

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

MP2935 4-Phase PWM Controller for VR12.5 Applications

DESCRIPTION

MP2935 is a high-efficiency, 4-phase, synchronous, buck-switching PWM controller with an SVID interface for high-performance Intel processors. The multi-phase PWM output signals can be configured for up to 4-phase operation with interleaved switching.

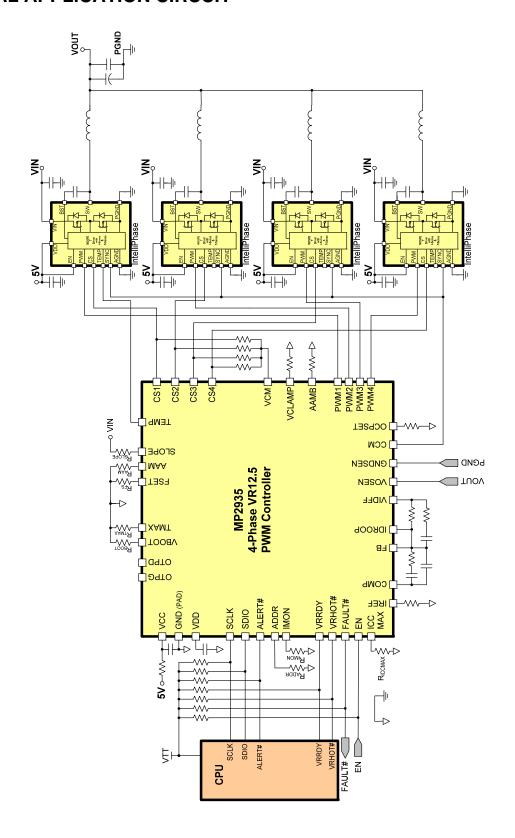
MP2935 adopts three-logic-level PWM outputs for enhanced noise immunity and flexible fault management. Depending on the power states set by SVID command, the multi-phase channel can switch between multiphase and single-phase operation. In addition, MP2935 supports programmable load-line resistance. As a result, the output voltage is always optimally positioned for a load transient.

The chip also provides accurate and reliable short-circuit protection with adjustable current limit threshold and a delayed VR_RDY output that is masked during on-the-fly output voltage changes to eliminate false triggering. MP2935 performance is specified over the junction temperature range of -10°C to 125°C. The chip is available in 40-lead QFN package.

FEATURES

- VR12.5 compliant
- Multi-Phase Operation at up to 2MHz per Phase
- Tri-State PWM Outputs for Driving MPS Intelli-Phase[™] Devices
- Power-Saving Modes Maximize Efficiency During Light Load and Deeper-Sleep Operation
- Active Current Balancing between Output Phases
- Independent Current Limit and Load Line Setting Inputs for Additional Design Flexibility
- 8-bit Digitally Programmable 0V to 3.04V Output through Serial VID Interface
- Overload and Short-Circuit Protection with Latch-Off Delay
- Output Current Monitor
- Fault Latch Output
- Regulator Temperature Monitor
- Available in a 6mmx6mm 40-lead QFN package

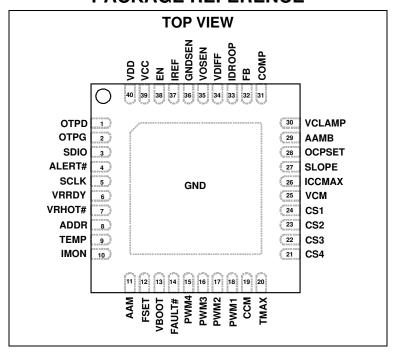
APPLICATIONS


Power supplies for next-generation Intel® processors

All MPS parts are lead-free, halogen free, and adhere to the RoHS directive. For MPS green status, please visit MPS website under Quality Assurance.

[&]quot;MPS" and "The Future of Analog IC Technology" are Registered Trademarks of Monolithic Power Systems, Inc.

TYPICAL APPLICATION CIRCUIT



ORDERING INFORMATION

Part Number*	Package	Top Marking	Junction Temperature (T _J)
MP2935DQK	6x6mm QFN40	MP2935	-40°C to +125°C
MP2935ADQK	6x6mm QFN40	MP2935A	-40°C to +125°C

* For Tape & Reel, add suffix –Z (e.g. MP2935DQK–Z). For RoHS compliant packaging, add suffix –LF (e.g. MP2935DQK–LF–Z)

PACKAGE REFERENCE

ABSOLUTE MAXIM	IUM RATINGS (1)
VCC	0.3V to +6.5V
VDD	-0.3V to +4.0V
GNDSEN	0.3V to +0.3V
SLOPE	
All Other Pins	
Continuous Power Dissipa	
	3.9W
Junction Temperature	150°C
Lead Temperature	
Storage Temperature	–65°C to +150°C

Recommended Operating Conditions (3)										
VCC		.4.5V t	o 5.5V							
Operating Junction Temp	–40	°C to +	125°C							
Thermal Resistance (4)	0 JA	0 JC								
6x6 QFN40	32	8	°C/W							

Notes:

- 1) Exceeding these ratings may damage the device.
- 2) The maximum allowable power dissipation is a function of the maximum junction temperature T_J(MAX), the junction-to-ambient thermal resistance θ_{JA}, and the ambient temperature T_A. The maximum allowable continuous power dissipation at any ambient temperature is calculated by P_D(MAX) = (T_J(MAX)-T_A)/θ_{JA}. Exceeding the maximum allowable power dissipation will cause excessive die temperature.
- The device is not guaranteed to function outside of its operating conditions.
- 4) Measured on JESD51-7, 4-layer PCB.

ELECTRICAL CHARACTERISTICS

VCC = 5 V, GNDSEN = GND, EN = VCC, VID = 0.50 V to 3.04 V, Current going into pin is positive.

 $T_A = -10^{\circ}$ C to $+100^{\circ}$ C, unless otherwise noted.

Parameter	Symbol	Conditions	Min	Тур	Max	Units				
VOLTAGE ERROR AMPLIFIER										
Error Amplifier Output	V _{COMP}		0.75		4.6	V				
Voltage Range ⁽⁵⁾	COMP	t _A = 25°C. No load, closed-loop, measured								
		at VOSEN pin to GNDSEN pin. Active mode range. VID=1.50V to 3.04V	-0.5		+0.5	%				
		No load, closed-loop, measured at VOSEN pin to GNDSEN pin. Active mode range. VID=1.50V to 3.04V	-1		+1	%				
DC output Accuracy	V _{OUT}	t _A = 25°C. No load, closed-loop, measured at VOSEN pin to GNDSEN pin. Active mode range. VID=1.00V to 1.50V	-8		+8	mV				
Do output Accuracy	V 001	No load, closed-loop, measured at VOSEN pin to GNDSEN pin. Active mode range. VID=1.00V to 1.50V	-15		+15	mV				
		t _A = 25°C. No load, closed-loop, measured at VOSEN pin to GNDSEN pin. Active mode range. VID=0.500V to 1.000V	-10		+10	mV				
		No load, closed-loop, measured at VOSEN pin to GNDSEN pin. Active mode range. VID=0.500V to 1.000V	-15		+15	mV				
Line Regulation	$\Delta V_{_{FB}}$	V _{CC} = 4.75 V to 5.25 V		0.3		%				
Input Bias Current	I _{FB}		-1		+1	μA				
Output Source Current	I _{COMP}	FB forced to (V _{VID} - 3%), no droop		-3		mA				
Output Sink Current	I _{COMP}	FB forced to (V _{VID} + 3%), no droop		+3		mA				
Open Loop Gain ⁽⁵⁾				80		dB				
Unity Gain Bandwidth ⁽⁵⁾	GBW _(ERR)	COMP = FB		20		MHz				
Slew Rate ⁽⁵⁾	,	C _{COMP} = 10 pF		25		V/µs				
REMOTE SENSE AMPL	IFIER			I						
Bandwidth ⁽⁵⁾	GBW _(RSA)			20		MHz				
GNDSEN Current	 GNDSEN	GNDSEN=0.3V		10	400	μA				
VOSEN Current	I _{VOSEN}	VOSEN=1V		15	50	μA				
OSCILLATOR										
FSET Voltage	V _{FSET}	R_{FSET} = 64.9kΩ to GND	0.9	1.0	1.1	V				
Frequency Setting	f _{sw}	$t_A = 25^{\circ}\text{C}, R_{\text{FSET}} = 64.9\text{k}\Omega, 4\text{-phase}$ configuration	540	600	660	kHz				
SLOPE Input Current	1	In normal mode	0		800	μΑ				
Range (5)	SLP	In shutdown, or in UVLO, SLOPE = 12 V	-1		+1	μΑ				

ELECTRICAL CHARACTERISTICS (continued)

VCC = 5 V, GNDSEN = GND, EN = VCC, VID = 0.50 V to 3.04 V, Current going into pin is positive. $T_A = -10^{\circ}\text{C}$ to $+100^{\circ}\text{C}$, unless otherwise noted.

Parameter	Symbol	Conditions	Min	Тур	Max	Units
CURRENT-SENSE AND OVERO	URRENT PR	OTRECTION		1	I.	l.
Current Limit Level	I _{VCM_OC}	R_{OCPSET} =80.6kΩ, sink current from VCM pin		1.27		mA
Droop Current	1	I _{VCM} = -400μA	-24	-25	-26	μΑ
•	I _{DRP}	I _{VCM} = +400μA	24	25	26	μA
CURRENT BALANCE AMPLIFIE					T	•
Common Mode Range ⁽⁵⁾	V _{CS_CM}		1.0		3.5	V
Input Current	I _{CS}	CSx=4V			1	μΑ
Masked Off-Time ⁽⁵⁾	t OFFMSKD	Measured from PWM turn-off		350		ns
SYSTEM INTERFACE CONTRO	L INPUTS			I		1
EN						
EN Low Threshold Voltage	VIL _(EN)				0.4	V
EN High Threshold Voltage	VIH _(EN)		0.8			V
EN High Threshold Hysteresis Voltage	VIH _(EN)			100		mV
Enable High Leakage	IIH _(EN)	EN=1.1V			2	μA
Enable Delay	T ₃	VCC≥UVLO, Vboot is not 0V, EN high to Vout ramping (see Figure 13)		2	5	ms
THERMAL THROTTLING CONT	ROL	, , , , , , , , , , , , , , , , , , , ,			I.	•
V _{TEMP} ADC		Register 17h=64h (100°C)		0.9		V
VRHOT# Low Output Impedance		I _{VRHOT#} = 20mA, T _A =25°C		8	10	Ω
VRHOT# High Leakage Current			-1		1	μA
IMON OUTPUT						
IMON Current	I _{MON}	I _{VCM} = +400μA	24	25	26	μA
IMON Clamp Voltage	VIMONMAX	IMON = Float, I _{VCM} = 400µA		1.3		V
IMON ADC		Register 15h=C8h		1		V
IMON ADC		Register 15h=64h		0.5		V
VRRDY COMPARATOR						
Under-Voltage Threshold	VDIFF (UV)	Relative to nominal DAC voltage		-300		mV
Over Voltage Threshold	VDIFF	Relative to nominal DAC voltage		400		mV
0	(OV)	Absolute voltage		3.30		V
Output Low Voltage	V _{VRRDY} (L)	I _{VRRDY} (SINK) = 4mA		60	250	mV
Output High Leakage	I _{VRRDY}	$V_{VRRDY} = 3.3V$			1	μA
Reverse Voltage Detection		Relative to GNDSEN, VDIFF falling		-300		mV
Threshold ⁽⁵⁾	V _{OSEN (RV)}	Relative to GNDSEN, VDIFF rising		-100		mV

ELECTRICAL CHARACTERISTICS (continued)

VCC = 5 V, GNDSEN = GND, EN = VCC, VID = 0.50 V to 3.04 V, Current going into pin is positive. $T_A = -10^{\circ}\text{C}$ to $+100^{\circ}\text{C}$, unless otherwise noted.

Parameter	Symbol	Conditions	Min	Тур	Max	Units
CCM OUTPUT						
Output Low Voltage	V _{OL}	I _{SINK} = 400μA		10	200	mV
Output High Voltage	V _{OH}	I _{SOURCE} = 400μA	4.8	5		V
PWM OUTPUTS			•	·	•	I.
Output Low Voltage	VOL (PWM)	I _{PWM(SINK)} = 400μA		10	200	mV
Output High Voltage ⁽⁵⁾	VOH (PWM)	I _{PWM(SOURCE)} = 400μA	4.8	5		V
PWM Tri-State Leakage		PWM = 2.5V	-1		1	μΑ
SUPPLY			1		ı	
VCC UVLO Threshold Voltage	VCC _{UVLO}	VCC is rising		4.1	4.45	V
UVLO Hysteresis				200		mV
Supply Current	I _{vcc}	EN=high. Both SVID bus and internal ID bus are idle. No load condition. 4-phase configuration. PWMs not switching.		8	16	mA
		EN = 0V		50	250	μΑ
VDD REGULATOR						
VDD Regulator Output Voltage	VDD			3.2		V
SVID Interface (SCLK, SDIC), ALERT#) ⁽⁵⁾		•		•	
Leakage current	IL	Pull-up voltage: 0V to 1.1V	-10		10	μΑ
Pin Capacitance ⁽⁵⁾	C_{PIN}				5	pF
Buffer ON Resistance ⁽⁵⁾	R_{ON}		4	8	13	Ω
VR Clock to Data Delay ⁽⁵⁾			4		8.3	ns
Setup Time ⁽⁵⁾				7		ns
Hold Time ⁽⁵⁾				14		ns

ELECTRICAL CHARACTERISTICS (continued)

VCC = 5 V, GNDSEN = GND, EN = VCC, VID = 0.50 V to 3.04 V, Current going into pin is positive. $T_A = -10^{\circ}\text{C}$ to $+100^{\circ}\text{C}$, unless otherwise noted.

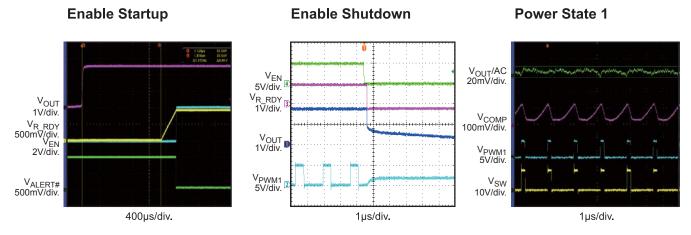
Parameter	Symbol	Conditions	Min	Тур	Max	Units
ADC						
Voltage Range		Reads FF.		1.28		V
ADC Resolution				5		mV
ADC Sampling Rate ⁽⁵⁾				3000		Hz
DNL ⁽⁵⁾					1	LSB
Conversion Time ⁽⁵⁾				30		μs
DAC Slew rate (MP2935)						
Soft-Start Slew Rate				2.5		mV/μs
SetVID_Slow Slew Rate				2.5		mV/μs
SetVID_Fast Slew Rate				10		mV/μs
DAC Slew rate (MP2935A)						
Soft-Start Slew Rate				5		mV/μs
SetVID_Slow Slew Rate				5		mV/μs
SetVID_Fast Slew Rate				20		mV/μs
DAC						
DAC resolution				8		Bits
LSB				10		mV
DNL				±1		LSB
INL				±1		LSB
Tolerance			-1		1	mV
1/2/3/4 Phase Detection						
PWM Sink Current				100		μΑ
PWM Detection Threshold Voltage			2	2.5	3.2	V
Phase Detect Timer ⁽⁵⁾				50		μs

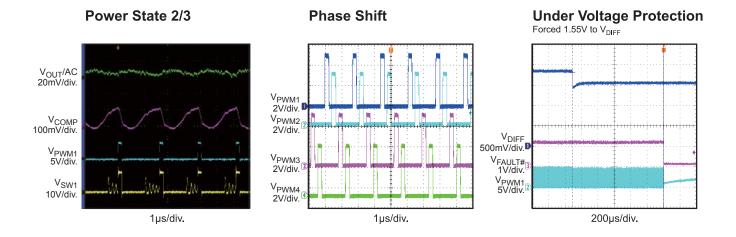
Notes:

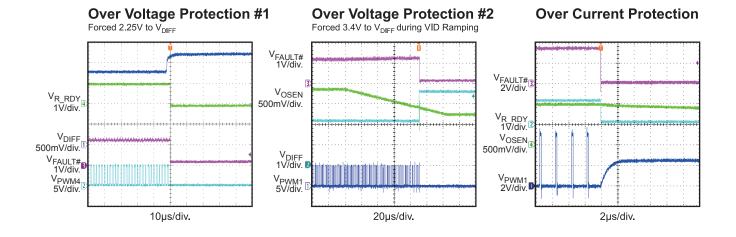
⁵⁾ Guaranteed by design or characterization data, not tested in production.

PIN DEFINITION

Pin#	Name	I/O	Description
1	OTPD	I	Factory OTP programming only. Connect to VCC for normal operation.
2	OTPG		Factory OTP programming only. Connect to GND for normal operation.
3	SDIO	I/O	Data Signal between CPU and Serial VID Controller.
4	ALERT#	0	Alert Signal from VID Controller to CPU.
5	SCLK	I	Source Synchronous Clock from CPU.
6	VRRDY	0	VR Ready Output. Open drain output signal.
7	VRHOT#	0	Voltage Regulator Thermal Throttling Logic Output. Actively pulls low if temperature at the monitoring point connected to TEMP exceeds the programmed VRHOT# temperature threshold.
8	ADDR	I	SVID Address setting pin. Refer to Table 6 for address assignment.
9	TEMP	I/O	Analog Temperature Signal Input.
10	IMON	0	Analog Total Load Current Signal. Sources a current proportional to the sensed total load current. Connect a resistor from IMON to GND to program the gain.
11	AAM	I	Advanced Asynchronous Mode (AAM) Timing Control Input. A resistor between this pin to ground sets the AAM mode turn-on threshold voltage.
12	FSET	I	Multiphase Frequency-Setting Input. A resistor connected between FSET and GND sets the oscillator frequency. The phase switching frequency will be divided by number of the operating phase.
13	VBOOT	I/O	V _{BOOT} Voltage Set. Refer to Table 3 for VBOOT voltage assignment.
14	FAULT#	0	VR Fault#. Asserts low to notify the platform of a VR fault condition.
15	PWM4	0	Tri-State Logic-Level PWM Outputs. Connecting the PWM2 and/or PWM3
16	PWM3	0	and/or PWM4 outputs to VCC turns off that phase, allowing MP2935 to
17	PWM2	0	change the number of operating phases. The operating phase number is decided when the part is enable. The number of operating phase cannot be
18	PWM1	0	changed on-the-fly.
19	ССМ	0	Forced CCM Operation Enable. CCM stays high in Power States 00 and 01. Actively pulls low when in Power States 02 and 03 to enable DCM operation of the power stage. Connect it to the SYNC pin of Intelli-Phases TM .
20	TMAX	I	Max. Temp. Set. Connect a resistor from TMAX to GND to set the maximum temperature.
21	CS4	I	
22	CS3	ı	Current Balance Inputs. Measures the current level in each phase. Float
23	CS2	ı	CS pins of unused phases.
24	CS1	I	
25	VCM	0	Buffered 2.5V reference.
26	ICCMAX		ICCMAX setting. Set the pin voltage to program the desired ICCMAX level.

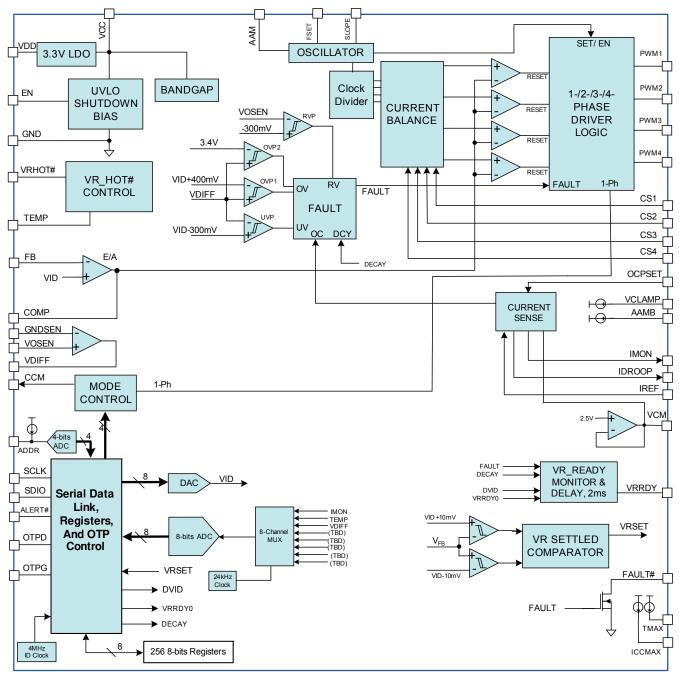

PIN DEFINITION (continued)


Pin#	Name	I/O	Description
27	SLOPE	I	PWM Slope Current Input. Connect a $100 \text{K}\Omega$ resistor from VIN (system's 12V input voltage) to this pin to set the internal slope for PWM comparator.
28	OCPSET	I	Total Current Limit Setting.
29	AAMB	I	Combine with AAM pin, this pin sets the AAM mode threshold voltage.
30	VCLAMP	I	Connect a resistor to ground to set the per phase current limit.
31	COMP	I/O	Error Amplifier Output.
32	FB	I	Inverting Input of Error Amplifier.
33	IDROOP	0	Droop Current Output. Sources current that is proportional to the sensed output current.
34	VDIFF	0	Differential Amplifier Output.
35	VOSEN	I	Remote Core Voltage Sense Input. Connect to VCCSENSE at microprocessor die.
36	GNDSEN	I	Remote Voltage Sensing Return. Connect to ground at microprocessor die.
37	IREF	I	Internal Bias Current Set. Connect an 80.6kΩ resistor from IREF to GND.
38	EN	I	Chip Enable.
39	VCC	I	5V supply voltage for the controller. Need a 1µF capacitor for decoupling.
40	VDD	0	3.3V LDO output for internal digital circuit only. Need a 1µF capacitor for decoupling. Do not connect to any other load.
PAD	GND	I/O	Ground.



TYPICAL PERFORMANCE CHARACTERISTICS

Performance waveforms are tested on the evaluation board of the Design Example section. $V_{IN} = 12V$, $V_{CC} = 5V$, $V_{OUT} = 1.85V$, $I_{OUT} = 0A$, 600kHz, unless otherwise noted.



FUNCTIONAL BLOCK DIAGRAM

OPERATION

MP2935 is 4-phase VR12.5-compliant а controller for Intel microprocessors. It is a multiphase controller for up to 4-phase operation and is capable for multi-mode PWM/advanced asynchronous mode (AAM) operation maximize the efficiency over the load range. It includes blocks for a precision DAC, remote voltage-sense amplifiers, an error amplifier, a ramp generator with input voltage feed-forward, a PWM comparator, AAM control, load-line set, a VR-ready (VRRDY) monitor, a temperature monitor and serial VID (SVID) registers. It also includes dynamic-phase current balancing and phase shedding. Protection features include under-voltage lockout (UVLO), over-current protection (OCP), over-voltage protection (OVP), under-voltage protection (UVP) and reverse voltage protection (RVP).

PWM Operation

MP2935 uses constant-switching–frequency current mode control and trailing-edge PWM operation with injected valley current signals. The PWM ramp of each phase combines with the sensed valley current to determine phase-current balance. Figure 1 shows the operation principles. The phase clock turns the PWM on. When the combined ramp voltage hits V_{COMP} voltage the

PWM turns off. The phase shift is applied between operating phases to minimize the input and output current ripple.

In general, the controller needs to wait for the next clock during a load step transient to turn on the PWM to support the load current. The waiting time causes the extra output voltage to drop. To maximize the current support to reduce the output voltage drop during the transient load. FAST-PWM[™] employs mode MP2935 respond immediately. During the load-step transient, the output voltage drop causes V_{COMP} to rise. When V_{COMP} rise fast enough to trigger FAST-PWM threshold. the controller overrides the phase clock and turns on all PWMs without phase shifts. The PWM OFF of each phase is the same as for normal operation when the combined ramp hits V_{COMP} voltage. This FAST-PWM mode maximizes the regulator's di/dt slew rate to support the output load transient step and minimize the V_{OUT} drop.

When the power state is not PS0, the chip operates in single phase with AAM mode to maximize the efficiency in light load condition. A detailed description of AAM mode operation is described in "AAM Control Operation and Diode Emulation."

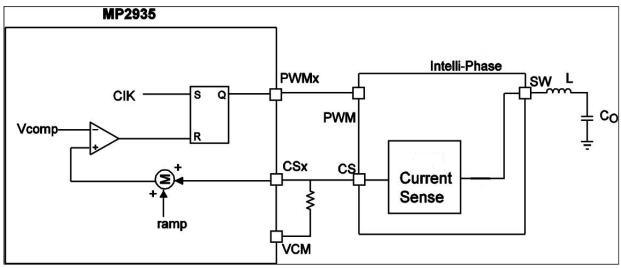


Figure 1: Block Diagram of PWM Operation

© 2015 MPS. All Rights Reserved.

PWM Operation and Power States

The user can select the total number of operating phases for MP2935, as described in "Switching Frequency and the Number of Operating Phases." Based on the power states, the actual operating phase dynamically switches between full phases or single phase to optimize the power conversion efficiency at heavy and light CPU loads.

In PS0, MP2935 runs in full-phase PWM mode. While in light-load mode, PS1 to PS3, only Phase 1 is in operation to maximize power conversion efficiency. During the dynamic VID transition issued by SVID commands of either SetVID_Fast or SetVID_Slow, the power state changes to PS0 by default and runs in full-phase PWM mode.

In addition to changing the number of phases, the operation mode can change dynamically. In PS0 mode, MP2935 runs in multiphase PWM mode with switching frequency controlled by the master clock. In other power states, MP2935 switches to AAM mode where the switching frequency is no longer controlled by the master clock, but by the ripple voltage on the COMP pin. Thus, the switch frequency varies with the load current, resulting in maximum power conversion efficiency in low power states.

In PS2 and PS3, diode emulation mode is enabled to maximize the efficiency at light load condition.

The VR will switch back to AAM mode if the over current alarm is clear before latch-off.

Table 1 summarizes the dynamically changes to phase number and operation modes based on the power state register set through SVID commands.

The power states are listed in order of power savings:

- PS0 represents full power or Active mode
- PS1 is used in Active Mode or Idle Mode and represents a low current state, similar to PSI# definition in VR11.1 or IMVP6.5; it typically has a load < 20A. MP2935 runs in single phase (PWM1 only) AAM/continuous current modulation (CCM) mode.

- PS2 is used in Sleep Mode and it represents a lower current state than PS1; it typically has a load < 5A. MP2935 runs in single phase (PWM1 only) AAM with diode emulation enabled.
- PS3 (Mode[1,0]= "11") is ultra-low current mode, lower than PS2; it typically has a load
 1A. MP2935 runs in single phase (PWM1 only) AAM with diode emulation enabled.

Table 1: Phase Number and Operation Modes

Power	Operating	CCM	PWM/AAM
State	Phases		
0	Full phases	1	PWM
1	1	1	AAM
2	1	0	AAM
3	1	0	AAM

AAM Control Operation and Diode Emulation

With the exception of PS0, all other power states enable AAM mode and run in single phase operation. Figure 2 shows typical AAM mode operation where switching frequency is no longer controlled by the master clock, but by the ripple voltage on the COMP pin.

PWM1 is set high when V_{COMP} reaches the AAM threshold voltage which is set by two resistors, from AAM pin to GND and from AAMB pin to GND.

$$= \frac{15400 \times V_{\text{OUT}}}{R_{\text{AAM}}} + I_{\text{MON}} \times R_{\text{AAMB}} + V_{\text{COMMON}}$$

$$R_{AAMB} = \frac{16 \times R_{CS}}{N}$$

$$R_{\text{AAM}} = \frac{15400 \times V_{\text{OUT}}}{V_{\text{AAM_Fraction}}}$$

$$V_{AAM\ Fraction} =$$

$$\frac{V_{_{OUT}}}{F_{_{SW}} \times 3.424 \times 10^{-6}} - 0.5 \times I_{_{L_PK-PK}} \times R_{_{CS}} \times 10 \times 10^{-6}$$

 V_{COMMON} is about 1V. $V_{\text{AAM_Fraction}}$ is part of the AAM threshold voltage. N is the number of

active phase during PS0. I_{L_PK-PK} is the peak to peak inductor current.

$$I_{L_PK-PK} = \frac{V_{OUT} \times (V_{IN} - V_{OUT})}{V_{IN} \times L \times F_{SW}}$$

Whenever PWM is high, V_{RAMP} ramps up from 1V with a slew rate programmed by the current flowing into the SLOPE pin. When V_{RAMP} reaches V_{COMP} , PWM resets to low.

The CCM pin is tied to the SYNC pin of the Intelli-PhaseTM. When the CCM pin is low, it enables diode emulation mode. In diode

emulation mode the low side MOSFET turns OFF once the inductor current reverses to keep the inductor current at 0A until the next PWM ON pulse.

In both PS0 and PS1, the CCM pin is high so the controller operates in CCM mode, which allows for negative inductor current.

In PS2 and PS3, the CCM pin is low to enable diode emulation mode on the Intelli-PhaseTM, allowing Diode Emulation mode operation.

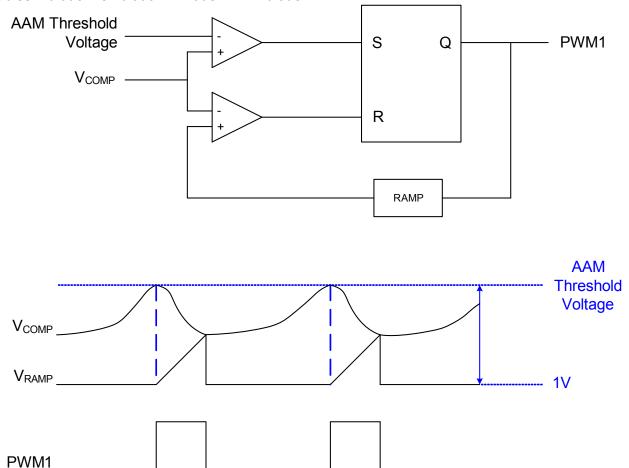


Figure 2: Block Diagram of AAM Operation and Typical Waveforms

Switching Frequency and the Number of Operating Phases

In normal operation in the PS0 power state, an external resistor connected from the FSET pin to ground determines the clock frequency. To determine the switching frequency per phase, divide the clock by N, the number of phases, in use. If phase 4 is disabled by pulling up PWM4 to VCC, then divide the master clock by 3 for the frequency of the remaining phases. If both PWM3 and PWM4 are pulled up to VCC, then divide the master clock by 2 for the frequency of the remaining phases. If PWM2, PWM3 and PWM4 are pulled up to VCC, then the switching frequency of phase 1 equals the master clock frequency. If all phases are in use, then divide the master clock by 4.

$$R_{\text{FSET}} = 340000 \!\times\! \left(F_{\text{SW}} \!\times\! N\right)^{\!-1.106}$$

In single-phase AAM mode, the switching frequency is almost constant, until it enters DCM mode then the frequency decrease proportionally with load current.

Current Sensing and IMON

MP2935's works seamlessly with the Intelli-PhaseTM family to accurately sense output current to monitor the total output current to support Adaptive Voltage Positioning (AVP) and current limit detection. Simply direct the total sensed phase current from all of the Intelli-Phases'sTM CS pins to VCM pin. When utilizing the Intelli-Phase'sTM accurate current sense output, it eliminates sensing error due to inductor DCR variation and removes design effort on DCR thermal compensation. This simple configuration is shown in Figure 3.

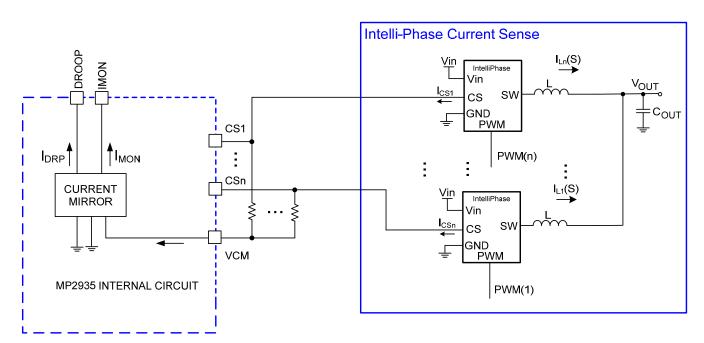


Figure 3: Intelli-Phase[™] Current Sensing Circuit

The IMON current is a current proportional to VCM pin current, $I_{MON} = \frac{I_{VCM}}{16}$. A resistor, R_{IMON} ,

from IMON pin to GND sets the gain from average sensed inductor current to IMON voltage. A 1nF capacitor added in parallel with R_{IMON} filters the voltage ripple reflected from the inductor ripple current.

$$R_{IMON} = \frac{2048000}{ICCMAX}$$

If the desire ICCMAX is 100A, then select 20.5KΩ for R_{IMON} .

The voltage on the IMON pin is clamped to prevent it from going above 1.3V. An 8-bit ADC converts the IMON voltage to the I_{OUT} register. An IMON voltage of 1.28V indicates the current has reached the value represented in the ICC MAX register.

$$R_{\text{TOP}} = \frac{(\text{VDD} - 0.005 \times ICCMAX})R_{\text{BOTTOM}}}{0.005 \times ICCMAX}$$

$$R_{\text{TOP}} = \frac{(\text{VDD} - 0.005\text{xICCMAX})R_{\text{BOTTOM}}}{0.005\text{xICCMAX} - 2\text{x}10^{-5}\text{x}R_{\text{BOTTOM}}}$$

Set the ICCMAX register with a resistor divider

from VDD voltage. VDD is a 3.3V output voltage from the controller. Using a smaller resistance for R_{BOTTOM} will reduce variation. Let's say we choose R_{BOTTOM} to be 499 Ω and the desired maximum current is 100A (ICCMAX=100A), then R_{TOP} is calculated to be 2851 Ω . To get the best possible accuracy, use two resistors to match the calculated resistance.

Phase Current Sensing

MP2935 has individual inputs to monitor the current in each phase. The phase current information is combined with an internal ramp to create a current-balancing feedback system that is optimized for initial current accuracy and dynamic thermal balance. The current balance information is independent of the total inductor current information used for voltage positioning. The magnitude of the internal ramp can be programmed to optimize the transient response of the system. MP2935 also monitors the supply voltage to achieve feed-forward control whenever the supply voltage changes. A resistor connected from the power input voltage rail to

SLOPE pin determines the slope of the internal PWM ramp.

Slope =
$$\frac{1}{8} \times \frac{V_{IN}}{R_{SLOPE} + 7000\Omega} \times \frac{1}{C_{SLOPE}}$$
 (V/s)
 $C_{SLOPE} = 4pF$

Figure 4 shows the block diagram of the phase current sense and the ramp generator, and the idealized waveforms.

© 2015 MPS. All Rights Reserved.

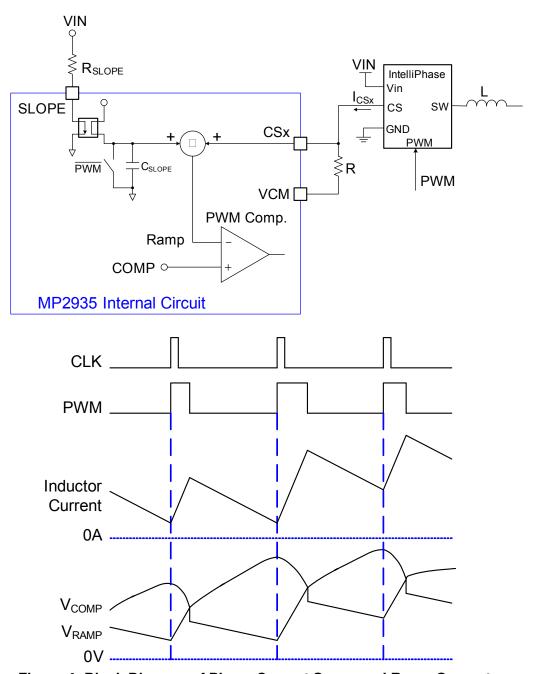


Figure 4: Block Diagram of Phase Current Sense and Ramp Generator

External resistors, R, from the CSx pin to the VCM reference pin can convert the I_{CS} current to a related voltage. To increase the current in any given phase, reduce the R for that phase. Upon reaching the current limit, MP2935 switches to full phase PWM mode regardless of power state status to avoid inrush current stress to the phase 1 power stage.

Voltage Regulation

Output voltage remote sensing is available. Remote sensing allows the voltage regulator to compensate for various resistive drops in the power path and ensure that the voltage seen at the CPU die is the correct level independent of the load current. The VOSEN and GNDSEN pins connect to the Kelvin sense leads at the die of the processor through the processor socket as the signals VCC_SENSE and VSS_SENSE, respectively. This allows the voltage regulator to tightly control the processor voltage at the die. independent of layout inconsistencies and drops. This Kelvin sense technique provides extremely tight load line regulation. Treat these traces as noise-sensitive. For optimal load-line regulation performance, lay out the traces connecting these

two pins to the Kelvin sense leads of the processor in parallel and away from rapidly-rising voltage nodes (switching nodes) and other noisy traces. To achieve optimal performance, place common mode and differential mode RC filters to analog ground on VOSEN and GNDSEN. Keep the filter resistors on the order of 10Ω so that they do not interact with the $50k\Omega$ input resistance of the differential amplifier.

The voltage-mode control loop consists of a highgain-bandwidth error amplifier. The 8-bit VID DAC sets the non-inverting input voltage. The VID codes are listed in Table 2. The output of the error amplifier goes to the COMP pin, which sets the termination voltage for the internal PWM ramps. The inverting input, FB, connects to the output of the remote sense amplifier through a resistor, R_{FB}, to sense and control the output voltage at the remote sense point. R_{FB} generates the droop voltage as a function of the load current-commonly known as active voltage positioning —by injecting the droop current, I_{DRP}, into the FB pin. The main loop compensation is feedback incorporated into the network connected between the FB and COMP pins.

Table 2: SVID Code Table

Table 2: SVID Code Table										
DEC	VID7	VID6	VID5	VID4	VID3	VID2	VID1	VID0	HEX	V_{OUT}
0	0	0	0	0	0	0	0	0	00	OFF
1	0	0	0	0	0	0	0	1	01	0.500
2	0	0	0	0	0	0	1	0	02	0.510
3	0	0	0	0	0	0	1	1	03	0.520
4	0	0	0	0	0	1	0	0	04	0.530
5	0	0	0	0	0	1	0	1	05	0.540
6	0	0	0	0	0	1	1	0	06	0.550
7	0	0	0	0	0	1	1	1	07	0.560
8	0	0	0	0	1	0	0	0	08	0.570
9	0	0	0	0	1	0	0	1	09	0.580
10	0	0	0	0	1	0	1	0	0A	0.590
11	0	0	0	0	1	0	1	1	0B	0.600
12	0	0	0	0	1	1	0	0	0C	0.610
13	0	0	0	0	1	1	0	1	0D	0.620
14	0	0	0	0	1	1	1	0	0E	0.630
15	0	0	0	0	1	1	1	1	0F	0.640
16	0	0	0	1	0	0	0	0	10	0.650
17	0	0	0	1	0	0	0	1	11	0.660
18	0	0	0	1	0	0	1	0	12	0.670
19	0	0	0	1	0	0	1	1	13	0.680
20	0	0	0	1	0	1	0	0	14	0.690
21	0	0	0	1	0	1	0	1	15	0.700
22	0	0	0	1	0	1	1	0	16	0.710
23	0	0	0	1	0	1	1	1	17	0.720
24	0	0	0	1	1	0	0	0	18	0.730
25	0	0	0	1	1	0	0	1	19	0.740
26	0	0	0	1	1	0	1	0	1A	0.750
27	0	0	0	1	1	0	1	1	1B	0.760
28	0	0	0	1	1	1	0	0	1C	0.770
29	0	0	0	1	1	1	0	1	1D	0.780
30	0	0	0	1	1	1	1	0	1E	0.790
31	0	0	0	1	1	1	1	1	1F	0.800
32	0	0	1	0	0	0	0	0	20	0.810
33	0	0	1	0	0	0	0	1	21	0.820
34	0	0	1	0	0	0	1	0	22	0.830
35	0	0	1	0	0	0	1	1	23	0.840
36	0	0	1	0	0	1	0	0	24	0.850
37	0	0	1	0	0	1	0	1	25	0.860
38	0	0	1	0	0	1	1	0	26	0.870
39	0	0	1	0	0	1	1	1	27	0.880
40	0	0	1	0	1	0	0	0	28	0.890
41	0	0	1	0	1	0	0	1	29	0.900
42	0	0	1	0	1	0	1	0	2A	0.910
43	0	0	1	0	1	0	1	1	2B	0.920
44	0	0	1	0	1	1	0	0	2C	0.930
45	0	0	1	0	1	1	0	1	2D	0.940
46	0	0	1	0	1	1	1	0	2E	0.950
47	0	0	1	0	1	1	1	1	2F	0.960
48	0	0	1	1	0	0	0	0	30	0.970

DEC	VID7	VID6	VID5	VID4	VID3	VID2	VID1	VID0	HEX	V_{OUT}
49	0	0	1	1	0	0	0	1	31	0.980
4 9	0	0	1	1	0	0	1	0	32	0.990
51	0	0	1	1	0	0	1	1	33	1.000
52	0	0	1	1	0	1	0	0	34	1.010
53	0	0	1	1	0	1	0	1	35	1.020
53 54	0	0	1	1	0	1	1	0	36	1.020
5 4	0	0	1	1	0	1	1	1	37	1.040
56	0	0	1	1	1	0	0	0	38	1.040
57	0	0	1	1	1	0	0	1	39	1.060
57 58	0	0	1	1	1	0	1	0	3A	1.070
59	0	0	1	1	1	0	1	1	3B	1.080
60	0	0	1	1	1	1	0	0	3C	1.080
61	0	0	1	1	1	1	0	1	3D	1.100
62	0	0	1	1	1	1	1	0	3E	1.110
63	0	0	1	1	1	1	1	1	3F	1.110
63 64	0	1	0	0	0	0	0	0	- 3F - 40	1.120
65	0	1	0	0	0	0	0	1	41	1.130
66	0	1	0	0	0	0	1	0	42	1.150
67	0	1	0	0	0	0	1	1	43	1.160
68	0	1	0	0	0	1	0	0	44	1.170
69	0	1	0	0	0	1	0	1	45	1.170
70	0	1	0	0	0	1	1	0	46	1.190
71	0	1	0	0	0	1	1	1	47	1.200
72	0	1	0	0	1	0	0	0	48	1.210
73	0	1	0	0	1	0	0	1	49	1.220
73 	0	1	0	0	1	0	1	0	4A	1.220
75	0	1	0	0	1	0	1	1	4B	1.240
76	0	1	0	0	1	1	0	0	4C	1.250
77	0	1	0	0	1	1	0	1	4D	1.260
78	0	1	0	0	1	1	1	0	4E	1.270
79	0	1	0	0	1	1	1	1	4F	1.280
80	0	1	0	1	0	0	0	0	50	1.290
81	0	1	0	1	0	0	0	1	51	1.300
82	0	1	0	1	0	0	1	0	52	1.310
83	0	1	0	1	0	0	1	1	53	1.320
84	0	1	0	1	0	1	0	0	54	1.330
85	0	1	0	1	0	1	0	1	55	1.340
86	0	1	0	1	0	1	1	0	56	1.350
87	0	1	0	1	0	1	1	1	57	1.360
88	0	1	0	1	1	0	0	0	58	1.370
89	0	1	0	1	1	0	0	1	59	1.380
90	0	1	0	1	1	0	1	0	5A	1.390
91	0	1	0	1	1	0	1	1	5B	1.400
92	0	1	0	1	1	1	0	0	5C	1.410
93	0	1	0	1	1	1	0	1	5D	1.420
94	0	1	0	1	1	1	1	0	5E	1.430
95	0	1	0	1	1	1	1	1	5F	1.440
96	0	1	1	0	0	0	0	0	60	1.450

DEC	VID7	VID6	VID5	VID4	VID3	VID2	VID1	VID0	HEX	V _{OUT}
97	0	1	1	0	0	0	0	1	61	1.460
98	0	1	1	0	0	0	1	0	62	1.470
99	0	1	1	0	0	0	1	1	63	1.480
100	0	1	1	0	0	1	0	0	64	1.490
101	0	1	1	0	0	1	0	1	65	1.500
102	0	1	1	0	0	1	1	0	66	1.510
103	0	1	1	0	0	1	1	1	67	1.520
104	0	1	1	0	1	0	0	0	68	1.530
105	0	1	1	0	1	0	0	1	69	1.540
106	0	1	1	0	1	0	1	0	6A	1.550
107	0	1	1	0	1	0	1	1	6B	1.560
108	0	1	1	0	1	1	0	0	6C	1.570
109	0	1	1	0	1	1	0	1	6D	1.580
110	0	1	1	0	1	1	1	0	6E	1.590
111	0	1	1	0	1	1	1	1	6F	1.600
112	0	1	1	1	0	0	0	0	70	1.610
113	0	1	1	1	0	0	0	1	71	1.620
114	0	1	1	1	0	0	1	0	72	1.630
115	0	1	1	1	0	0	1	1	73	1.640
116	0	1	1	1	0	1	0	0	74	1.650
117	0	1	1	1	0	1	0	1	75	1.660
118	0	1	1	1	0	1	1	0	76	1.670
119	0	1	1	1	0	1	1	1	77	1.680
120	0	1	1	1	1	0	0	0	78	1.690
121	0	1	1	1	1	0	0	1	79	1.700
122	0	1	1	1	1	0	1	0	7A	1.710
123	0	1	1	1	1	0	1	1	7B	1.720
124	0	1	1	1	1	1	0	0	7C	1.730
125	0	1	1	1	1	1	0	1	7D	1.740
126	0	1	1	1	1	1	1	0	7E	1.750
127	0	1	1	1	1	1	1	1	7F	1.760
128	1	0	0	0	0	0	0	0	80	1.770
129	1	0	0	0	0	0	0	1	81	1.780
130	1	0	0	0	0	0	1	0	82	1.790
131	1	0	0	0	0	0	1	1	83	1.800
132	1	0	0	0	0	1	0	0	84	1.810
133	1	0	0	0	0	1	0	1	85	1.820
134	1	0	0	0	0	1	1	0	86	1.830
135	1	0	0	0	0	1	1	1	87	1.840
136	1	0	0	0	1	0	0	0	88	1.850
137	1	0	0	0	1	0	0	1	89	1.860
138	1	0	0	0	1	0	1	0	8A	1.870
139	1	0	0	0	1	0	1	1	8B	1.880
140	1	0	0	0	1	1	0	0	8C	1.890
141	1	0	0	0	1	1	0	1	8D	1.900
142	1	0	0	0	1	1	1	0	8E	1.910
143	1	0	0	0	1	1	1	1	8F	1.920
144	1	0	0	1	0	0	0	0	90	1.930

DEC	VID7	VID6	VID5	VID4	VID3	VID2	VID1	VID0	HEX	V _{OUT}
145	1	0	0	1	0	0	0	1	91	1.940
146	1	0	0	1	0	0	1	0	92	1.950
147	1	0	0	1	0	0	1	1	93	1.960
148	1	0	0	1	0	1	0	0	94	1.970
149	1	0	0	1	0	1	0	1	95	1.980
150	1	0	0	1	0	1	1	0	96	1.990
151	1	0	0	1	0	1	1	1	97	2.000
152	1	0	0	1	1	0	0	0	98	2 010
153	1	0	0	1	1	0	0	1	99	2.020
154	1	0	0	1	1	0	1	0	9A	2.030
155	1	0	0	1	1	0	1	1	9B	2.040
156	1	0	0	1	1	1	0	0	9C	2.050
157	1	0	0	1	1	1	0	1	9D	2.060
158	1	0	0	1	1	1	1	0	9E	2.070
159	1	0	0	1	1	1	1	1	9F	2.080
160	1	0	1	0	0	0	0	0	A0	2.090
161	1	0	1	0	0	0	0	1	A1	2.100
162	1	0	1	0	0	0	1	0	A2	2.110
163	1	0	1	0	0	0	1	1	A3	2.120
164	1	0	1	0	0	1	0	0	A4	2.130
165	1	0	1	0	0	1	0	1	A5	2.140
166	1	0	1	0	0	1	1	0	A6	2.150
167	1	0	1	0	0	1	1	1	A7	2.160
168	1	0	1	0	1	0	0	0	A8	2.170
169	1	0	1	0	1	0	0	1	A9	2.180
170	1	0	1	0	1	0	1	0	AA	2 190
171	1	0	1	0	1	0	1	1	AB	2.200
172	1	0	1	0	1	1	0	0	AC	2.210
173	1	0	1	0	1	1	0	1	AD	2.220
174	1	0	1	0	1	1	1	0	AE	2.230
175	1	0	1	0	1	1	1	1	AF	2.240
176	1	0	1	1	0	0	0	0	B0	2.250
177	1	0	1	1	0	0	0	1	B1	2.260
178	1	0	1	1	0	0	1	0	B2	2.270
179	1	0	1	1	0	0	1	1	B3	2 280
180	1	0	1	1	0	1	0	0	B4	2.290
181	1	0	1	1	0	1	0	1	B5	2.300
182	1	0	1	1	0	1	1	0	B6	2.310
183	1	0	1	1	0	1	1	1	B7	2.320
184	1	0	1	1	1	0	0	0	B8	2.330
185	1	0	1	1	1	0	0	1	B9	2.340
186	1	0	1	1	1	0	1	0	BA	2.350
187	1	0	1	1	1	0	1	1	BB	2.360
188	1	0	1	1	1	1	0	0	BC	2 370
189	1	0	1	1	1	1	0	1	BD	2.380
190	1	0	1	1	1	1	1	0	BE	2.390
191	1	0	1	1	1	1	1	1	BF	2.400
192	1	1	0	0	0	0	0	0	C0	2.410

DEC	VID7	VID6	VID5	VID4	VID3	VID2	VID1	VID0	HEX	V_{OUT}
193	1	1	0	0	0	0	0	1	C1	2.420
194	1	1	0	0	0	0	1	0	C2	2.430
195	1	1	0	0	0	0	1	1	C3	2.440
196	1	1	0	0	0	1	0	0	C4	2.450
197	1	1	0	0	0	1	0	1	C5	2.460
198	1	1	0	0	0	1	1	0	C6	2.470
199	1	1	0	0	0	1	1	1	C7	2.480
200	1	1	0	0	1	0	0	0	C8	2.490
201	1	1	0	0	1	0	0	1	C9	2.500
202	1	1	0	0	1	0	1	0	CA	2.510
203	1	1	0	0	1	0	1	1	СВ	2.520
204	1	1	0	0	1	1	0	0	CC	2.530
205	1	1	0	0	1	1	0	1	CD	2.540
206	1	1	0	0	1	1	1	0	CE	2.550
207	1	1	0	0	1	1	1	1	CF	2.560
208	1	1	0	1	0	0	0	0	D0	2.570
209	1	1	0	1	0	0	0	1	D1	2.580
210	1	1	0	1	0	0	1	0	D2	2.590
211	1	1	0	1	0	0	1	1	D3	2.600
212	1	1	0	1	0	1	0	0	D4	2.610
213	1	1	0	1	0	1	0	1	D5	2.620
214	1	1	0	1	0	1	1	0	D6	2.630
215	1	1	0	1	0	1	1	1	D7	2.640
216	1	1	0	1	1	0	0	0	D8	2.650
217	1	1	0	1	1	0	0	1	D9	2.660
218	1	1	0	1	1	0	1	0	DA	2.670
219	1	1	0	1	1	0	1	1	DB	2.680
220	1	1	0	1	1	1	0	0	DC	2.690
221	1	1	0	1	1	1	0	1	DD	2.700
222	1	1	0	1	1	1	1	0	DE	2.710
223	1	1	0	1	1	1	1	1	DF	2.720
224	1	1	1	0	0	0	0	0	E0	2.730
225	1	1	1	0	0	0	0	1	E1	2.740
226	1	1	1	0	0	0	1	0	E2	2.750
227	1	1	1	0	0	0	1	1	F3	2.760
228	11	111	1	0	0	1	0	0	E4	2.770
229	1	1	1	0	0	1	0	1	E5	2.780
230	1	1	1	0	0	1	1	0	E6	2.790
231	1	1	1	0	0	1	1	1	E7	2.800
232	1	1	1	0	1	0	0	0	E8	2.810
233	1	1	1	0	1	0	0	1	E9	2.820
234	1	1	1	0	1	0	1	0	EA	2.830
235	1	1	1	0	1	0	1	1	EB	2.840
236	1	1	1	0	1	1	0	0	EC	2.850
237	1	1	1	0	1	1	0	1	ED	2.860
238	1	1	1	0	1	1	1	0	EE	2.870
239	1	1	1	0	1	1	1	1	EF	2.880
240	1	1	1	1	0	0	0	0	F0	2.890

DEC	VID7	VID6	VID5	VID4	VID3	VID2	VID1	VID0	HEX	V _{OUT}
241	1	1	1	1	0	0	0	1	F1	2.900
242	1	1	1	1	0	0	1	0	F2	2.910
243	1	1	1	1	0	0	1	1	F3	2.920
244	1	1	1	1	0	1	0	0	F4	2.930
245	1	1	1	1	0	1	0	1	F5	2.940
246	1	1	1	1	0	1	1	0	F6	2.950
247	1	1	1	1	0	1	1	1	F7	2.960
248	1	1	1	1	1	0	0	0	F8	2.970
249	1	1	1	1	1	0	0	1	F9	2.980
250	1	1	1	1	1	0	1	0	FA	2.990
251	1	1	1	1	1	0	1	1	FB	3.000
252	1	1	1	1	1	1	0	0	FC	3.010
253	1	1	1	1	1	1	0	1	FD	3.020
254	1	1	1	1	1	1	1	0	FE	3.030
255	1	1	1	1	1	1	1	1	FF	3.040

Load-line Regulation

The droop, known as Adaptive Voltage Positioning (AVP), on MP2935 can be generated by injecting the I_{DRP} current to the feedback resistor.

The current output on the IDROOP pin is $\frac{1}{16}$ of the I_{VCM} current, which is proportional to the

total output current. Selecting the proper R_{FB1} value can achieve the desired load-line. In the case of zero droop, floats the IDROOP pin. Figure 5 shows the block diagram of droop generation.

$$R_{FB1} = 16 \times 10^5 \times Droop$$

For $1m\Omega$ droop, $R_{FB1}=1.6K\Omega$.

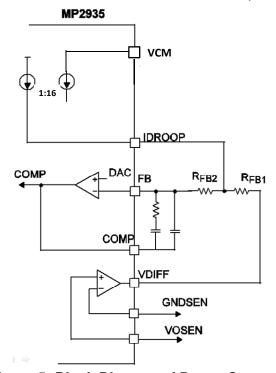


Figure 5: Block Diagram of Droop Generator

Output Voltage Offset Programming

After receiving the SVID command for setting the offset (33h), the SVID controller compares the VID plus the proposed offset with the maximum VID of FFh (3.04V), and rejects the SVID command if this value exceeds FFh. If the VID plus proposed offset is less than FFh, the SVID updates the register 33h and the DAC ramps up/down to the new value of VID+Offset with slow slew rate defined in register 25h. During ramp up/down to the new DAC value, the SVID rejects all SVID commands, which is the same behavior as SetVID Fast/Slow.

Dynamic VID

The SVID bus sends out new target voltage and slew rate commands to the PWM IC. The VR responds by slewing to the new voltage in a controlled manner without falsely tripping VRRDY, over-voltage, or over-current protection circuits. To meet all market segment requirements, there are three different slew rates: fast, slow, and decay. During fast and slow VID transitions, the SVID controller ramps up/down the VID code step-by-step. There is a 4MHz ID clock for VID change, with defined VID step of 10mV, the maximum slew rate is up to 20mV/us.

During VID decay, the VR output voltage converges to the new VID target, but does not control the slew rate; the output voltage decays at a rate proportional to the load current.

The VID change triggers a VR RDY masking timer to prevent a VR RDY failure. Each VID change resets and restarts the internal VR RDY masking timer. During the VID transition except VID decay, MP2935 forces a full-phase PWM operation and reset the power state to PS0 by default.

SetVID Fast/Slow

If the VR is in a low-power state and receives a new SetVID Fast/Slow command, then the VR exits the low-power state to normal mode (PS0). operating in full-phase PWM mode to move the voltage by the preset slew rate. The VR remains in PS0, until it receives a new power state command.

SetVID Decay

In the case of a SetVID_Decay command, the VR automatically goes to PS2 or remain at PS3. SetVID Decay command steps up the VID DAC to the target VID at 10mV/step, with each step triggered by VR SETTLE assert. In the event of a SetPS command during the V_{OUT} decay, MP2935 will enter into the requested power state after V_{OUT} reaches the requested VID value. Whenever the VR exits decay mode whenever it receives a SetVID Fast/Slow, enters PS0 power state, and ramps up/down to the new VID from its current VID.

Figure 6 shows the detailed diagram of the operation modes with the VID Transition taken into consideration.

Figure 7(a) to 7(d) show the detailed signals of Decay mode operation for different cases.