: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

MP2735/MP2736 Low-Voltage 0.45 Ω Dual SPDT Analog Switches

The Future of Analog IC Technology

GENERAL DESCRIPTION

The MP2735/MP2736 are low voltage, low onresistance, dual single-pole, double-throw (SPDT) monolithic CMOS analog switches designed for high performance switching of analog signals. Combining low-power, high speed, low on-resistance, and small package size, the MP2735/MP2736 are ideal for portable and battery power applications.

The MP2735/MP2736 have an operation range from 1.65 V to 5.5 V single supply. The MP2735 has two separate control pins and two separate SPDT switches. The MP2736 includes an EN pin. All switches are at high impedance mode when the $\overline{\mathrm{EN}}$ is high.

The MP2735/MP2736 are guaranteed 1.65V logic compatible for $\mathrm{V}+<3.3 \mathrm{~V}$, allowing the easy interface with low voltage DSP or MCU control logic and ideal for one cell Li-ion battery direct power.

The switch conducts signals within power rails equally well in both directions when on, and blocks up to the power supply level when off. Break-before-make is guaranteed.

The MP2735/MP2736 are offered in a QFN10 package.

FEATURES

- Low Voltage Operation (1.65V to 5.5 V)
- Low On-Resistance - R R $: 0.45 \Omega$ at 2.7 V
- Fast Switching: $\mathrm{T}_{\text {ON }}=29 \mathrm{~ns}$ at 2.7 V
- $\mathrm{T}_{\text {OFF }}=23 \mathrm{~ns}$ at 2.7 V
- Latch-Up Current >300mA (JESD78)
- $1.4 \mathrm{~mm} \times 1.8 \mathrm{~mm}$ QFN10 Package
- ESD Human-Body Model $\pm 4000 \mathrm{~V}$

APPLICATIONS

- Cellular Phones
- Speaker Headset Switching
- Audio and Video Signal Routing
- PCMCIA Cards
- Battery Powered Systems
- Portable Media Player
- Handheld Test Instruments

TRUTH TABLE

	IN1/2	$\overline{\text { EN }}$	NC1/2	NO1/2
MP2735	0	-	ON	OFF
	1	-	OFF	ON
	0	1	OFF	OFF
	1	1	OFF	OFF
	0	0	ON	OFF
	1	0	OFF	ON

"MPS" and "The Future of Analog IC Technology" are Registered Trademarks of Monolithic Power Systems, Inc..

FUNCTIONAL BLOCK DIAGRAM PIN CONFIGURATION

MP2736DQG

ORDERING INFORMATION

Part Number*	Package	Top Marking	Free Air Temperature $\left(T_{A}\right)$
MP2735DQG	QFN10	$\overline{2 T}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
MP2736DQG	$(1.4 \mathrm{~mm} \times 1.8 \mathrm{~mm})$	$\overline{\mathrm{AM}}$	

* For Tape \& Reel, add suffix -Z (e.g. MP2735DQG-Z).

For RoHS compliant packaging, add suffix -LF (e.g. MP2735DQG-LF-Z)

PACKAGE REFERENCE

TOP VIEW

ABSOLUTE MAXIMUM RATINGS

V+ Supply Voltage-0.3V to +6 V IN/COM/NC/NO Voltage ${ }^{(1)} \ldots-0.3 \mathrm{~V}$ to $\mathrm{V}++0.3 \mathrm{~V}$ Current
(Any terminal except NO, NC or COM) 30 mA
Continuous Current (NO, NC or COM)
\qquad

Peak Current

(Pulsed at $1 \mathrm{~ms}, 10 \%$ duty cycle) $\pm 500 \mathrm{~mA}$
Storage Temperature. \qquad $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Power Dissipation (QFN10 $\left.{ }^{(2)}\right)^{(3)} \ldots208 \mathrm{~mW}$

Notes:

1) Signals on NC, or COM or $I N$ exceeding $V+$ will be clamped by internal diodes. Limit forward diode current to maximum current ratings.
2) Derate $4.0 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $70^{\circ} \mathrm{C}$.
3) All leads welded or soldered to PC Board.

ELECTRICAL CHARACTERISTICS

$\mathrm{V}+=3 \mathrm{~V}, \pm 10 \%, \mathrm{~V}_{\mathrm{IN}}=0.4$ or 1.65 V , unless otherwise noted.

Parameter	Symbol	Condition		Min	Typ	Max	Units
Analog Switch							
Analog Signal Range	$\mathrm{V}_{\text {analog }}$	$\mathrm{r}_{\text {DS(on), }}, T_{A}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		0		V+	V
On- Resistance	$\mathrm{r}_{\text {DS(on) }}$	$\mathrm{V}+=2.7 \mathrm{~V}, \mathrm{I}_{\mathrm{NO} / \mathrm{NC}}=100 \mathrm{~mA}, \mathrm{~V}_{\text {com }}=0.5 \mathrm{~V}$					Ω
		$\mathrm{V}+=2.7 \mathrm{~V}, \mathrm{I}_{\mathrm{NO} / \mathrm{Nc}}=100 \mathrm{~mA}, \mathrm{~V}_{\text {com }}=1.5 \mathrm{~V}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		0.28	0.45	
		$\mathrm{V}+=2.7 \mathrm{~V}, \mathrm{I}_{\mathrm{NO} / \mathrm{Nc}}=100 \mathrm{~mA}, \mathrm{~V}_{\text {com }}=0.5 \mathrm{~V}$	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$				
		$\mathrm{V}+=2.7 \mathrm{~V}, \mathrm{I}_{\mathrm{NO} / \mathrm{NC}}=100 \mathrm{~mA}, \mathrm{~V}_{\text {com }}=1.5 \mathrm{~V}$	to $+85^{\circ} \mathrm{C}$		0.30		
		$\mathrm{V}+=5.5 \mathrm{~V}, \mathrm{I}_{\mathrm{NO} / \mathrm{NC}}=100 \mathrm{~mA}, \mathrm{~V}_{\text {com }}=0.9 \mathrm{~V}$			0.20		
		$\mathrm{V}+=5.5 \mathrm{~V}, \mathrm{I}_{\mathrm{NO} / \mathrm{NC}}=100 \mathrm{~mA}, \mathrm{~V}_{\text {com }}=2.5 \mathrm{~V}$			0.18		
		$\mathrm{V}+=5.5 \mathrm{~V}, \mathrm{I}_{\mathrm{NO} / \mathrm{NC}}=100 \mathrm{~mA}, \mathrm{~V}_{\text {com }}=0.9 \mathrm{~V}$	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$		0.25		
		$\mathrm{V}+=5.5 \mathrm{~V}, \mathrm{I}_{\mathrm{NO} / \mathrm{Nc}}=100 \mathrm{~mA}, \mathrm{~V}_{\text {com }}=2.5 \mathrm{~V}$	to $+85^{\circ} \mathrm{C}$				
ron Match	$\Delta r_{\text {on }}$	$\begin{aligned} & \mathrm{V}+=2.7 \mathrm{~V}, \mathrm{I}_{\mathrm{NO} / \mathrm{NC}}=100 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{COM}}=0.5 \mathrm{~V} / 1.5 \mathrm{~V} \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		0.01	0.02	
		$\begin{aligned} & \mathrm{V}+=5.5 \mathrm{~V}, \mathrm{I}_{\mathrm{NO} / \mathrm{NC}}=100 \mathrm{~mA}, \\ & \mathrm{~V}_{\text {com }}=0.9 \mathrm{~V} / 2.5 \mathrm{~V} \end{aligned}$					
ron Flatness	Flatness	$\begin{aligned} & \mathrm{V}+=2.7 \mathrm{~V}, \mathrm{I}_{\mathrm{NO} / \mathrm{NC}}=100 \mathrm{~mA}, \\ & \mathrm{~V}_{\text {сом }}=0.5 \mathrm{~V} / 1.5 \mathrm{~V} \end{aligned}$				0.15	
Switch Off Leakage Current	$1_{\text {NO/NC(off) }}$	$\begin{aligned} & \mathrm{V}+=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{NO} / \mathrm{NC}}=0.3 \mathrm{~V} / 4.0 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{COM}}=4.0 \mathrm{~V} / 0.3 \mathrm{~V} \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-40		40	nA
			$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \\ & \text { to }+85^{\circ} \mathrm{C} \end{aligned}$	-100		100	
	$I_{\text {com(ffi) }}$		$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-40		40	
			$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \\ & \text { to }+85^{\circ} \mathrm{C} \end{aligned}$	-100		100	
Channel-On Leakage	$I_{\text {com(on) }}$	$\mathrm{V}+=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{NO} / \mathrm{NC}}=\mathrm{V}_{\mathrm{COM}}=4.0 \mathrm{~V} / 0.3 \mathrm{~V}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-40		40	
			$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \\ & \text { to }+85^{\circ} \mathrm{C} \end{aligned}$	-150		150	
Digital Control							
Input High Voltage	$\mathrm{V}_{\text {INH }}$		$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \\ & \text { to }+85^{\circ} \mathrm{C} \end{aligned}$	1.65			V
Input Low Voltage	$\mathrm{V}_{\text {INL }}$					0.4	
Input Capacitance	$\mathrm{C}_{\text {IN }}$				6		pF
Input Current	$\underset{\substack{\mathrm{I}_{\mathrm{NL}} \text { or } \\ \mathrm{I}_{\mathrm{NHH}}}}{ }$	$\mathrm{V}_{\mathbb{I}}=0$ or $\mathrm{V}+$		-1		1	$\mu \mathrm{A}$

ELECTRICAL CHARACTERISTICS (continued)

$\mathrm{V}+=3 \mathrm{~V}, \pm 10 \%, \mathrm{~V}_{\text {IN }}=0.4$ or 1.65 V , unless otherwise noted.

Parameter	Symbol	Condition		Min	Typ	Max	Units
Dynamic Characteristics							
Break-BeforeMake Time	$\mathrm{t}_{\text {BBM }}$	$\begin{aligned} & \mathrm{V}+=3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{NO}} / \mathrm{V}_{\mathrm{NC}}=1.5 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		10		ns
Turn-On Time	$\mathrm{t}_{\text {ON }}$				24	36	
			$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \\ & \text { to }+85^{\circ} \mathrm{C} \\ & \hline \end{aligned}$			40	
Turn-Off Time	$\mathrm{t}_{\text {OFF }}$		$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		20	30	
			$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \\ & \text { to }+85^{\circ} \mathrm{C} \end{aligned}$			35	
Enable Turn-On Time MP2736 ($\overline{\mathrm{EN}}$)	$\mathrm{t}_{\text {On(EN })}$		$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		24	36	
			$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \\ & \text { to }+85^{\circ} \mathrm{C} \\ & \hline \end{aligned}$			40	
Enable Turn-Off Time MP2736 ($\overline{\mathrm{EN}}$)	$\mathrm{t}_{\text {OFF(EN) }}$		$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		20	30	
			$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \\ & \text { to }+85^{\circ} \mathrm{C} \\ & \hline \end{aligned}$			35	
Off-Isolation ${ }^{(4)}$	OIRR	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=100 \mathrm{kHz}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		-70		dB
Crosstalk ${ }^{(4)}$	XTALK				-70		dB
3dB Bandwidth		$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$			50		MHz
NO, NC Off Capacitance ${ }^{(4)}$	$\mathrm{C}_{\mathrm{NO} \text { (off) }}$	$\mathrm{V}_{1 \mathrm{~N}}=0 \mathrm{~V}$, or $\mathrm{V}+, \mathrm{f}=1 \mathrm{MHz}$			55		pF
	$\mathrm{C}_{\mathrm{NC} \text { (off) }}$				55		
Channel On Capacitance ${ }^{(4)}$	$\mathrm{C}_{\mathrm{NO} \text { (on) }}$				130		
	$\mathrm{C}_{\mathrm{NC} \text { (on) }}$				130		
Power Supply							
Power Supply Range	V+			1.65		5.5	V
Power Supply Current	+	$\mathrm{V}_{1 \mathrm{~N}}=0$ or $\mathrm{V}+$	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \\ & \text { to }+85^{\circ} \mathrm{C} \end{aligned}$	-1		1	$\mu \mathrm{A}$

Note:

4) Guarantee by design, not subjected to production test.

PIN FUNCTIONS

(MP2735DQG) Pin\#	(MP2736DQG) Pin \#	Name	Description
1	1	V+	Supply Voltage
2	2	NO1	Normally open I/O port of switch1
3	3	COM1	Commom I/O port for NC and NO channels of switch1
4	4	IN1	Channel select signal for switch1. IN1 high, NO1 channel is selected. Otherwise, NC1 channel is selected in default. For MP2736, IN1 controls both switch1 and switch2
5	5	NC1	Normally closed I/O port of switch1
6	6	GND	Ground
7	7	NC2	Normally closed I/O port of switch2
8		IN2	Channel select signal for switch2. IN2 high, NO2 channel is selected. Otherwise, NC2 channel is selected in default
9	9	EN	Enable for two channels, active low
10	10	NO2	Commom I/O port for NC and NO channels of switch2
		Normally open I/O port of switch2	

TYPICAL PERFORMANCE CHARACTERISTICS

$\mathrm{T}_{\mathrm{A}}=+\mathbf{2 5 ^ { \circ }} \mathrm{C}$, unless otherwise noted.

ron vs. VCOM and
Temperature
$\mathrm{V}+=4.3 \mathrm{~V}$, $\mathrm{Is}=100 \mathrm{~mA} \mathrm{NO}$

$r_{\text {ON }}$ vs. $V_{\text {COM }}$ and Temperature

Supply Current vs.
 Temperature

$r_{\text {ON }}$ vs. $V_{\text {COM }}$ and Temperature

ron vs. VCOM and Temperature

Leakage Current vs. Temperature

$\mathrm{V}+=4.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{COM}}=4.3 \mathrm{~V} / 0.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{NC} / \mathrm{NO}}=0.3 \mathrm{~V} / 4.3 \mathrm{~V}$

TYPICAL PERFORMANCE CHARACTERISTICS (continued)

$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.

Switching Time vs.
Temperature

Total Harmonic Distortion
vs. Frequency

Crosstalk vs. Frequency
$\mathrm{V}+=5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$

FREQUENCY (MHz)
Off Isolation vs.
Frequency

TEST CIRCUITS

C_{L} (includes fixture and stray capacitance)

$$
V_{\text {out }}=V_{\text {com }}\left(\frac{R_{L}}{R_{L}+R_{\text {ON }}}\right)
$$

Logic "1" = Switch on
Logic input waveforms inverted for switches that have the opposite logic sense.

Figure 1 - Switching Time

C_{L} (includes fixture and stray capacitance)
Figure 2 - Break-Before-Make Interval

IN depends on switch configuration: input polarity determined by sense of switch.

Figure 3 - Charge Injection

Figure 4 - Off-Isolation

Figure 5 - Channel Off/On Capacitance

PACKAGE INFORMATION

PACKAGE OUTLINE DRAWING FOR 10L FCQFN (1.4x1.8mm)
 MF-PO-D-0084 revision 0.0

TOP VIEW

SIDE VIEW

RECOMMENDED LAND PATTERN

BOTTOM VIEW

NOTE:

1) ALL DIMENSIONS ARE IN MILLIMETERS.
2) EXPOSED PADDLE SIZE DOES NOT INCLUDE MOLD FLASH.
3) LEAD COPLANARITY SHALL BE 0.10 MILLIMETER MAX.
4) JEDEC REFERENCE IS MO-220.
5) DRAWING IS NOT TO SCALE.

NOTICE: The information in this document is subject to change without notice. Please contact MPS for current specifications. Users should warrant and guarantee that third party Intellectual Property rights are not infringed upon when integrating MPS products into any application. MPS will not assume any legal responsibility for any said applications.

