imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

²⁷ *MP2633* 1.5A Single Cell Switch Mode Battery Charger with Power Path Management and Boost OTG

The Future of Analog IC Technology

DESCRIPTION

The MP2633 is a highly-integrated, flexible, switch-mode battery charge management and system power path management device for a single-cell Li-ion and Li-Polymer battery used in a wide range of portable applications.

The MP2633 has two operating modes—charge mode and boost mode—to allow management of system and battery power based on the state of the input.

When input power is present, the device operates in charge mode. It automatically detects the battery voltage and charges the battery in the three phases: trickle current, constant current and constant voltage. Other features include charge termination and autorecharge. This device also integrates both input-current limit and input-voltage regulation in order to manage input power and meet the priority of the system power demand.

In the absence of an input source, the MP2633 switches to boost mode through the MODE pin to power the SYS pins from the battery. The OLIM pin programs the output current limit in boost mode. The MP2633 also allows an output short-circuit thanks to an output disconnect feature, and can auto-recover when the short circuit fault is removed.

The MP2633 provides full operating status indication to distinguish charge mode from boost mode.

The MP2633 achieves low EMI/EMC performance with well-controlled switching edges.

To guarantee safe operation, the MP2633 limits the die temperature to a preset value 120°C. Other safety features include input over-voltage protection, battery over-voltage protection, thermal shutdown, battery temperature monitoring, and a programmable timer to prevent prolonged charging of a dead battery.

FEATURES

- 4.5V-to-6V Operating Input Voltage Range
- Power Management Function Integrated Input-Current Limit and Input-Voltage Regulation
- Up to 1.5A Programmable Charge Current
- Trickle-Charge Function
- Selectable 3.6V/ 4.2V Charge Voltage with 0.5% Accuracy
- Negative Temperature Coefficient Pin for Battery Temperature Monitoring
- Programmable Timer Back-Up Protection
- Thermal Regulation and Thermal Shutdown
- Internal Battery Reverse Leakage Blocking
- Reverse Boost Operation Mode for System
 Power
- Up to 91% 5V Boost Mode Efficiency @ 1A
- Programmable Output Current Limit for Boost Mode
- Integrated Short Circuit Protection for Boost Mode

APPLICATIONS

- Sub-Battery Applications
- Power-Bank Applications for Smart-Phone Tablet and other Portable Device

All MPS parts are lead-free and adhere to the RoHS directive. For MPS green status, please visit MPS website under Products, Quality Assurance page. "MPS" and "The Future of Analog IC Technology" are registered trademarks of Monolithic Power Systems, Inc.

TYPICAL APPLICATION

Table 1: Operation Mode

Power Source	ACOK	EN	MODE	Operating Mode
0.81/cDM/N/c1.151/.81/.51/+200m//	Low	High	x -	Charge Mode, Enable Charging
0.00 < P WIN < 1.150 & VIN > VBATT + 300110		Low		Charge Mode, Disable Charging
PWIN<0.8V or PWIN >1.15V or V _{IN} <v<sub>BATT+300mV</v<sub>	High	Х	High	Boost Mode
V _{IN} <2V	High	х	Low	Sleep Mode

X=Don't Care.

ORDERING INFORMATION

Part Number*	Package	Top Marking
MP2633GR	QFN24 (4×4mm)	M2633E

* For Tape & Reel, add suffix -Z (e.g. MP2633GR-Z);

PACKAGE REFERENCE

ABSOLUTE MAXIMUM RATINGS (1)

VIN	–0.3V to 20V
SYS	–0.3V to 6.5V
SW	
-0.3V (-2V for <20ns) to	6.5V (8.5V for <20ns)
BATT	–0.3V to 6.5V
ACOK. CHG. BOOST	–0.3V to 6.5V
All Other Pins	–0.3V to 6.5V
Junction Temperature	150°C
Lead Temperature	260°C
Continuous Power Dissipat	ion (T _A = +25°C) ⁽²⁾
· · · · · · · · · · · · · · · · · · ·	2.97W
Junction Temperature	150°C
Operating Temperature	–20°C to +85°C

Recommended Operating Conditions ⁽³⁾

Supply Voltage VIN	4.5V to 6V
Battery Voltage Vout	2.5V to 4.35V
Operating Junction Temp.	(T _J)40°C to +125°C

Thermal Resistance (4) θ_{JA} θ_{JC} QFN24 (4×4mm)...... 42......9 ... °C/W

Notes:

- 1) Exceeding these ratings may damage the device.
- The maximum allowable power dissipation is a function of the 2) maximum junction temperature T_J (MAX), the junction-toambient thermal resistance θ_{JA} , and the ambient temperature T_A. The maximum allowable continuous power dissipation at any ambient temperature is calculated by P_D (MAX) = (T_J $(MAX)-T_A)/\theta_{JA}$. Exceeding the maximum allowable power dissipation will cause excessive die temperature, and the regulator will go into thermal shutdown. Internal thermal shutdown circuitry protects the device from permanent damage.
- The device is not guaranteed to function outside of its 3) operating conditions.
- 4) Measured on JESD51-7, 4-layer PCB.

ELECTRICAL CHARACTERISTICS

 V_{IN} = 5.0V, T_A = 25°C, unless otherwise noted.

Parameter	Symbol	Condition	Min	Тур	Max	Units	
IN to SYS NMOS ON Resistance	RIN to SYS			100		mΩ	
High-side PMOS ON Resistance	R _{H DS}			72		mΩ	
Low-side NMOS ON Resistance	R _{L DS}			70		mΩ	
High-Side PMOS Peak Current Limit	I _{PEAK_HS}	CC Charge Mode/Boost Mode		4		A	
Low-Side NMOS Peak Current Limit	I _{PEAK_LS}	TC Charge Mode		4.5		A	
Switching Frequency	f _{sw}	FREQ = 0 FREQ = Float/ High		600 1200		kHz	
VCC UVLO	V _{CC UVLO}		2	2.2	2.4	V	
VCC UVLO Hysteresis				100		mV	
PWIN, Lower Threshold	V _{PWIN L}		0.75	0.8	0.85	V	
Lower Threshold Hysteresis				40		mV	
PWIN, Upper Threshold	V _{PWIN H}		1.1	1.15	1.2	V	
Upper Threshold Hysteresis				65		mV	
Charge Mode	-					-	
Input Quiescent Current	I _{IN}	EN = 5V, Battery Float EN = 0			2.5 1.5	mA mA	
		$R_{\rm H} = 90.9 \rm k$	400	450	500		
Input Current Limit		$R_{\rm H} = 49.9 \rm k$	720	810	900	mA	
		$R_{ILIM} = 20k$	1800	2000	2200		
Input Over-Current Threshold	I _{IN(OCP)}			3		А	
Input Over-Current Blanking Time ⁽⁵⁾	τ _{INOCBLK}			120		μs	
Input Over-Current Recovery Time ⁽⁵⁾	τ_{INRECVR}			100		ms	
		Connect VB to GND	3.582	3.6	3.618		
Terminal Battery Voltage	V_{BATT_FULL}	Leave VB floating or connect to logic HIGH	4.179	4.2	4.221	V	
		Connect to VB to GND	3.39	3.44	3.49		
Recharge Threshold	V _{RECH}	Leave VB floating or connect to logic HIGH	3.95	4.01	4.07	V	
Recharge Threshold Hysteresis				200		mV	
Battery Over Voltage Threshold				103.3%		VBATT FULL	
Constant Charge (CC) Current		RS1 = 40m Ω , R _{ISET} = 69.8k	900	1000	1100	mΔ	
	ICC	RS1 = $40m\Omega$, R _{ISET} = $46.4k$	1350	1500	1650		
Trickle-Charge Current	I _{TC}			230		mA	

ELECTRICAL CHARACTERISTICS (continued)

 V_{IN} = 5.0V, T_A = 25°C, unless otherwise noted.

Parameter	Symbol	Condition	Min	Тур	Max	Units
		Connect to VB to GND	2.47	2.57	2.67	
Trickle-Charge Voltage Threshold	V _{BATT_TC}	Leave VB floating or connect to high logic	2.9	3	3.1	V
Trickle-Charge Hysteresis				200		mV
Termination Charge Current	I _{BF}	RS1=40m, R _{ISET} =69.8k	2.5%	10%	17.5%	I _{cc}
Input-Voltage-Regulation Reference	V_{REG}		1.18	1.2	1.22	V
Boost Mode						
SYS Voltage Range			4.2		6	V
Feedback Voltage			1.18	1.2	1.22	V
Feedback Input Current		V _{FB} =1V			200	nA
Boost SYS Over-Voltage Protection Threshold	V _{SYS(OVP})	Threshold over V _{SYS} to turn off the converter during boost mode	5.8	6	6.2	V
SYS Over-Voltage Protection Threshold Hysteresis		V_{SYS} falling from $V_{\text{SYS}(\text{OVP})}$		125		mV
Boost Quiescent Current		I _{SYS} = 0, MODE = 5V			1.4	mA
Programmable Boost Output Current Limit Accuracy	I _{OLIM}	RS1 = 40mΩ, R _{OLIM} = 100k	1	1.2	1.44	А
Programmable Boost Output Current ⁽⁵⁾		RS1 = 50mΩ, ROLIM=63.4k	1.5			А
SYS Over-Current Blanking Time ⁽⁵⁾	τ _{SYSOCBLK}			120		μs
SYS Over-Current Recovery Time ⁽⁵⁾	τ _{SYSRECVR}			1		ms
Week Pattery Threshold	V _{BATT(LOW)}	During Boost mode		2.5		V
Weak-Dattery Threshold		Before Boost mode		2.9	3.05	V
Sleep Mode						
Battery Leakage Current	I _{LEAKAGE}	V_{BATT} = 4.2V, SYS Float, V_{IN} = 0V, MODE = 0V		15	30	μΑ
Indication and Logic						
ACOK, CHG, BOOST pin output low voltage		Sinking 1.5mA			400	mV
ACOK, CHG, BOOST pin leakage current		Connected to 5V			1	μA
NTC and Time-Out Fault Blinking Frequency ⁽⁵⁾		C _{TMR} =0.1µF, I _{CHG} =1A		13.7		Hz
EN Input Logic LOW Voltage					0.4	V
EN Input High Voltage			1.4			V
Mode Input Logic LOW Voltage					0.4	V
Mode Input Logic HIGH Voltage			1.4			V

ELECTRICAL CHARACTERISTICS (continued)

 V_{IN} = 5.0V, T_A = 25°C, unless otherwise noted.

Parameter	Symbol	Condition	Min	Тур	Мах	Units		
Protection								
Trickle-Charge Time		$C_{\text{TMR}}\text{=}0.1\mu\text{F},$ remains in TC mode, $I_{\text{CHG}}\text{=}1\text{A}$		60		Min		
Total Charge Time		C_{TMR} =0.1µF, I _{CHG} = 1A		360		Min		
NTC Low Temp, Rising Threshold			65%	66%	67%			
NTC Low Temp, Rising Threshold Hysteresis				1%		M		
NTC High Temp, Rising Threshold			34%	35%	36%	VSYS		
NTC High Temp, Rising Threshold Hysteresis		R _{NTC} -NCF 10AH 103(50 C)		1%				
Charging Current Fold-back Threshold ⁽⁵⁾		Charge Mode		120		°C		
Thermal Shutdown Threshold ⁽⁵⁾				150		°C		

Notes:

5) Guaranteed by design.

TYPICAL CHARACTERISTICS

 $C_{IN}=C_{BATT}=C_{SYS}=C3=22\mu F$, C1=C2=1 μ F, L1=4.7 μ H, RS1=50m Ω , C4=C_{TMR}=0.1 μ F, Battery Simulator, unless otherwise noted.

www.MonolithicPower.com MPS Proprietary Information. Patent Protected. Unauthorized Photocopy and Duplication Prohibited. © 2016 MPS. All Rights Reserved.

TYPICAL PERFORMANCE CHARACTERISTICS

V_{IN}=5V, C_{IN}=C_{BATT}=C_{SYS}=C3=22μF, C1=C2=1μF, L1=2.2μH, RS1=50mΩ, C4=C_{TMR}=0.1μF, Battery Simulator, unless otherwise noted.

Auto Recharge V_{BATT_FULL} = 4.2V CHGOK 2V/div.

VIN

1V/div.

I_{CHG} 1A/div.

Battery Float Steady State $V_{BATT_FULL} = 4.2V$

TC Charge Steady State $V_{BATT_FULL} = 4.2V, V_{BATT} = 2V,$ $F_{SW} = 600 \text{kHz}$

CC Charge Steady State

2s/div.

 $V_{BATT_FULL} = 4.2V, V_{BATT} = 3.7V,$ $F_{SW} = 600kHz$

CV Charge Steady State

 $V_{BATT_FULL} = 4.2V, V_{BATT} = 4.2V,$ $F_{SW} = 600 \text{kHz}$

1µs/div.

Constant Voltage Charge Efficiency

MP2633 Rev. 1.08 4/27/2016

www.MonolithicPower.com MPS Proprietary Information. Patent Protected. Unauthorized Photocopy and Duplication Prohibited. © 2016 MPS. All Rights Reserved.

TYPICAL PERFORMANCE CHARACTERISTICS (continued)

 V_{IN} =5V, C_{IN} = C_{BATT} = C_{SYS} =C3=22 μ F, C1=C2=1 μ F, L1=2.2 μ H, RS1=50m Ω , C4= C_{TMR} =0.1 μ F, Battery Simulator, unless otherwise noted.

Input Current Limit

Input Over Voltage Protection

 V_{IN} =5V to 12V, $R_{SYS LOAD}$ =25 Ω , Battery Float, Enabled Charge

En Off, Charge Mode

V_{BATT FULL}=4.2V, V_{BATT}=3.7V, I_{CHG}=1.5A

V_{EN} 5V/div.

System Short Protection $V_{BATT_FULL} = 4.2 \text{V}, \ V_{BATT} = 2 \text{V}, \\ F_{SW} = \overline{600 \text{kHz}}$

Input Voltage Clamp @ 4.75V Charge Mode

www.MonolithicPower.com MPS Proprietary Information. Patent Protected. Unauthorized Photocopy and Duplication Prohibited. © 2016 MPS. All Rights Reserved.

TYPICAL PERFORMANCE CHARACTERISTICS (continued)

 V_{IN} =5V, C_{IN} = C_{BATT} = C_{SYS} =C3=22 μ F, C1=C2=1 μ F, L1=2.2 μ H, RS1=50m Ω , C4= C_{TMR} =0.1 μ F, Battery Simulator, unless otherwise noted.

TYPICAL PERFORMANCE CHARACTERISTICS (continued)

 V_{IN} =5V, C_{IN} = C_{BATT} = C_{SYS} =C3=22 μ F, C1=C2=1 μ F, L1=2.2 μ H, RS1=50m Ω , C4= C_{TMR} =0.1 μ F, Battery Simulator, unless otherwise noted.

PIN FUNCTIONS

Pin #	Name	Description
1	FREQ	Connect to GND to program the operating frequency to 600kHz. Leave floating or connect to HIGH to program the operating frequency to 1.2MHz.
2	VIN	Adapter Input. Place a bypass capacitor close to this pin to prevent large input voltage spikes.
3	VCC	Internal Circuit Power Supply. Bypass to GND with a 100nF ceramic capacitor. This pin can not carry external load higher than 5mA.
4	ILIM	Input Current Set. Connect to GND with an external resistor to program input current limit in charge mode.
5	PWIN	AC Input Detect. Detect the presence of valid input power.
6	TMR	Oscillator Period Timer. Connect a timing capacitor between this pin and GND to set the oscillator period. Short to GND to disable the Timer function.
7	REG	Input Voltage Feedback for input voltage regulation loop. Connect to tap of an external resistor divider from VIN to GND to program the input voltage regulation. Once the voltage at REG pin drops to the inner threshold, the charge current is reduced to maintain the input voltage at the regulation value.
8	ACOK	Valid Input Supply Indicator. Logic LOW indicates the presence of a valid power supply.
9	FB	System Voltage Feedback.
10	NTC	Negative Temperature Coefficient (NTC) Thermistor.
11	ISET	Charge Current Set. Connect an external resistor to GND to program the charge current.
12	OLIM	Boost-Output-Current Limit Set. Connect an external resistor to GND to program the system current in boost mode.
13	AGND	Analog Ground
14	VB	Programmable Battery-Full Voltage. Connect to GND for 3.6V. Leave floating or connect to logic HIGH for 4.2V.
15	BATT	Positive Battery Terminal / Battery Charge Current Sense Negative Input.
16	CSP	Battery Charge Current Sense, Positive Input.
17	BOOST	Boost Mode Indicator. Logic LOW indicates boost mode in operation. This pin becomes an open drain when the part operates in charge mode or sleep mode.
18	CHG	Charge Completion indicator. Logic LOW indicates charge mode. The pin becomes an open drain once the charging has completed or is suspended.
19	PGND, Exposed Pad	Power Ground. Connect the exposed pad and GND pin to the same ground plane.
20	SW	Switch Output Node.
21, 22	SYS	System Output. Please make sure the enough bulk capacitors from SYS to GND. Suggest 4.7uF at least.
23	MODE	Mode Select. Logic HIGH \rightarrow boost mode. Logic LOW \rightarrow sleep mode. Active only when \overline{ACOK} is HIGH (input power is not available).
24		Charge Control Input. Logic HIGH enables charging. Logic LOW disables charging. Active only
24	EN	when ACOK is low (input power is OK)

Figure 1: Functional Block Diagram in Charge Mode

Figure 2: Functional Block Diagram in Boost Mode

OPERATION FLOW CHART

Figure 3: Mode Selection Flow Chart

OPERATION FLOW CHART (continued)

OPERATION FLOW CHART (continued)

OPERATION FLOW CHART (continued)

Figure 6: Operation Flow Chart in Boost Mode

START UP TIME FLOW IN CHARGE MODE

Condition: EN = 5V, Mode = 0V, /ACOK and /CHG are always pulled up to an external constant 5V

START UP TIME FLOW IN CHARGE MODE

Condition: V_{IN} = 5V, Mode = 0V, /ACOK and /CHG are always pulled up to an external constant 5V.

START UP TIME FLOW IN BOOST MODE

Condition: V_{IN} = 0V, Mode = 5V, /Boost is always pulled up to an external constant 5V.

Figure 9: Battery Power Start-Up Time Flow in Boost Mode

START UP TIME FLOW IN BOOST MODE

Condition: $V_{IN} = 0V$, /Boost is always pulled up to an external constant 5V.

Figure 10: Mode Start-Up Time Flow in Boost Mode

OPERATION INTRODUCTION

The MP2633 is a highly-integrated, synchronous, switching charger with bi-directional operation for a boost function that can step-up the battery voltage to power the system. Depending on the VIN value, it operates in one of three modes: charge mode, boost mode and sleep mode. In charge mode, the MP2633 supports a precision Li-ion or Li-polymer charging system for singlecell applications. In boost mode, MP2633 boosts the battery voltage to V_{SYS} to power highervoltage systems. In sleep mode, the MP2633 stops charging or boosting and operates at a low current from the input or the battery to reduce power consumption when the IC isn't operating. The MP2633 monitors VIN to allow smooth transition between different modes of operation.

CHARGE MODE OPERATION

Charge Cycle (Trickle Charge \rightarrow CC Charge \rightarrow CV Charge)

In charge mode, the MP2633 has five control loops to regulate the input current, input voltage, charge current, charge voltage, and device junction temperature. It charges the battery in three phases: trickle current (TC), constant current (CC), and constant voltage (CV). While charging, all four loops are active but only one determines the IC behavior. Figure 11(a) shows a typical battery charge profile. The charger stays in TC charge mode until the battery voltage reaches a TC-to-CC threshold. Otherwise the charger enters CC charge mode. When the battery voltage rises to the CV-mode threshold, the charger operates in constant voltage mode. Figure 11 (b) shows a typical charge profile when the input-current-limit loop dominates during the CC charge mode, and in this case the charge current exceeds the input current, resulting in faster charging than a traditional linear solution that is well-suited for USB applications.

Auto-Recharge

Once the battery charge cycle completes, the charger remains off. During this process, the system load may consume battery power, or the battery may self discharge. To ensure that the

battery will not go into depletion, a new charge cycle automatically begins when the battery

Figure 11: Typical Battery Charginge Profile voltage falls below the auto-recharge threshold and the input power is present. The timer resets when the auto-recharge cycle begins.

During the off state after the battery is fully charged, if the input power re-starts or the EN signal refreshes, the charge cycle will start and the timer will reset no matter what the battery voltage is.

Battery Over-Voltage Protection

The MP2633 has battery over-voltage protection. If the battery voltage exceeds the battery overvoltage threshold, (103.3% of the battery-full voltage), charging is disabled. Under this condition, an internal current source draws a current from the BATT pin to decrease the battery voltage and protect the battery.

Timer Operation in Charge Mode

The MP2633 uses an internal timer to terminate the charging. The timer remains active during the charging process. An external capacitor between TMR and GND programs the charge cycle duration.

If charging remains in TC mode beyond the trickle-charge time τ_{TOTAL_TMR} , charging will terminate. The following determines the length of the trickle-charge period:

$$\tau_{\text{TRICKLE}_\text{TMR}} = 60 \text{mins} \times \frac{C_{\text{TMR}}(\mu F)}{0.1 \mu F} \times \frac{1A}{I_{\text{CHG}}(A)} \text{ (1)}$$

The maximum total charge time is:

$$\tau_{\text{TOTAL}_{\text{TMR}}} = 6 Hours \times \frac{C_{\text{TMR}}(\mu F)}{0.1 \mu F} \times \frac{1A}{I_{\text{CHG}}(A)}$$
 (2)

Negative Temperature Coefficient (NTC) Input for Battery Temperature Monitoring

The MP2633 has a built-in NTC resistance window comparator, which allows the MP2633 to monitor the battery temperature via the battery-integrated thermistor. Connect an appropriate resistor from V_{SYS} to the NTC pin and connect the thermistor from the NTC pin to GND. The resistor divider determines the NTC voltage depending on the battery temperature. If the NTC voltage falls outside of the NTC window, the MP2633 stops charging. The charger will then restart if the temperature goes back into NTC window range.

Input-Current Limiting in Charge Mode

The MP2633 has a dedicated pin that programs the input-current limit. The current at ILIM is a fraction of the input current; the voltage at ILIM indicates the average input current of the switching regulator as determined by the resistor value between ILIM and GND. As the input current approaches the programmed input current limit, charge current is reduced to allow priority to system power.

Use the following equation to determine the input current limit threshold,

$$I_{\text{ILIM}} = \frac{40.5(k\Omega)}{R_{\text{ILIM}}(k\Omega)} (A)$$
(3)

Input Over-Current Protection

The MP2633 features input over-current protection (OCP): when the input current exceeds 3A, Q2 is controlled linearly to regulate the current. If the current still exceeds 3A after a 120µs blanking time, Q2 will turn off. A fast off function turns off Q2 quickly when the input current exceeds 7A to protect both Q1 and Q2.

Input Voltage Regulation in Charge Mode

In charge mode, if the input power source is not sufficient to support both the charge current and system load current, the input voltage will decrease. As the input voltage approaches the programmed input voltage regulation value, charge current is reduced to allow priority of system power and maintain the input voltage avoid dropping further.

The input voltage can be regulated by a resistor divider from VIN pin to REG pin to AGND according to the following expression:

$$V_{IN_R} = V_{REG} \times \frac{R3 + R5}{R5}$$
(4)

Where: the VREG is the internal voltage reference, 1.2V.

Setting the Charge Current

The external sense resistors, RS1 and R_{ISET} , program the battery charge current, I_{CHG} . Select R_{ISET} based on RS1:

$$I_{CHG}(A) = \frac{70(k\Omega)}{R_{ISET}(k\Omega)} \times \frac{40(mV)}{RS1(m\Omega)}$$
(5)

Where: the 40mV is the charge current limit reference.

Battery Short Protection

The MP2633 has two current limit thresholds. CC and CV modes have a peak current limit threshold of 3A, while TC mode has a current limit threshold of 1.5A. Therefore, the current limit threshold decreases to 1.5A when the battery voltage drops below the TC threshold. Moreover, the switching frequency also decreases when the BATT voltage drops to 40% of the charge-full voltage.

Thermal Foldback Function

The MP2633 implements thermal protection to prevent thermal damage to the IC and the surrounding components. An internal thermal sense and feedback loop automatically decreases the programmed charge current when the die temperature reaches 120°C. This function is called the charge-current-thermal foldback. Not only does this function protect against thermal damage, it can also set the charge current based

on requirements rather than worst-case conditions while ensuring safe operation. Furthermore, the part includes thermal shutdown protection where the ceases charging if the junction temperature rises to 150°C.

Fully Operation Indication

The MP2633 integrates indicators for the following conditions as shown in Table 2.

Operation		ACOK	CHG	BOOST	
	Charging		Low		
Charge Mode	End of Charge, charging disabled	Low	High	High	
	NTC Fault, Timer Out		Blinking		
Boost Mode		High	High	Low	
Sleep Mode, VCC absent		High	High	High	

Table 2: Indicator for Each Operation Mode

BOOST MODE OPERATION

Low-Voltage Start-Up

The minimum battery voltage required to start up the circuit in boost mode is 2.9V. Initially, when $V_{SYS} < V_{BATT}$, the MP2633 works in down mode. In this mode, the synchronous P-MOSFET stops switching and its gate connects to V_{BATT} statically. The P_MOSFET keeps off as long as the voltage across the parasitic C_{DS} (V_{SW}) is lower than V_{BATT} . When the voltage across C_{DS} exceeds V_{BATT} , the synchronous P-MOSFET enters a linear mode allowing the inductor current to decrease and flowing into the SYS pin. Once V_{SYS} exceeds V_{BATT} , the P-MOSFET gate is released and normal closed-loop PWM operation is initiated. In boost mode, the battery voltage can drop to as low as 2.5V without affecting circuit operation.

SYS Disconnect and Inrush Limiting

The MP2633 allows for true output disconnect by eliminating body diode conduction of the internal P-MOSFET rectifier. V_{SYS} can go to 0V during shutdown, drawing no current from the input source. It also allows for inrush current limiting at start-up, minimizing surge currents from the input supply. To optimize the benefits of output disconnect, avoid connecting an external Schottky diode between the SW and SYS pins.

Board layout is extremely critical to minimize voltage overshoot at the SW pin due to stray inductance. Keep the output filter capacitor as close as possible to the SYS pin and use very low ESR/ESL ceramic capacitors tied to a good ground plane.

Boost Output Voltage

In the boost mode, the MP2633 programs the output voltage via the external resistor divider at FB pin, and provides built-in output over-voltage protection (OVP) to protect the device and other components against damage when V_{SYS} goes beyond 6V. Should output over-voltage occur, the MP2633 turns off the boost converter. Once V_{SYS} drops to a normal level, the boost converter restarts again as long as the MODE pin remains in active status.

Boost Output-Current Limiting

The MP2633 integrates a programmable output current limit function in boost mode. If the boost output current exceeds this programmable limit threshold, the output current will be limited at this level and the SYS voltage will start to drop down. The OLIM pin programs the current limit threshold up to 1.5A as per the following equation:

$$I_{OLIM}(A) = \frac{70(k\Omega)}{R_{OLIM}(k\Omega)} \times \frac{40(mV)}{RS1((m\Omega))} \times 1.7$$
 (6)

Where: the 40mV is the charge current limiting reference.

SYS Output Over Current Protection

The MP2633 integrates three-phase output overcurrent protection.

Phase one (boost mode): when the output current exceeds the output current limit, the