imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

MP2637

2.5A Single Cell Switch Mode Battery Charger with Power Path Management (PPM) and 2.4A Boost Current with Trickle Timer

DESCRIPTION

The MP2637 is a highly-integrated, flexible, switch-mode battery charger with system power path management, designed for single-cell Liion or Li-Polymer batteries used in a wide range of applications.

The MP2637 can operate in both charge mode and boost mode to allow full system and battery power management.

When input power is present, the device operates in charge mode. It automatically detects the battery voltage and charges the battery in three phases: trickle current, constant current and constant voltage. Other features include charge termination and auto-recharge. This device also integrates both input current limit and input voltage regulation in order to manage input power and meet the priority of the system power demand.

In the absence of an input source, the MP2637 switches to boost mode through the MODE pin to power the SYS pins from the battery. The OLIM pin programs the output current limit in boost mode. The MP2637 also allows for output short circuit protection to completely disconnect the battery from the load in the event of a short circuit fault. Normal operation will recover as soon as the short circuit fault is removed. The MP2637 provides full operating status indication to distinguish charge mode from boost mode.

To guarantee safe operation, the MP2637 limits the die temperature to a preset value of 120°C. Other safety features include input over-voltage protection, battery over-voltage protection, thermal shutdown, battery temperature monitoring, and a programmable timer to prevent prolonged charging of a dead battery.

FEATURES

- Up to 16V Sustainable Input Voltage
- 4.5V-to-6V Operating Input Voltage Range
- Power Management function, Integrated Input-Current Limit, Input Voltage Regulation
- Up to 2.5A Programmable Charge Current
- Trickle-Charge Function
- Selectable 4.2V/ 4.35V Charge Voltage with 0.5% Accuracy
- Negative Temperature Coefficient Pin for Battery Temperature Monitoring
- Programmable Timer Back-Up Protection
- Thermal Regulation and Thermal Shutdown
- Internal Battery Reverse Leakage Blocking
- Integrated Over Voltage Protection and Over Current Protection for Pass-Through Path
- Reverse Boost Operation Mode for System
 Power
- Up to 2.4A Programmable Output Current Limit for Boost Mode
- Integrated Short Circuit Protection and Output Over Voltage Protection for Boost Mode

APPLICATIONS

- Sub-Battery Applications
- Power-Bank Applications for Smart-Phone Tablet and Other Portable Devices

All MPS parts are lead-free, halogen free, and adhere to the RoHS directive. For MPS green status, please visit MPS website under Quality Assurance. "MPS" and "The Future of Analog IC Technology" are Registered Trademarks of Monolithic Power Systems, Inc.

TYPICAL APPLICATION

*Note:

- 1. R_{OLIM} CANNOT be lower than 47.5kΩ. R_{OLIM} is for the boost output current loop setting, and please refer to the APPLICATION INFORMATION section for details.
- 2. C_{SYS} should be put as close to the SYS pin and PGND as possible. At least 22µF is recommended, and C_{SYS} +C2 should not be less than 44µF, the ceramic is preferred and E-cap is not recommended.
- 3. VCC cap should not exceed 100nF. Recommend 47nF or 100nF.
- 4. Inductor should not exceed 2.2µH. Recommend 1.5µH or 2.2µH.

Power Source		MODE	MODE EN	Operating Mode	АСОК	Q1,Q2	Q3	Q4
VIN	PWIN			mouo				
V _{IN} > V _{RATT} +300mV	0.8V <pwin<1.15v< td=""><td>х</td><td>Low</td><td>Only Pass Through Mode</td><td>Low</td><td>On</td><td>Off O</td><td>Off</td></pwin<1.15v<>	х	Low	Only Pass Through Mode	Low	On	Off O	Off
			High	Charging Mode		On	SW	SW
X	PWIN<0.8V or PWIN >1.15V	High	x	Boost Discharge	High	Off	SW	SW
V _{IN} <v<sub>BATT+300mV</v<sub>	Х	riigii	~	Mode	Tigri		011	000
X	PWIN<0.8V or PWIN >1.15V	Low	х	SYS Force-off Mode	High	Off	Off	Off
V _{IN} <2V	х	Low	Х	Sleep Mode	High	Off	Off	Off

Table 1: Operation Mode

X=Don't Care.

On = Fully Turn On

Off = Fully Off

SW = Switching

ORDERING INFORMATION

Part Number*	Package	Top Marking		
MP2637GR	QFN-24 (4mm×4mm)	See Below		

* For Tape & Reel, add suffix -Z (e.g. MP2637GR-Z);

TOP MARKING

MPSYWW MP2637 LLLLLL

MPS: MPS prefix; Y: year code; WW: week code: MP2637: first six digits of the part number; LLLLL: lot number;

PACKAGE REFERENCE

ABSOLUTE MAXIMUM RATINGS ⁽¹⁾

20V .5V
0ns)
.5V
.5V
.5V
О°С
О°С
2)
7W
О°С
Э°С

Recommended Operating Conditions ⁽³⁾

Supply Voltage V _{VIN}	4.5V to 6V
Battery Voltage VBATT	2.5V to 4.35V
Operating Junction Temp. (T	J).−40°C to +125°C

Notes:

- 1) Exceeding these ratings may damage the device.
- 2) The maximum allowable power dissipation is a function of the maximum junction temperature T_J (MAX), the junction-toambient thermal resistance θ_{JA} , and the ambient temperature T_A. The maximum allowable continuous power dissipation at any ambient temperature is calculated by P_D (MAX) = (T_J (MAX)-T_A)/ θ_{JA} . Exceeding the maximum allowable power dissipation will cause excessive die temperature, and the regulator will go into thermal shutdown. Internal thermal shutdown circuitry protects the device from permanent damage.
- The device is not guaranteed to function outside of its operating conditions.
- 4) Measured on JESD51-7, 4-layer PCB.

ELECTRICAL CHARACTERISTICS

 V_{IN} = 5.0V, T_A = 25°C, unless otherwise noted.

Parameter	Symbol	Condition	Min	Тур	Max	Units
IN to SYS NMOS ON Resistance	$R_{IN to SYS}$	VCC=5V,		65		mΩ
High-side PMOS ON Resistance	$R_{H_{DS}}$	VCC=5V,		30		mΩ
Low-side NMOS ON Resistance	$R_{L_{DS}}$	VCC=5V,		30		mΩ
High-Side PMOS Peak Current	I _{PEAK HS}	CC Charge Mode/ Boost Mode		6.5		А
		TC Charge Mode		3.2		A
Low-Side NMOS Peak Current Limit	$I_{PEAK_{LS}}$			6.3		Α
Switching Frequency*	f _{sw}		490	600	700	kHz
VCC UVLO	V_{CC_UVLO}		2	2.2	2.4	V
VCC UVLO Hysteresis				100		mV
PWIN Lower Threshold	V_{PWIN_L}		0.75	0.8	0.85	V
Lower Threshold Hysteresis				50		mV
PWIN Upper Threshold	V_{PWIN_H}		1.1	1.15	1.2	V
Upper Threshold Hysteresis				50		mV
Charge Mode		·				
lanut Quiescat Quiment		EN = 5V, Battery Float			2.5	mA
input Quiescent Current	IIN	EN = 0			1.5	mA
		$R_{ILIM} = 100k$	400	450	500	mA
Input Current Limit	I _{IN_LIMIT}	$R_{ILIM} = 56k$	720	810	900	
		R _{ILIM} = 16.5k	2400	2700	3000	
Input Over-Current Threshold	I _{IN(OCP)}			4.2		Α
Input Over-Current Blanking Time ⁽⁵⁾	TINOCBLK			120		μs
Input Over-Current Recover Time ⁽⁵⁾	TINRECVR			100		ms
		Connect VB to GND	4.328	4.35	4.372	v
Terminal Battery Voltage	V _{BATT_FULL}	Leave VB floating or connect to logic HIGH	4.179	4.2	4.221	
	V _{RECH}	Connect to VB to GND	4.09	4.15	4.21	
Recharge Threshold		Leave VB floating or connect to logic HIGH	3.95	4.01	4.07	V
Recharge Threshold Hysteresis				200		mV
Battery Over Voltage Threshold		As percentage of the VBATT_FULL		103.3%		V _{BATT_} FULL
		RS1 = $20m\Omega$, R _{ISET} = $120k$	850	1000	1150	
Constant Charge (CC) Current	I _{cc}	RS1 = $20m\Omega$, R _{ISET} = $60.4k$	1725	1987	2250	mA
		RS1 = $20m\Omega$, R _{ISET} = $47.5k$	2225	2525	2825	
Trickle Charge Current	I _{TC}		125	250		mA

* Reserve 1200kHz Option

ELECTRICAL CHARACTERISTICS (continued) $V_{IN} = 5.0V$, $T_A = 25^{\circ}C$, unless otherwise noted.

Parameter	Symbol	Condition	Min	Тур	Max	Units
	V _{BATT_TC}	Connect to VB to GND	3.0	3.1	3.2	
Trickle Charge Voltage Threshold		Leave VB floating or connect to high logic	2.9	3	3.1	V
Trickle Charge Hysteresis				200		mV
Termination Charge Current	1	RS1 = 20m Ω , R _{ISET} =60.4k	2.5%	10%	17.5%	I _{CC}
Termination Charge Current	IBF	RS1 = 20m Ω , R _{ISET} =47.5k	2.5%	10%	17.5%	I _{CC}
Input-Voltage-Regulation Reference	V_{REG}		1.18	1.2	1.22	V
Boost Mode				-		
SYS Voltage Range			4.2		6	V
Feedback Voltage			1.18	1.2	1.22	V
Feedback Input Current		V _{FB} =1V			200	nA
Boost SYS Over-Voltage Protection Threshold	V _{SYS(OVP})	Threshold over V_{SYS} to turn off the converter during boost mode	5.6	5.75	5.9	v
SYS Over Voltage Protection Threshold Hysteresis		V_{SYS} falling from $V_{\text{SYS}(\text{OVP})}$		125		mV
Boost Quiescent Current		$I_{SYS} = 0$, MODE = 5V			1.4	mA
Programmable Boost Output	I _{OLIM}	$\begin{array}{l} \text{RS1} = 20\text{m}\Omega, \ \text{R}_{\text{OLIM}} = \\ \text{57.6k} \end{array}$	1.875	2.083	2.290	А
Current Limit Accuracy		$RS1 = 20m\Omega, R_{OLIM} = 51k$	2.1			
SYS Over-Current Blanking Time ⁽⁵⁾	T _{SYSOCBLK}			120		μs
SYS Over-Current Recover Time ⁽⁵⁾	T _{SYSRECVR}			1		ms
Week Detters Threehold	V _{BATT(LOW)}	During boosting		2.5		V
Weak-Ballery Threshold		Before Boost starts		2.9	3.05	V
Sleep Mode	Sleep Mode					
Battery Leakage Current	I _{LEAKAGE}	$V_{BATT} = 4.2V$, SYS Float, $V_{IN} = 0V$, MODE = 0V		15	30	μA
Indication and Logic				-	-	
ACOK, CHG, BOOST pin output low voltage		Sinking 1.5mA			400	mV
ACOK, CHG, BOOST pin leakage current		Connected to 5V			1	μA
NTC and Time-out Fault Blinking Frequency ⁽⁵⁾		C_{TMR} = 0.1µF, I _{CHG} = 1A		12.5		Hz
EN Input Logic Low Voltage					0.4	V
EN Input High Voltage			1.4			V
Mode Input Logic Low Voltage					0.4	V
Mode Input Logic High Voltage			1.4			V

ELECTRICAL CHARACTERISTICS (continued) $V_{IN} = 5.0V$, $T_A = 25^{\circ}C$, unless otherwise noted.

Parameter	Symbol	Condition	Min	Тур	Max	Units
Protection						
Trickle Charge Time		$C_{\text{TMR}}{=}0.1 \mu F,$ remains in TC Mode, $I_{\text{TC}}{=}$ 100mA test mode		26		Min
Total Charge Time		C_{TMR} =0.1 μ F, I_{CHG} = 1A		336		Min
NTC Low Temp, Rising Threshold			65.6%	66.6%	67.6%	
NTC Low Temp, Rising Threshold Hysteresis	R _{NTC} =NCP18XH103(0ºC)			1%		
NTC High Temp, Rising Threshold			34%	35%	36%	V_{SYS}
NTC High Temp, Rising Threshold Hysteresis		$n_{\text{NTC}} = n_{\text{CF}} r_{0} + r_{0}$		1%		
Charging Current Foldback Threshold ⁽⁵⁾		Charge Mode		120		°C
Thermal Shutdown Threshold ⁽⁵⁾				150		°C

Notes:

5) Guaranteed by design.

TYPICAL CHARACTERISTICS

 $C_{IN} = C_{BATT} = C_{SYS} = C2 = 22\mu F$, $L1 = 2.2\mu H$, $RS1 = 20m\Omega$, $C4 = C_{TMR} = 0.1\mu F$, Battery Simulator, unless otherwise noted.

www.MonolithicPower.com MPS Proprietary Information. Patent Protected. Unauthorized Photocopy and Duplication Prohibited. © 2017 MPS. All Rights Reserved.

TYPICAL CHARACTERISTICS (continued)

 $C_{IN} = C_{BATT} = C_{SYS} = C2 = 22\mu F$, $L1 = 2.2\mu H$, $RS1 = 20m\Omega$, $C4 = C_{TMR} = 0.1\mu F$, Battery Simulator, unless otherwise noted.

LS_Rdson vs. Temperature

HS_Rdson vs. Temperature

www.MonolithicPower.com

MPS Proprietary Information. Patent Protected. Unauthorized Photocopy and Duplication Prohibited. © 2017 MPS. All Rights Reserved.

TYPICAL PERFORMANCE CHARACTERISTICS

 $\begin{array}{ll} \mbox{For Charge Mode:} & V_{\text{IN}}=5V, \mbox{ } I_{\text{CHG}}=2.5A, \mbox{ } L_{\text{IN}_\text{LIM}}=2.7A, \mbox{ } I_{\text{SYS}}=0A \\ \mbox{For Boost Mode:} & V_{\text{BATT}}=3.7V, \mbox{ } V_{\text{SYS}_\text{SET}}=5V, \mbox{ } I_{\text{OLIM}}=2.1A \\ \mbox{ } C_{\text{IN}}=C_{\text{BATT}}=C_{\text{SYS}}=C2=22\mu\text{F}, \mbox{ } L1=2.2\mu\text{H}, \mbox{ } RS1=20m\Omega, \mbox{ } C4=C_{\text{TMR}}=0.1\mu\text{F}, \mbox{ } Battery \mbox{ } Simulator, \mbox{ } unless \mbox{ } otherwise \mbox{ } noted. \end{array}$

MP2637 Rev. 1.04 8/3/2017

60

2.8 3 3.2 3.4 3.6 3.8

V_{BATT} (V)

www.MonolithicPower.com MPS Proprietary Information. Patent Protected. Unauthorized Photocopy and Duplication Prohibited. © 2017 MPS. All Rights Reserved.

IBATT (A)

90

0 0.5 1 1.5 2 2.5 3

4 4.2 4.4

V_{IN}=5.4V

TYPICAL PERFORMANCE CHARACTERISTICS (continued)

 $\begin{array}{ll} \mbox{For Charge Mode:} & V_{IN}=5V, \ I_{CHG}=2.5A, \ L_{IN_LIM}=2.7A, \ I_{SYS}=0A \\ \mbox{For Boost Mode:} & V_{BATT}=3.7V, \ V_{SYS_SET}=5V, \ I_{OLIM}=2.1A \\ \ C_{IN}=C_{BATT}=C_{SYS}=C2=22\mu F, \ L1=2.2\mu H, \ RS1=20m\Omega, \ C4=C_{TMR}=0.1\mu F, \ Battery \ Simulator, \ unless \ otherwise \ noted. \end{array}$

TYPICAL PERFORMANCE CHARACTERISTICS (continued)

 $\begin{array}{ll} \mbox{For Charge Mode:} & V_{IN}=5V, \ I_{CHG}=2.5A, \ L_{IN_LIM}=2.7A, \ I_{SYS}=0A \\ \mbox{For Boost Mode:} & V_{BATT}=3.7V, \ V_{SYS_SET}=5V, \ I_{OLIM}=2.1A \\ \ C_{IN}=C_{BATT}=C_{SYS}=C2=22\mu F, \ L1=2.2\mu H, \ RS1=20m\Omega, \ C4=C_{TMR}=0.1\mu F, \ Battery \ Simulator, \ unless \ otherwise \ noted. \end{array}$

www.MonolithicPower.com MPS Proprietary Information. Patent Protected. Unauthorized Photocopy and Duplication Prohibited. © 2017 MPS. All Rights Reserved.

TYPICAL PERFORMANCE CHARACTERISTICS (continued)

 $\begin{array}{ll} \mbox{For Charge Mode:} & V_{IN} = 5V, \ I_{CHG} = 2.5A, \ L_{IN_LIM} = 2.7A, \ I_{SYS} = 0A \\ \mbox{For Boost Mode:} & V_{BATT} = 3.7V, \ V_{SYS_SET} = 5V, \ I_{OLIM} = 2.1A \\ \ C_{IN} = C_{BATT} = C_{SYS} = C2 = 22 \mu F, \ L1 = 2.2 \mu H, \ RS1 = 20 m \Omega, \ C4 = C_{TMR} = 0.1 \mu F, \ Battery \ Simulator, \ unless \ otherwise \ noted. \end{array}$

MP2637 Rev. 1.04 8/3/2017 www.MonolithicPower.com

MPS Proprietary Information. Patent Protected. Unauthorized Photocopy and Duplication Prohibited. © 2017 MPS. All Rights Reserved.

PIN FUCTIONS

Pin #	Name	Description
1, 23, 24	PGND	Power Ground.
0		Charge Completion Indicator. Logic LOW indicates charge mode. This is an open drain
- CHG		pin during charge complete or suspended
2	DOODT	Boost Mode indicator. Logic LOW indicates boost mode in operation. This is an open
3	BOOST	drain pin during charge mode or sleep mode operation.
4	CSP	Battery Charge Current Sense Positive Input.
5	BATT	Positive Battery Terminal / Battery Charge Current Sense Negative Input.
6	AGND	Analog Ground
7		Programmable Output-Current Limit for boost mode. Connect an external resistor to GND
1	OLIM	to program the system current in boost mode. The R_{OLIM} CANNOT be lower than 47.5k Ω .
0	ISET	Programmable Charge Current Pin. Connect an external resistor to GND to program the
0	1311	charge current.
9	NTC	Negative Temperature Coefficient (NTC) Thermistor.
10	FB	System voltage feedback input.
11	ACOK	Valid Input Supply Indicator. Logic LOW on this pin indicates the presence of a valid
	ACOK	power supply.
		Input Voltage Feedback for input voltage regulation loop. Connect to tap of an external
12	BEG	resistor divider from VIN to GND to program the input voltage regulation. Once the voltage
	nea	at REG pin drops to the inner threshold, the charge current is reduced to maintain the
		input voltage at the regulation value.
13	TMR	Oscillator Period Timer. Connect a timing capacitor between this pin and GND to set the
		oscillator period. Short to GND to disable the Timer function.
14	PWIN	Input pin to detect the presence of valid input power. Pulling this pin to GND will turn off
		the IN-to-SYS pass through MOSFET
15	ILIM	input Current Set. Connect to GND with an external resistor to program input current limit
		In charge mode.
16	VCC	then 100nE. This pin CANNOT earry external lead higher than 5mA
-		Programmable Battery Full Veltage Leave fleating or connect to logic HIGH for 4.2V
17	VB	while connect to GND for 4.35V
		Charge Control Input Logic HIGH enables charging Logic LOW disables charging Active
18	EN	
		only when ACOK is low (input power is OK).
10	MODE	Mode Select. Logic HIGH→boost mode. Logic LOW→sleep mode. Active only when
19	MODE	\overline{ACOK} is HIGH (input nower is not available)
		Adapter Input Place a bypass capacitor close to this pin to prevent large input voltage
20	VIN	snikes
	SYS	System Output: A minimum of 22uE ceramic cap is required to be placed as close as
21		possible to the SYS and PGND pins. Total capacitance should not be lower than 44uF
		Switch Output Node It is recommended not to place Via's on the SW plane during PCR
22	SW	lavout

BLOCK DIAGRAM

Figure 1: Functional Block Diagram in Charge Mode

Figure 2: Functional Block Diagram in Boost Mode

OPERATION FLOW CHART

Figure 3: Mode Selection Flow Chart

OPERATION FLOW CHART (continued)

OPERATION FLOW CHART (continued)

OPERATION FLOW CHART (continued)

Figure 6: Operation Flow Chart in Boost Mode

START UP TIME FLOW IN CHARGE MODE

Condition: EN = 5V, Mode = 0V, /ACOK and /CHG are always pulled up to an external 5V.

START UP TIME FLOW IN CHARGE MODE

Condition: EN = 5V, Mode = 0V, /ACOK and /CHG are always pulled up to an external 5V.

START UP TIME FLOW IN BOOST MODE

Condition: $V_{IN} = 0V$, Mode = 5V, /Boost is always pulled up to an external constant 5V.

Figure 9: Battery Power Start-Up Time Flow in Boost Mode

START UP TIME FLOW IN BOOST MODE

Condition: $V_{IN} = 0V$, /Boost is always pulled up to an external constant 5V.

Figure 10: Mode Start-Up Time Flow in Boost Mode