (1nF Load)

BLOCK DIAGRAM

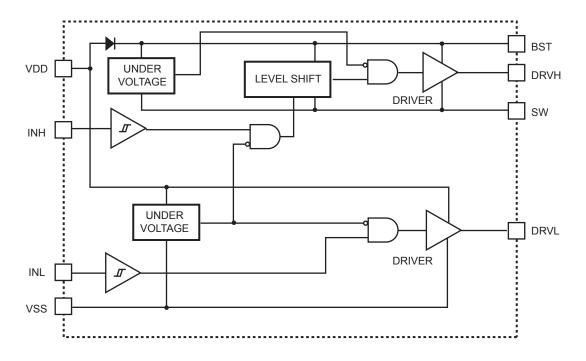
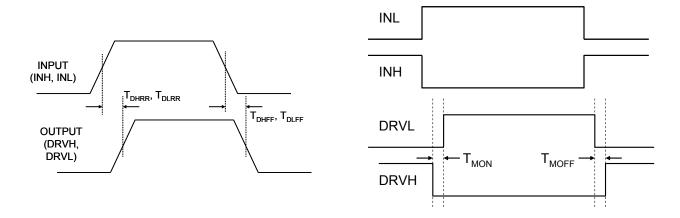
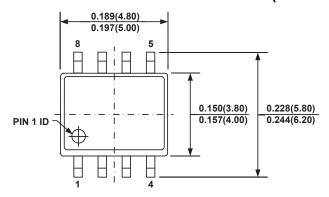
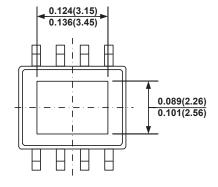
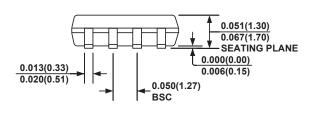


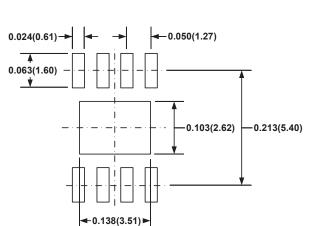
Figure 1—Function Block Diagram

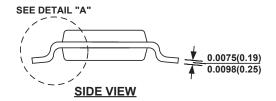

Figure 2—Timing Diagram

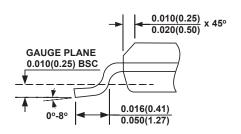
PACKAGE INFORMATION


SOIC8 (EXPOSED PAD)



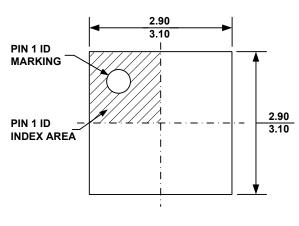
TOP VIEW

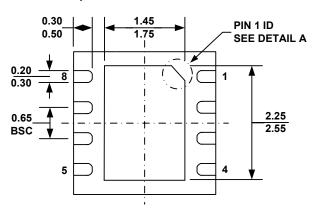

BOTTOM VIEW



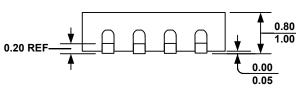
FRONT VIEW

RECOMMENDED LAND PATTERN

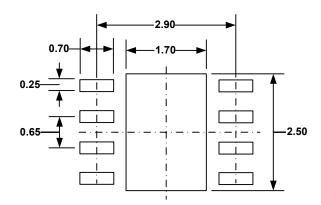

DETAIL "A"


NOTE:

- 1) CONTROL DIMENSION IS IN INCHES. DIMENSION IN BRACKET IS IN MILLIMETERS.
- 2) PACKAGE LENGTH DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.
- 3) PACKAGE WIDTH DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSIONS.
- 4) LEAD COPLANARITY (BOTTOM OF LEADS AFTER FORMING) SHALL BE 0.004" INCHES MAX.
- 5) DRAWING CONFORMS TO JEDEC MS-012, VARIATION BA.
- 6) DRAWING IS NOT TO SCALE.


QFN8 (3mm×3mm)

TOP VIEW


BOTTOM VIEW

SIDE VIEW

DETAIL A

NOTE:

- 1) ALL DIMENSIONS ARE IN MILLIMETERS.
- 2) EXPOSED PADDLE SIZE DOES NOT INCLUDE MOLD FLASH.
- 3) LEAD COPLANARITY SHALL BE 0.10 MILLIMETER MAX.
- 4) DRAWING CONFORMS TO JEDEC MO-229, VARIATION VEEC-2.
- 5) DRAWING IS NOT TO SCALE.

RECOMMENDED LAND PATTERN

NOTICE: The information in this document is subject to change without notice. Users should warrant and guarantee that third party Intellectual Property rights are not infringed upon when integrating MPS products into any application. MPS will not assume any legal responsibility for any said applications.