

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

MP62040/MP62041

1.7V – 5.5V, Ultra-Small, Single-Channel 2A Current-Limited Power Distribution Switch

The Future of Analog IC Technology

DESCRIPTION

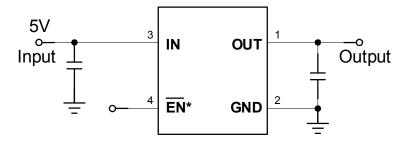
The MP62040/MP62041 Power Distribution Switch is designed for high-side load switch. The switch operates from 1.7V to 5.5V nominal input voltage and includes an $85m\Omega$ power MOSFET to handle up to 2A continuous load.

The MP62040/MP62041 has slew rate control with 115 μ s rising time to limit inrush current when enabling the switch.

The built-in level shift function allows a logic signal on enable input that may be different from the supply voltage to switch the high side P-channel MOSFET ON or OFF.

The MP62040/MP62041 is available in an ultrasmall UTQFN4 package, with ultra-low height (0.55mm typ).

FEATURES


- 2A Continuous Current
- 1.7V to 5.5V Supply Range
- Soft Start: 115µs
- 1µA Shutdown Current
- 85mΩ MOSFET
- Active High & Active Low Options
- Space saving 1.6x1.2 mm UTQFN4 Package (0.55mm Height)

APPLICATIONS

- Load switch in portable applications
- Battery switch-over circuits
- Level translator

For MPS green status, please visit MPS website under Quality Assurance. "MPS" and "The Future of Analog IC Technology" are Registered Trademarks of Monolithic Power Systems, Inc.

TYPICAL APPLICATION

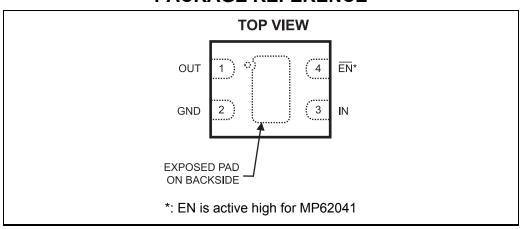
MP62040 / MP62041

(*: EN is active high for MP62041)

Single-Channel

PACKAGE REFERENCE

Part Number	Enable	Switch	Maximum Continuous Load Current	Package	Top Marking	Free Air Temperature (T _A)
MP62040DQFU*	Active Low	Single	2A	UTQFN4	AGY	-40°C to +85°C
MP62041DQFU**	Active High	Single	ZA	UTQFN4	AEY	-40°C t0 +65°C


* For Tape & Reel, add suffix -Z (e.g. MP62040DQFU-Z).

For RoHS compliant packaging, add suffix -LF (e.g. MP62040DQFU-LF-Z)

** For Tape & Reel, add suffix -Z (e.g. MP62041DQFU-Z).

For RoHS compliant packaging, add suffix –LF (e.g. MP62041DQFU-LF–Z)

PACKAGE REFERENCE

ABSOLUTE MAXIMUM RATINGS (1)

0.3V to +6.0V
0.3V to +6.0V
$(T_A = +25^{\circ}C)^{(2)}$
0.7W
±2A
±1.4A
±6A
50mA
150°C
260°C
-65°C to +150°C
+125°C

Thermal Resistance ⁽⁵⁾	$oldsymbol{ heta}_{JA}$	$oldsymbol{ heta}_{JC}$	
UTQFN4	173	127	°C/W

Notes:

- 1) Exceeding these ratings may damage the device.
- 2) The maximum allowable power dissipation is a function of the maximum junction temperature T_J(MAX), the junction-to-ambient thermal resistance θ_{JA}, and the ambient temperature TA. The maximum allowable continuous power dissipation at any ambient temperature is calculated by PD(MAX)=(T_J(MAX)-TA)/θ_{JA}. Exceeding the maximum allowable power dissipation will cause excessive die temperature, and the regulator will go into thermal shutdown. Internal thermal shutdown circuitry protects the device from permanent damage.
- 3) Pulse width <300µs and duty cycle < 2%
- Continuous body diode conduction (reverse conduction) is not recommended.
- 5) Measured on JESD51-7, 4-layer PCB.

ELECTRICAL CHARACTERISTICS (6)

V_{IN}=3.6V, T_A=+25°C, unless otherwise noted.

Parameter	Symbol	Condition	Min	Тур	Max	Units
IN Voltage Range	V_{IN}		1.7		5.5	V
Supply Current		Device active, I _{OUT} =0		2		μΑ
Shutdown Current		Device disable, V _{IN} =5.5V, V _{OUT} =float			1	μA
		V _{IN} =1.7V, I _{OUT} =100mA		165	225	mΩ
		V _{IN} =1.8V, I _{OUT} =100mA		155	215	mΩ
FET On_Resistance		V _{IN} =2.5V, I _{OUT} =100mA		130	200	mΩ
		V _{IN} =3.6V, I _{OUT} =100mA		100	140	mΩ
		V _{IN} =4.5V, I _{OUT} =100mA		85	115	mΩ
EN Input Logic High Voltage		V_{IN} = 1.7V to 4.5V, I_{D} = -250 μ A	1.2			V
EN Input Logic Low Voltage		V_{IN} = 1.7V to 4.5V, I_{D} = -250 μ A			0.4	V
EN Input Current		Device active, V _{IN} = 5.5V		2	4	μA
V _{OUT} Rising Time ⁽⁷⁾	Tr	V _{IN} =3.6V, I _{OUT} =100mA	75	115	200	μs
V _{OUT} Falling Time ⁽⁸⁾	Tf	V _{IN} =3.6V, I _{OUT} =100mA	65	75	100	μs
Turn On_Time (9)	Ton	V _{IN} =3.6V, I _{OUT} =100mA		235	350	μs
Turn Off_Time (10)	Toff	V _{IN} =3.6V, I _{OUT} =100mA		100	200	μs

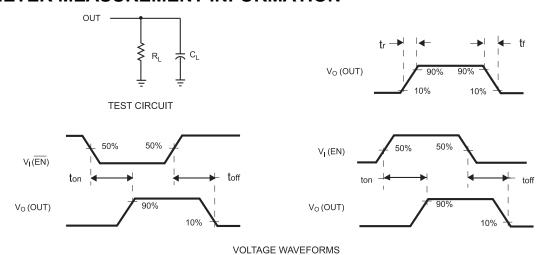
Notes:

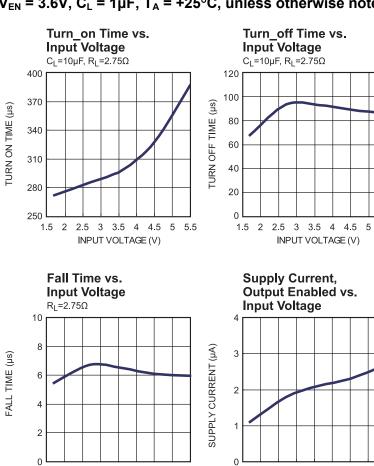
- 6) Production test at +25°C. Specifications over the temperature range are guaranteed by design and characterization.
- 7) Measured from 10% to 90%.
- 8) Measured from 90% to 10%.
- 9) Measured from (50%) EN signal to (90%) output signal.
- 10) Measured from (50%) EN signal to (10%) output signal.

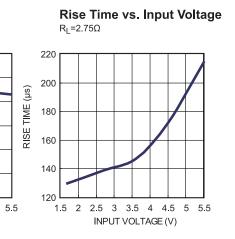
PIN FUNCTIONS

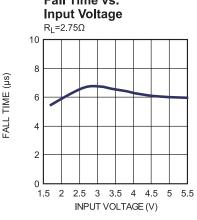
UTQFN	Name	Description	
1	OUT	IN-to-OUT Power-Distribution Output	
2	GND	Ground and the thermal pad should both be connected to electrical ground.	
3	IN	Input Voltage. Accepts 1.7V to 5.5V input.	
4	EN	Active Low: (MP62040), Active High: (MP62041)	

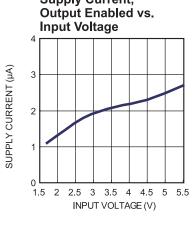
PARAMETER MEASUREMENT INFORMATION



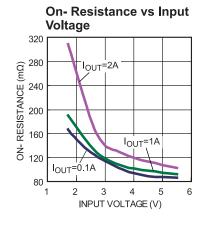

Figure1 — Definition of Tr, Tf, Ton, and Toff

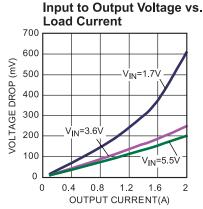

© 2011 MPS. All Rights Reserved.

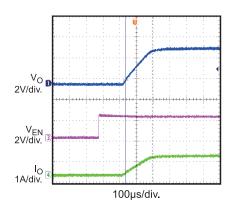



TYPICAL PERFORMANCE CHARACTERISTICS

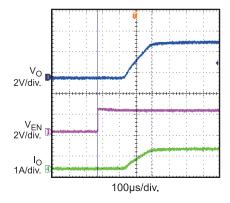

 $V_{IN} = V_{EN} = 3.6V$, $C_L = 1\mu F$, $T_A = +25$ °C, unless otherwise noted.



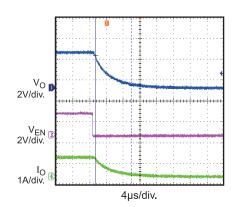




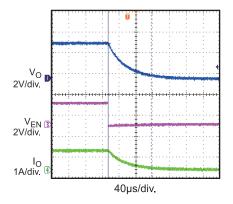
TYPICAL PERFORMANCE CHARACTERISTICS (continued)


 $V_{IN} = V_{EN} = 3.6V$, $C_L = 1\mu F$, $T_A = +25$ °C, unless otherwise noted.

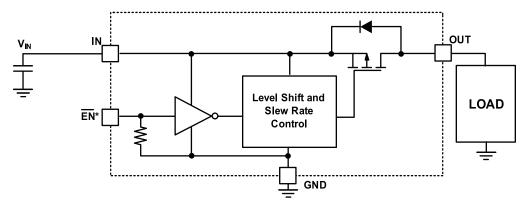
Turn_on Delay and Rise Time with $1\mu F$ Load $R_I = 3.6\Omega$


Turn_on Delay and Rise Time

with $10\mu F$ Load $C_{OUT} = 10\mu F$, $R_L = 3.6\Omega$


Turn_off Delay and Fall Time with 1µF Load

 $R_1 = 3.6\Omega$


Turn_off Delay and Fall Time with 10µF Load

 $C_{OUT} = 10 \mu F, R_L = 3.6 \Omega$

FUNCTION BLOCK DIAGRAM

(*: EN is active high for MP62041)

Figure 2 — Functional Block Diagram

DETAILED DESCRIPTION

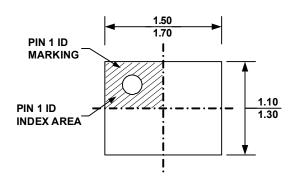
The MP62040/MP62041 Power Distribution Switch is designed for high-side load switch. The switch operates from 1.7V to 5.5V nominal input voltage and can handle up to 2A continuous load.

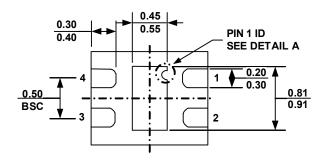
Enable

The logic pin disables the switch to reduce overall supply current .Once the EN pin reaches logic enable threshold, the MP62040/MP62041 is enabled and the supply current is very small, only $2\mu A$.

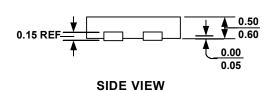
APPLICATION INFORMATION

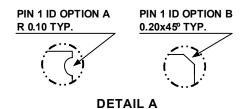
Power-Supply Considerations


Over $10\mu F$ capacitor between IN and GND is recommended. This precaution reduces power-supply transients that may cause ringing on the input.


In order to achieve smaller output load transient ripple, placing a high-value electrolytic capacitor on the output pin(s) is recommended when the load is heavy.

PACKAGE INFORMATION


UTQFN (1.6x1.2mm)





TOP VIEW

BOTTOM VIEW

NOTE:

- 1) ALL DIMENSIONS ARE IN MILLIMETERS
- 2) EXPOSED PADDLE SIZE DOES NOT INCLUDE MOLD FLASH
- 3) LEAD COPLANARITY SHALL BED.10 MILLIMETER MAX
- 4) JEDEC REFERENCE IS MO-229.
- 5) DRAWING IS NOT TO SCALE

RECOMMENDED LAND PATTERN

NOTICE: The information in this document is subject to change without notice. Users should warrant and guarantee that third party Intellectual Property rights are not infringed upon when integrating MPS products into any application. MPS will not assume any legal responsibility for any said applications.