imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

3.0A Single Cell Switch Mode Battery Charger with Power Path Management (PPM) and 3.0A System Boost Current

DESCRIPTION

The MP2636 is a highly-integrated, flexible switch-mode battery charger with system power path management, designed for single-cell Liion or Li-Polymer batteries used in a wide range of portable applications.

The MP2636 can operate in both charge mode and boost mode to allow full system management and battery power management.

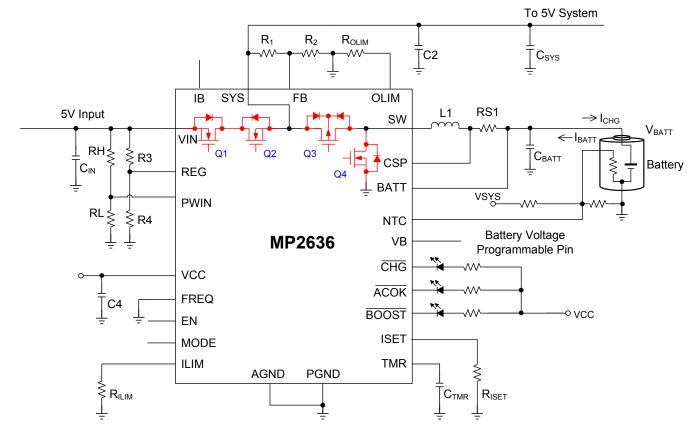
When input power is present, the device operates in charge mode. It automatically detects the battery voltage and charges the battery in three phases: trickle current, constant current and constant voltage. Other features include charge termination and auto-recharge. This device also integrates both input current limit and input voltage regulation in order to manage input power and meet the priority of the system power demand.

In the absence of an input source, the MP2636 switches to boost mode through the MODE pin to power the SYS pins from the battery. The OLIM pin programs the output current limit in boost mode. The MP2636 also allows an output short circuit protection to completely disconnect the battery from the load in the event of a short circuit fault. Normal operation will recover as soon as the short circuit fault is removed. The MP2636 provides full operating status indication to distinguish charge mode from boost mode. In addition, the MP2636 can report the real battery current in both charge and boost mode via IB pin.

The MP2636 achieves good EMI/EMC performance with well controlled switching edges.

To guarantee safe operation, the MP2636 limits the die temperature to a preset value of 120°C. Other safety features include input over-voltage protection, battery over-voltage protection, thermal shutdown, battery temperature monitoring, and a programmable timer to prevent prolonged charging of a dead battery.

FEATURES


- Up to 16V Sustainable Input Voltage
- 4.5V-to-6V Operation Voltage Range
- Power Management Function, Integrated Input-Current Limit, Input Voltage Regulation
- Up to 3.0A Programmable Charge Current
- Trickle-Charge Function
- Analog Voltage Output IB pin for Battery Current Monitor
- Selectable 4.2V / 4.3V / 4.35V Charge Voltage with 0.5% Accuracy
- Negative Temperature Coefficient Pin for Temperature Monitoring
- Programmable Timer Back-up Protection
- Thermal Regulation and Thermal Shutdown
- Internal Battery Reverse Leakage Blocking
- Integrated Over Current Protection and Over Voltage Protection for Pass-through Path
- Reverse Boost Operation Mode for System
 Power
- Up to 3.0A Programmable Output Current Limit for Boost Mode
- Integrated Short Circuit Protection and Output Over Voltage Protection for Boost Mode

APPLICATIONS

- Sub-Battery Applications
- Power-bank Applications for Smart-Phone, Tablet and Other Portable Devices

All MPS parts are lead-free and adhere to the RoHS directive. For MPS green status, please visit MPS website under Products, Quality Assurance page. "MPS" and "The Future of Analog IC Technology" are registered trademarks of Monolithic Power Systems, Inc.

TYPICAL APPLICATION

Power Source		MODE	EN	Operating		01 02	Q3	Q4
VIN	PWIN	MODE	MODE EN M		ACOK	91,92	y Y	47
V _{BATT} +300mV <v<sub>IN < 6V</v<sub>	PWIN>0.8V	x	Low	Only Pass Through Mode	Low	On	Off	Off
	1 1000		High	Charging Mode	LOW	Q1,Q2 On On Off Off Off	SW	SW
V _{IN} <v<sub>BATT+300mV</v<sub>	Х	Lligh	х	Boost Discharge	High	O#	SW	SW
X	PWIN<0.8V	High		Mode	High		300	300
X	PWIN<0.8V			SYS Force-off Mode		Off	Off	Off
V _{IN} > 6V	х	Low	X Input OVP		High	Off	Off	Off
V _{IN} <2V	Х			Sleep Mode		Off	Off	Off

Table 1: Operation Mode

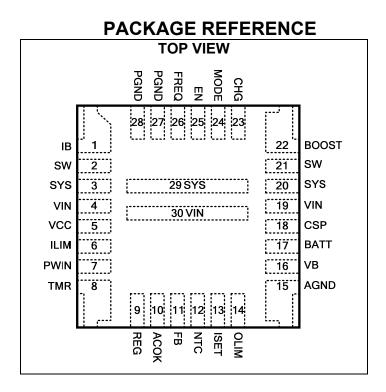
X=Don't Care.

On = Fully Turn On

Off = Fully Off

SW = Switching

ORDERING INFORMATION


Part Number	Package	Top Marking
MP2636GR	QFN-30 (4mmx4mm)	See Below

* For Tape & Reel, add suffix -Z (e.g. MP2636GR-Z)

TOP MARKING

MPSYWW MP2636 LLLLLL

MPS: MPS prefix: Y: year code; WW: week code: MP2636: part number; LLLLLL: lot number;

ABSOLUTE MAXIMUM RATINGS (1)

Recommended Operating Conditions⁽³⁾

Supply Voltage VIN	4.5V to 6V
Battery Voltage BATT	2.5V to 4.35V
Operating Junction Temp (T _J)	40°C to +125°C

Thermal Resistance $^{(4)}$ θ_{JA} θ_{JC}

Notes:

- 1) Exceeding these ratings may damage the device.
- 2) The maximum allowable power dissipation is a function of the maximum junction temperature T_J (MAX), the junction-to-ambient thermal resistance θ_{JA}, and the ambient temperature T_A. The maximum allowable continuous power dissipation at any ambient temperature is calculated by P_D (MAX) = (T_J (MAX)-T_A)/θ_{JA}. Exceeding the maximum allowable power dissipation will cause excessive die temperature, and the regulator will go into thermal shutdown. Internal thermal shutdown circuitry protects the device from permanent damage.
- The device is not guaranteed to function outside of its operating conditions.
- 4) Measured on JESD51-7, 4-layer PCB.

ELECTRICAL CHARACTERISTICS

┓╽═┷═

V_{IN} = 5V, T_A = +25°C, unless otherwise noted.

Parameters	Symbol	Condition	Min	Тур	Max	Units	
IN to SYS NMOS On Resistance	$R_{\text{IN to SYS}}$			30		mΩ	
High-side PMOS On Resistance	$R_{H_{DS}}$			25		mΩ	
Low-side NMOS On Resistance	R_{L_DS}			25		mΩ	
Peak Current Limit for High-side PMOS	I _{PEAK_HS}	Charger CC Mode/ Boost Mode		8		А	
		Charger TC Mode		4			
Peak Current Limit for Low-side NMOS	I _{PEAK_LS}	Boost Mode		5.5		А	
Operating Frequency	F_{SW}	FREQ=LOW		600		kHz	
VCC UVLO	V _{CC_UVLO}		2	2.2	2.4	V	
VCC UVLO Hysteresis				85		mV	
PWIN Threshold	V_{PWIN_L}		0.75	0.8	0.85	V	
PWIN Threshold Hysteresis				45		mV	
Charge Mode							
Input Quiescent Current	I _{IN}	EN=4V, BATT Float			2.5	mA	
	•111	EN=0V,			1.5	mA	
Trickle Charge Current	I _{TC}	RS1 = 20m Ω , R _{ISET} < 60k, as percentage of I _{CC}		10		%	
Minimum Trickle Charge Current	$I_{TC_{MIN}}$	RS1 = 20m Ω , R _{ISET} >= 60k		200		mA	
		Connect VB to GND	2.91	3.01	3.112		
Trickle Charge Voltage Threshold	V_{BATT_TC}	Leave VB floating	2.94	3.043	3.145	V	
		Connect VB to High Logic	2.84	2.94	3.04		
Trickle Charge Hysteresis		V _{BATT} falling		240		mV	
		RS1 = 20m Ω , R _{ISET} = 60.4k	1725	1987	2250		
Constant Charge (CC) Current	I _{CC}	RS1 = 20mΩ, R _{ISET} = 47.5k	2225	2525	2825	mA	
Termination Charge Current	I_{BF}	I _{CHG} falling		150		mA	
		Connect VB to GND	4.278	4.3	4.321		
Terminal Battery Voltage	V_{BATT_FULL}	Leave VB floating	4.328	4.35	4.371	V	
		Connect to VCC	4.179	4.2	4.221		
		Connect VB to GND	4.023	4.085	4.147		
Recharge Threshold	V_{RECH}	Leave VB floating	4.07	4.132	4.195	V	
		Connect to VCC	3.93	3.99	4.05		

ELECTRICAL CHARACTERISTICS (continued)

V_{IN} = 5V, T_A= +25°C, unless otherwise noted.

ᆋ

Parameters	Symbol	Condition	Min	Тур	Max	Units	
		Connect VB to GND		200			
Recharge Threshold Hysteresis		Leave VB floating		200		mV	
		Connect to VCC		200			
Battery Over Voltage Threshold		As percentage of VBATT_FULL		102.5		%	
Input Voltage and Input Current	Based Pov	wer Path					
Input Voltage Regulation Reference	V_{REG}		1.18	1.2	1.22	V	
		R _{ILIM} = 86.6k	380	450	500		
Input Current Limit	I _{IN_LMT}	R _{ILIM} = 51k	720	810	900	mA	
		R _{ILIM} = 13k	2940	3270	3600		
	I _{IN_OCP}	R _{ILIM} = 86.6k		593		mA	
Input Over Current Threshold		R _{ILIM} = 51k		1000		mA	
		$R_{\rm ILIM} = 13k^{(5)}$		4.09		А	
Input Over Current Shutdown Blanking Time ⁽⁵⁾	T _{INOCBLK}			120		μs	
Input Over Current Shutdown Recover Time ⁽⁵⁾	T _{INRECVR}			100		ms	
Boost Mode							
SYS Voltage Range			4.2		6	V	
Feedback Voltage			1.18	1.2	1.22	V	
Feedback Input Current		V _{FB} =1V			200	nA	
SYS Over Voltage Protection Threshold for Boost	V _{SYS(OVP)}	Threshold over V _{SYS} to turn off the converter during boost mode	5.8	6	6.2	V	
SYS Over Voltage Protection Threshold Hysteresis		V_{SYS} falling from $V_{\text{SYS}(\text{OVP})}$		125		mV	
Boost Quiescent Current		$\begin{split} I_{SYS} &= 0, V_{SYS} = 5V, \\ V_{FB} &= 2.0V, \text{MODE} = \text{high}, \\ \text{BATT} &= 4.2V \end{split}$		430	500	μA	

ELECTRICAL CHARACTERISTICS (continued)

V_{IN} = 5V, T_A = +25°C, unless otherwise noted.

╻║╼┸╼

Parameters	Symbol	Condition	Min	Тур	Max	Units	
Programmable Boost Output	louw	V _{SYS} = 5V, RS1 = 20m, R _{OLIM} = 120k	774	910	1046	mA	
Current Limit Accuracy	$I_{OLIM} = 120M$ $V_{SYS} = 5V, RS1 = 20m,$ $R_{OLIM} = 47.5k$		2088	2320	2552	ША	
SYS Over Current Blanking $Time^{^{(5)}}$	T _{SYSOCBLK}			120		μs	
	T _{SYSRECVR}			1.5		ms	
Weak Battery Threshold	V _{BATT(LOW)}	During boosting		2.5		V	
Weak Dattery Threshold	V BATT(LOW)	Before Boost starts		2.9	3.05	v	
Sleep Mode							
Battery Leakage Current	I _{BATT}	V _{BATT} =4.2V, SYS Float, V _{IN} =GND, MODE=0V			40	μA	
Indication& Logic							
ACOK, CHG, BOOST pin output low voltage		Sinking 1.5mA			450	mV	
ACOK , CHG , BOOST pin leakage current		Connected to 5V			1	uA	
NTC and Time-out Fault Blinking Frequency ⁽⁵⁾		C_{TMR} = 0.1µF, I _{CHG} = 1A		13.7		Hz	
EN, MODE Input Logic Low Voltage					0.4	V	
EN, MODE Input High Voltage			1.4			V	
FREQ Input Logic Low Voltage					0.8	V	
FREQ Input Logic High Voltage			1.8			V	
VB Input Logic Low Voltage					0.8	V	
VB Input Logic High Voltage			1.8			V	
IB Voltage Output		I _{CHG} =1A in charge mode		0.36		V	
		I _{DIS} =1A in boost mode		0.40		V	
Protection							
Trickle Charge Time		C _{TMR} =0.1µF, Stay in TC Mode, I _{CHG} = 2A		17		Mins	
Total Charge Time		С _{тмк} =0.1µF, I _{CHG} = 2.5А		140		Mins	

ELECTRICAL CHARACTERISTICS (continued)

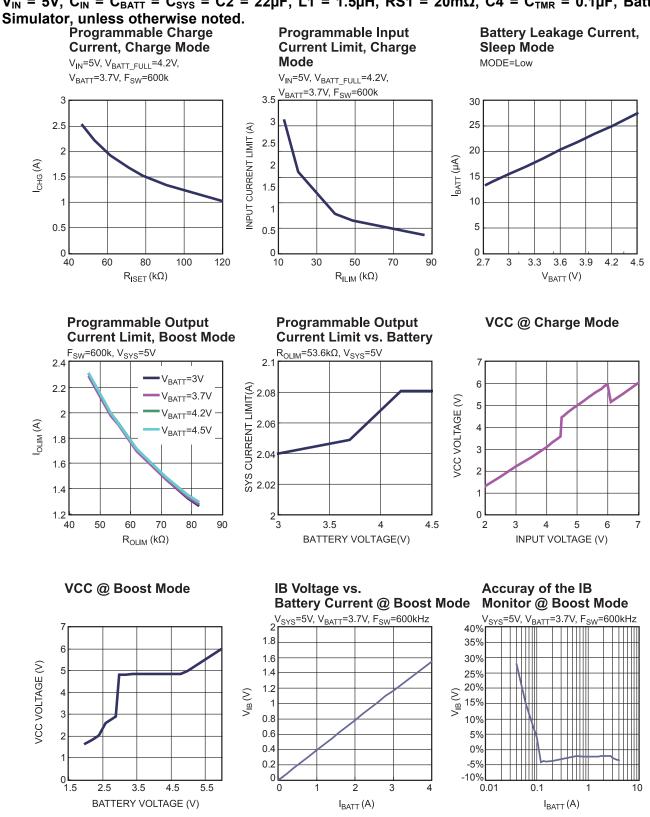
V_{IN} = 5V, T_A = +25°C, unless otherwise noted.

Parameters	Symbol	Condition	Min	Тур	Max	Units
NTC Low Temp Rising Threshold			65.6%	66.6%	67.6%	
NTC Low Temp Rising Threshold Hysteresis		R _{NTC} =NCP18XH103(0°C)		1%		V _{cc}
NTC High Temp Rising Threshold		R _{NTC} =NCP18XH103(50°C)	34%	35%	36%	V _{cc}
NTC Low Temp Rising Threshold Hysteresis				1%		v cc
Charging Current Fold-back Threshold ⁽⁵⁾		Charge Mode		120		°C
Thermal Shutdown Threshold ⁽⁵⁾				150		°C

Notes:

5) Guaranteed by Design

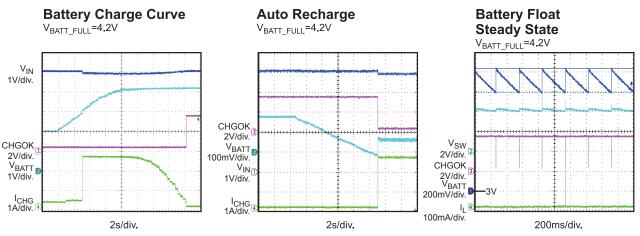
PIN FUNCTIONS

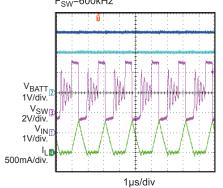

Pin #	Name	Description
1	IB	Charge Current Represent. The voltage at this pin indicates the charge current to the battery in charge mode and discharge current out of the battery in boost mode.
2, 21	SW	Switch Output Node. It is recommended not to place Via's on the SW plane during PCB layout.
3, 20, 29	SYS	System Output. A minimum of 22 μ F ceramic cap is required to be put as close as possible to the SYS and PGND pins. Total capacitance should NOT be lower than 44 μ F.
4, 19, 30	VIN	Adapter Input. Place a bypass capacitor close to this pin to prevent large voltage spikes.
5	VCC	Internal Circuit Power Supply. Bypass this pin to GND with a 100nF ceramic capacitor. This Pin CANNOT carry any external load.
6	ILIM	Input Current Set. Connect to GND with an external resistor to program input current limit in charge mode.
7	PWIN	Input pin to detect the presence of valid input power. Pulling this pin to GND will turn off the IN-to-SYS pass through MOSFET.
8	TMR	Oscillator Period Timer. Connect a timing capacitor between this pin and GND to set the oscillator period for charge timer. Short to GND to disable the Timer function.
9	REG	Input voltage feedback for the input voltage regulation loop. Connect to tap of an external resistor divider from VIN to GND to program the input voltage regulation. Once the voltage at REG pin drops to the inner threshold, the charge current is reduced to maintain the input voltage at the regulation value.
10	ACOK	Valid Input Supply Indicator. Logic LOW at this pin indicates the presence of a valid power supply.
11	FB	System Voltage Feedback Input.
12	NTC	Negative Temperature Coefficient (NTC) Thermistor
13	ISET	Charge Current Set. Connect an external resistor to GND to program the charge current.
14	OLIM	Programmable Output-Current Limit for Boost mode. Connect an external resistor to GND to program the system current in Boost mode.
15	AGND	Analog Ground
16	VB	Programmable Battery-Full Voltage. Connect to GND for 4.3V, leave floating to 4.35V, and connect to logic HIGH for 4.2V.
17	BATT	Positive Battery Terminal / Battery Charge Current Sense Negative Input.
18	CSP	Battery Charge Current Sense Positive Input.
22	BOOST	Boost operation indicator. Logic LOW indicates boost operation. The pin becomes an open drain when the part operates at charge mode or sleep mode.
23	CHG	Charging Completion Indicator. Logic LOW indicates charge mode. The pin becomes an open drain once the charging has completed or is suspended.
24	MODE	Mode Select. Logic HIGH \rightarrow boost mode. Logic LOW \rightarrow sleep mode. Active only when \overrightarrow{ACOK} is high (Input power is not available).

PIN FUNCTIONS (continued)

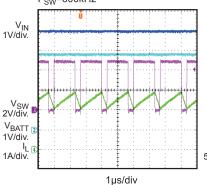
Pin #	Name	Description
25	EN	Charging Control Input. Logic HIGH enables charging. Logic LOW disables charging. Active
25		only when ACOK is low (Input power is Ok)
26	FREQ	Connect to GND to figure the operating frequency to 600kHz.
27, 28	PGND	Power Ground.

TYPICAL CHARACTERISTICS

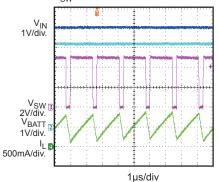

 $V_{IN} = 5V$, $C_{IN} = C_{BATT} = C_{SYS} = C2 = 22\mu F$, L1 = 1.5 μ H, RS1 = 20m Ω , C4 = $C_{TMR} = 0.1\mu$ F, Battery

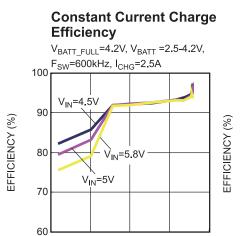

www.MonolithicPower.com MPS Proprietary Information. Patent Protected. Unauthorized Photocopy and Duplication Prohibited. © 2015 MPS. All Rights Reserved.

TYPICAL PERFORMANCE CHARACTERISTICS


 $V_{IN} = 5V$, $C_{IN} = C_{BATT} = C_{SYS} = C2 = 22\mu$ F, L1 = 1.5 μ H, RS1 = 20m Ω , C4 = $C_{TMR} = 0.1\mu$ F, Battery Simulator, Unless Otherwise Noted.

TC Charge Steady State $V_{BATT_FULL}=4.2V$, $V_{BATT}=2V$, $F_{SW}=600$ kHz



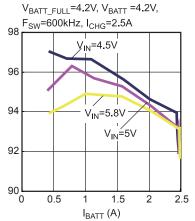


CV Charge Steady State

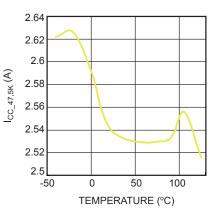
 V_{BATT_FULL} =4.2V, V_{BATT} =4.2V, F_{SW}=600kHz

3.4

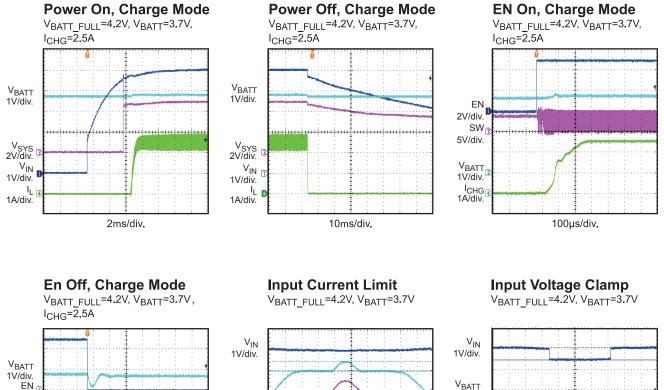
V_{BATT} (V)

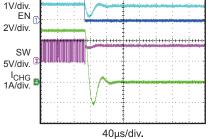

2.9

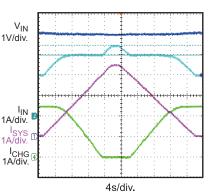
2.4

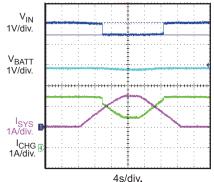

3.9

4.4

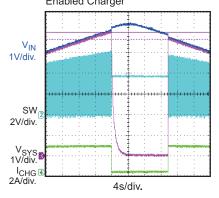

Constant Voltage Charge Efficiency

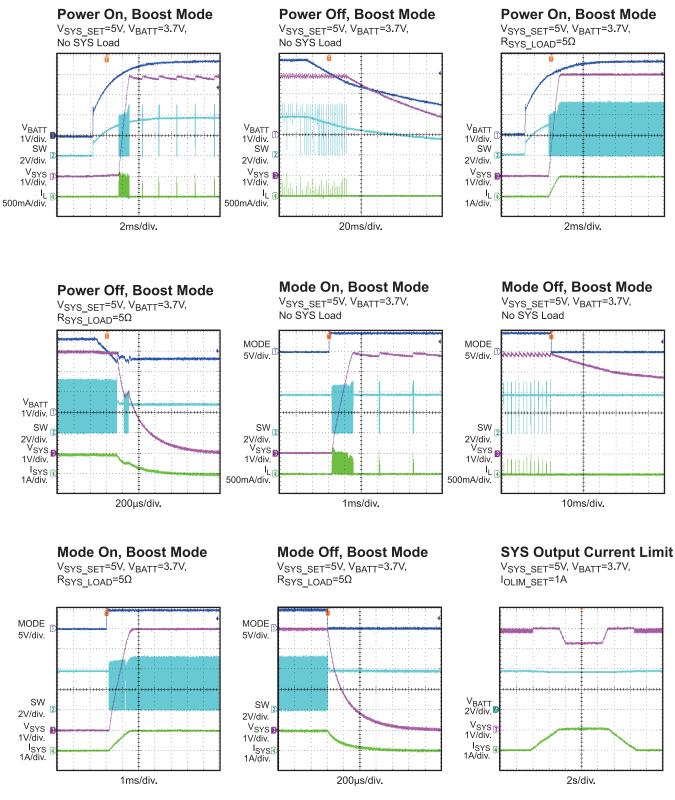



CC Charge Current vs. Temperature R_{ISET}=47.5kΩ



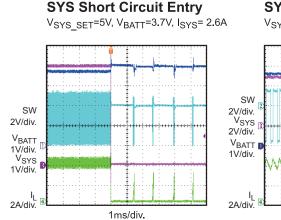
 V_{IN} = 5V, C_{IN} = C_{BATT} = C_{SYS} = C2 = 22µF, L1 = 1.5µH, RS1 = 20m Ω , C4 = C_{TMR} = 0.1µF, Battery Simulator, Unless Otherwise Noted.





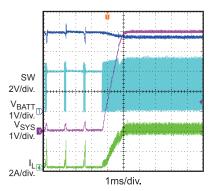
Input Over Voltage Protection

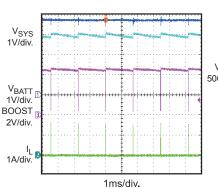
V_{IN}=5V to 6.5V, V_{BATT}=3.7V, Enabled Charger



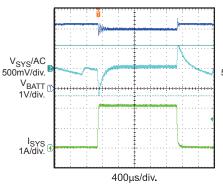
 $V_{IN} = 0V$, $V_{BATT}=3.7V$, $C_{IN} = C_{BATT} = C_{SYS} = C2 = 22\mu$ F, $L1 = 1.5\mu$ H, RS1 = $20m\Omega$, C4 = $C_{TMR} = 0.1\mu$ F, Battery Simulator, Unless Otherwise Noted.

www.MonolithicPower.com MPS Proprietary Information. Patent Protected. Unauthorized Photocopy and Duplication Prohibited. © 2015 MPS. All Rights Reserved.

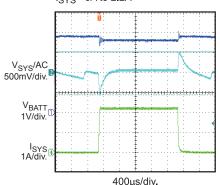

 V_{IN} = 0V, V_{BATT} =3.7V, C_{IN} = C_{BATT} = C_{SYS} = C2 = 22µF, L1 = 1.5µH, RS1 = 20m Ω , C4 = C_{TMR} = 0.1µF, Battery Simulator, Unless Otherwise Noted.

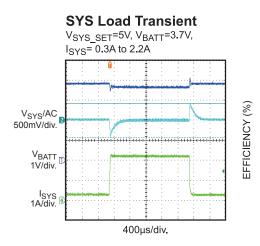

SYS Short Circuit Entry V_{SYS_SET}=5V, V_{BATT}=3.7V, I_{SYS}= 2.6A

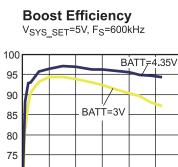
SYS Short Circuit Recovery


SYS Over Voltage Protection V_{SYS SET}=6.5V, V_{BATT}=3.7V

SYS Load Transient

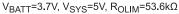

4µs/div.

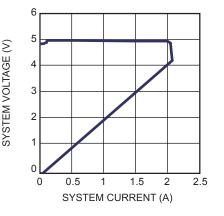

V_{SYS_SET}=5V, V_{BATT}=3V, I_{SYS}= 0A to 2.2A



SYS Load Transient

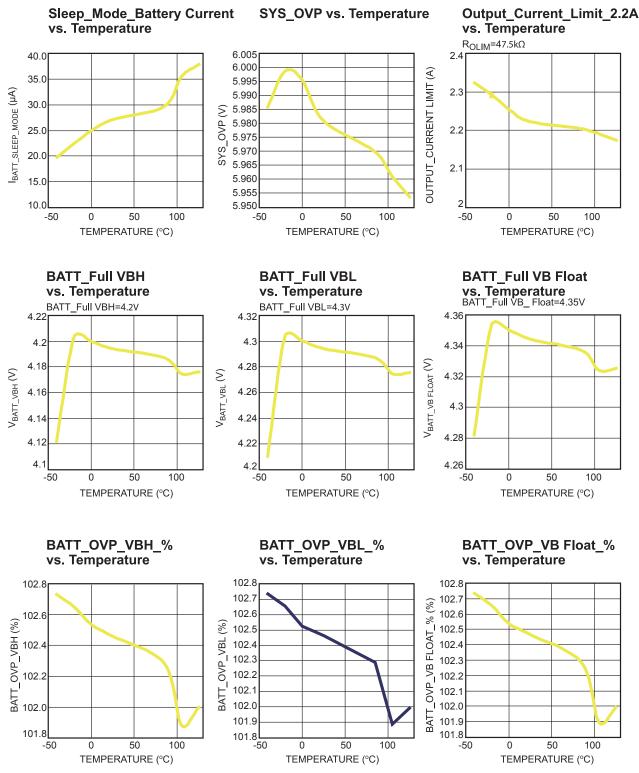
V_{SYS_SET}=5V, V_{BATT}=3.7V, I_{SYS}= 0A to 2.2A




70

65 60 0

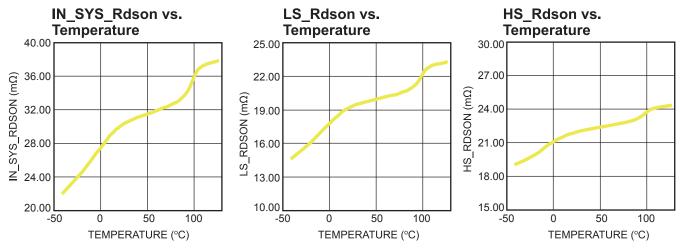
0.5 1 1.5



SYSTEM CURRENT (A)

2 2.5

3


 $V_{IN} = 5V$ (typ.), $V_{BATT}=3.7V$ (typ.), $C_{IN} = C_{BATT} = C_{SYS} = C2 = 22\mu$ F, L1 = 1.5 μ H, RS1 = 20m Ω , C4 = $C_{TMR} = 0.1\mu$ F, Battery Simulator, Unless Otherwise Noted.

www.MonolithicPower.com MPS Proprietary Information. Patent Protected. Unauthorized Photocopy and Duplication Prohibited. © 2015 MPS. All Rights Reserved.

크니크

 $V_{IN} = 5V$ (typ.), $V_{BATT}=3.7V$ (typ.), $C_{IN} = C_{BATT} = C_{SYS} = C2 = 22\mu$ F, L1 = 1.5 μ H, RS1 = 20m Ω , C4 = $C_{TMR} = 0.1\mu$ F, Battery Simulator, Unless Otherwise Noted.

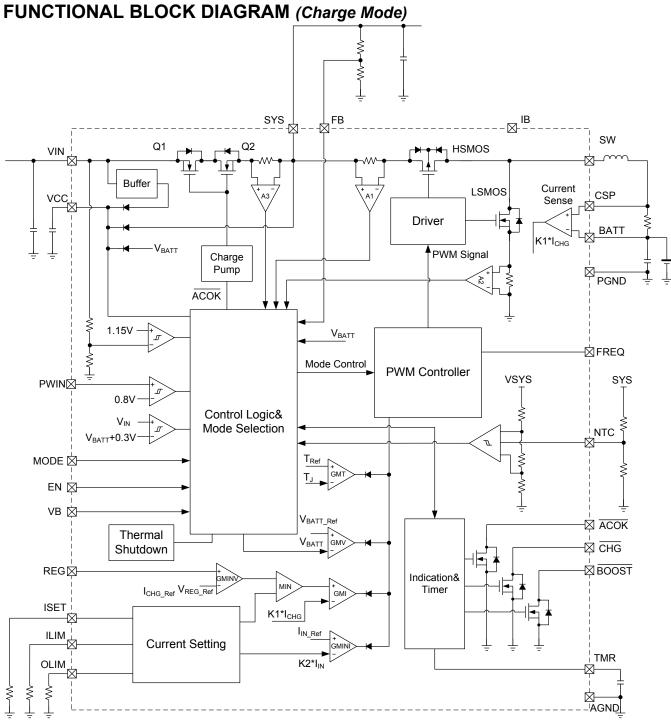


Figure 1 : Functional Block Diagram in Charger Mode

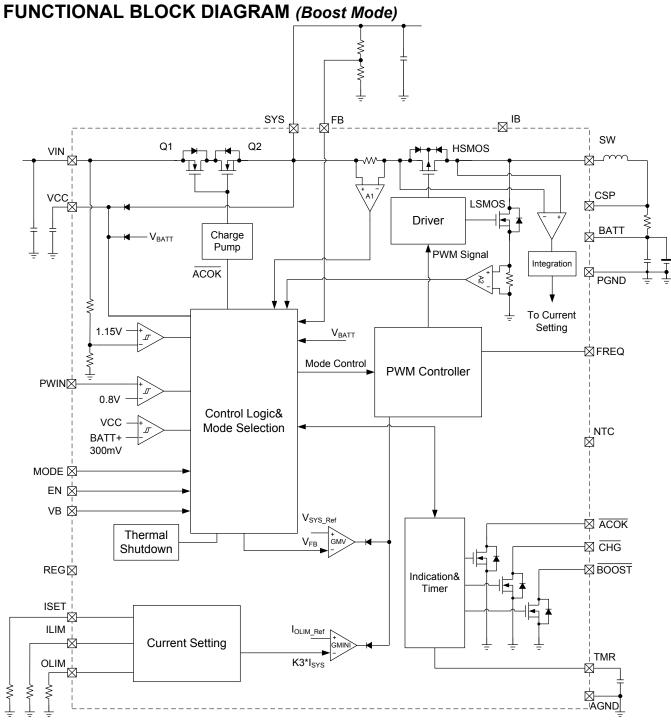


Figure 2 : Functional Block Diagram in Boost Mode

OPERATION FLOW CHART

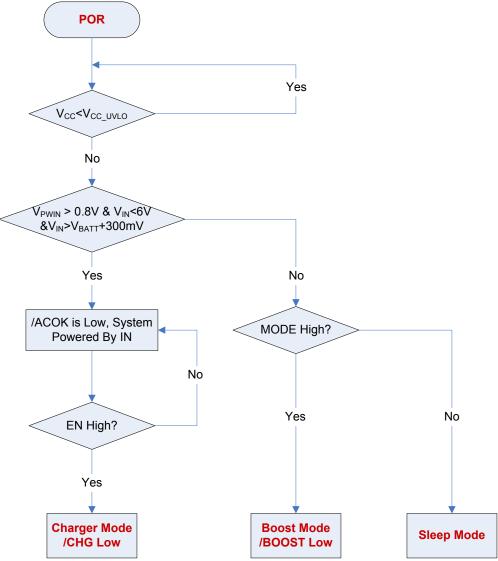
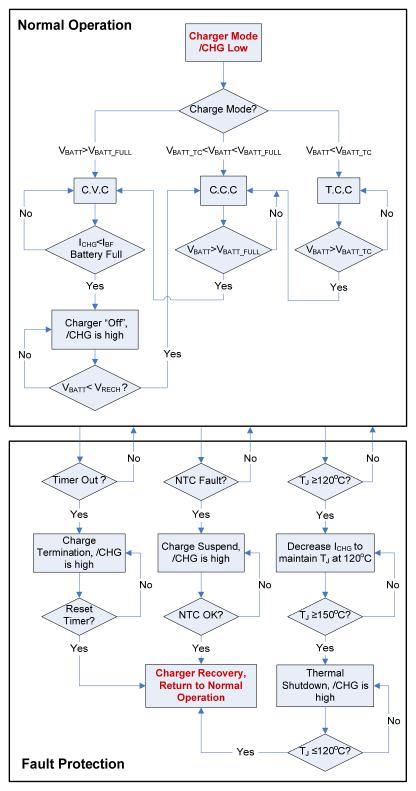
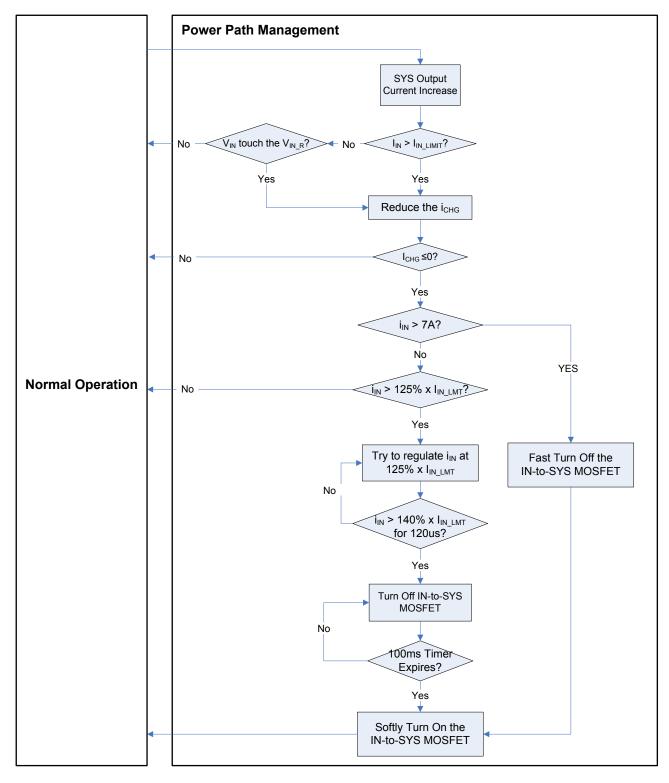



Figure 3: Mode Selection Flow Chart


OPERATION FLOW CHART (Continued)

OPERATION FLOW CHART (Continued)

OPERATION FLOW CHART (Continued)

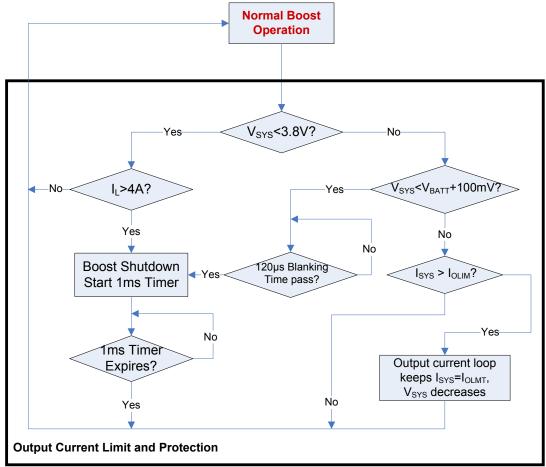
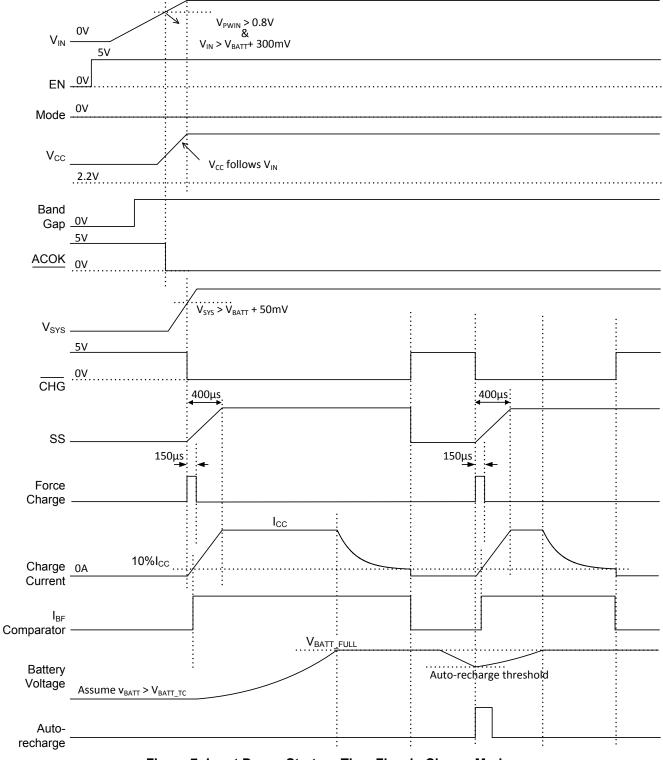
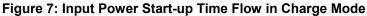




Figure 6: Operation Flow Chart in Boost Mode

START UP TIME FLOW IN CHARGE MODE

Condition: EN = 5V, Mode = 0V, /ACOK and /CHG are always pulled up to an external constant 5V

