imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

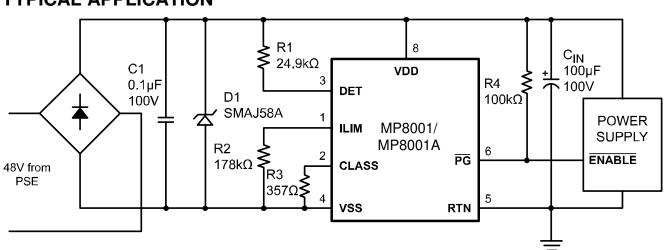
We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

MP8001, MP8001A **15W Power Over Ethernet PoE Powered Device (PD) Controller**

DESCRIPTION


The MP8001/MP8001A are IEEE 802. 3 af POE compliant Powered Device (PD) controllers. they include detection and classification modes as well as a 100V output pass device having a temperature compensated current limit over the specified temperature Thermal range. protection is built in to accommodate both transient and/or overload conditions, shutting the part down and protecting the input source as well as the output load depending on the particular fault conditions. Inrush current limiting is included to slowly charge the input capacitor without interruption due to die heating, a problem encountered without the current limit foldback feature.

FEATURES

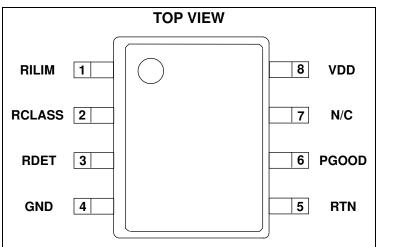
- Meets IEEE 802. 3 af Specifications •
- 100V, 1Ω Integrate DMOS Device
- 420mA Current Limit for MP8001 810mA Current Limit for MP8001A
- **Open Drain Power Good Output**
- SOIC-8 Package

APPLICATIONS

- **VoIP** Telephones •
- **Network Cards**
- Security Camera Systems
- Safety Backup Power •
- **Remote Internet Power** •

TYPICAL APPLICATION

All MPS parts are lead-free, halogen free, and adhere to the RoHS directive. For MPS green status, please visit MPS website under Quality Assurance. "MPS" and "The Future of Analog IC Technology" are Registered Trademarks of Monolithic Power Systems, Inc.



Part Number	Package	Top Marking	Free Air Temperature (T _A)
MP8001DS*	SOIC-8	MP8001DS	-40°C to +85°C
MP8001ADS**	SOIC-8	MP8001A	-40°C to +85°C

ORDERING INFORMATION

* For Tape & Reel, add suffix –Z (e.g. MP8001DS–Z). For RoHS compliant packaging, add suffix –LF (e.g. MP8001DS–LF–Z)

** For Tape & Reel, add suffix –Z (e.g. MP8001ADS–Z). For RoHS compliant packaging, add suffix –LF (e.g. MP8001ADS–LF–Z)

PACKAGE REFERENCE

ABSOLUTE MAXIMUM RATINGS (1)

V _{DD} , RTN	0.3V to +100V		
PG, DET			
I _{LIM}	-0.3V to +7V		
CLASS	0.3V to +12V		
Continuous Power Dissipa			
	1.19W		
Junction Temperature	150°C		
Lead Temperature			
Storage Temperature	65°C to +150°C		
Recommended Operating Conditions ⁽³⁾			

	001141110110
Supply Voltage V _{IN}	0V to 57V
Output Current IOUT	0 to 0.4A
Operating Temperature	40°C to +85°C
Junction Temperature	40°C to +125°C

Thermal Resistance $^{(4)}$ θ_{JA} θ_{JC}

SOIC-8 105 50 ... °C/W

Notes:

- 1) Exceeding these ratings may damage the device.
- 2) The maximum allowable power dissipation is a function of the maximum junction temperature T_J (MAX), the junction-toambient thermal resistance θ_{JA} , and the ambient temperature T_A. The maximum allowable continuous power dissipation at any ambient temperature is calculated by P_D (MAX) = (T_J (MAX)-T_A)/ θ_{JA} . Exceeding the maximum allowable power dissipation will cause excessive die temperature, and the regulator will go into thermal shutdown. Internal thermal shutdown circuitry protects the device from permanent damage.
- The device is not guaranteed to function outside of its operating conditions.
- 4) Measured on JESD51-7, 4-layer PCB.

mps

ELECTRICAL CHARACTERISTICS

 V_{DD} = 48V, all voltages with respect to V_{SS} , V_{SS} = 0V; R_{DET} = 26.1k Ω , R_{CLASS} = 4.42K Ω , R_{ILIM} =178k Ω , T_A = 25°C, unless otherwise noted.

$I_A = 25^{\circ}C$, unless off Parameter	Symbol	Condition		Min	Тур	Max	Units
Detection	-,				, , , ,		
Detection on	V _{DET_ON}	V _{DD} =V _{RTN} =V _{PG} =1.9V			1.9		V
Detection off	V _{DET OFF}	V _{DD} =V _{RTN} =V _{PG} =11V			11		V
Detection on/off Hysteresis	V _{DET_H}	Falling below 11V on Threshold			0.2		V
DET Leakage Current	$V_{\text{DET}_{LK}}$	$V_{DET}=V_{VDD}=57V$, Measu	re I _{DET}		0.1	5	μA
		V _{VDD} =V _{RTN}	V _{DD} = 3V	135	140	145	μA
Detection Current	I _{DET}	$\begin{array}{c c} R_{\text{DET}} = 26.1 \text{k}\Omega, \\ \text{Measure } I_{\text{VDD}} + I_{\text{RTN}} + I_{\text{DET}} \end{array} \begin{array}{c} V_{\text{DD}} = 10.1 \text{V} \\ \end{array}$		405	420	435	μA
Classification			·				
V _{CLASS} Output Voltage	V _{CL}	Over a Load Range of 1	mA to 41.2 mA	9.6	10	10.3	V
		R _{CLASS} =4420Ω, 13≤V _{VDD} ≤21V (guar by V _{CL})		2.2	2.4	2.8	mA
		$R_{CLASS}=953\Omega$, $13 \le V_{VDD} \le 21V$ (guar by V_{CL})		10.3	10.6	11.3	
Classification Current	I _{CLASS}	$R_{CLASS}=549\Omega$, $13 \le V_{VDD} \le 21V$ (guar by V_{CL})		17.7	18.3	19.5	
		$R_{CLASS}=357\Omega$, $13 \le V_{VDD} \le 21V$ (guar by V_{CL})		27.1	28	29.5	
		$R_{CLASS}=255\Omega$, $13 \le V_{VDD} \le 21V$ (guar by V_{CL})		38	39.4	41.2	
Classification Lower Threshold	V _{CL_ON}	Regulator Turns on, V_{VDD} Rising		10.2	11.3	13	V
Classification Upper Threshold	V _{CU_OFF}	Regulator Turns off, V_{VDD} Rising		21	21.9	23	V
	V _{CU H}	Hysteresis			0.4		V
IC Supply Current during Classification	I _{IN_CLASS}	V _{DD} = 17.5V, CLASS Floating, RTN Tied to VSS			300	500	μA
Leakage Current	ILEAKAGE	$V_{\text{CLASS}} = 0 \text{ V}, V_{\text{VDD}} = 57 \text{ V}$				1	μA
Pass Device					•		•
On Resistance	R _{DS(ON)}	I _{RTN=} 300mA			1.0	1.2	Ω
Leakage Current	I _{SW LK}	V _{VDD} =V _{RTN} =57V			1	15	μA
Current Limit	I _{LIMIT}	V _{RTN} =1V	MP8001	380	420	460	mA
			MP8001A	720	810	900	mA
Inruch Limit	I _{INRUSH}	$V_{RTN}=2V, R_{ILM}=178k\Omega$	MP8001	120	150	200	mA
Inrush Limit			MP8001A	290	330	370	mA
PG					-	-	_
Latch off Voltage Threshold Rising ⁽⁵⁾		V _{RTN} Rising		9.5	10	10.5	V
Latch off Voltage Threshold Falling ⁽⁵⁾		V _{RTN} Falling			1.2		V
PG Deglitch ⁽⁵⁾		Delay Rising and Falling	g PDG	75	150	225	μs
Output Low Voltage		I _{PG} = 400 μA			0.12	0.4	V

www.MonolithicPower.com

MPS Proprietary Information. Patent Protected. Unauthorized Photocopy and Duplication Prohibited. © 2017 MPS. All Rights Reserved.

ELECTRICAL CHARACTERISTICS (continued)

 V_{DD} = 48V, all voltages with respect to V_{SS} , V_{SS} = 0V; R_{DET} = 26.1k Ω , R_{CLASS} = 4.42K Ω , R_{ILIM} =178k Ω , T_A = 25°C, unless otherwise noted.

Parameter	Symbol	Condition	Min	Тур	Max	Units
Leakage Current		$V_{PG} = 57 \text{ V}, \text{ V}_{RTN} = 0 \text{ V}$		0.1	1	μA
UVLO						
		V _{VDD} Rising (including 1.4V Diode drop)	38	40	42	v
Voltage at V _{VDD}		V _{VDD} Falling (including 1.4V Diode drop)	30.2	31.5	32.8	v
Thermal Shutdown						
Thermal Shut down Temperature	T _{RISE}	Temperature Rising	135			⁰C
Hysteresis	T _{HYS}			40		°C
Thermal Shut down Counter ⁽⁵⁾	T _{COUNT}	Events Prior to Latch off		8		counts
Thermal Counter Reset Voltage ⁽⁵⁾	V _{CRST}	Must Drop below Classification Range		10.8		V
Bias Current						
Operating Current	I _{Q(VDD)}	V_{DD} = 48V, Pins 5, 6 Floating Measure I _{VDD}		240	450	μA

Notes:

5) Guaranteed by Design.

MP8001, MP8001A - IEEE 802.3af PoE POWERED DEVICE CONTROLLER

PIN FUNCTIONS

Name	escription		
ILIM	rtup I _{LIM} Value Set (optional at this point).		
CLASS	Classification Resistor.		
3 DET 26.1kΩ Detection Resistor.			
VSS	Negative Power Supply Terminal.		
RTN	Powered Device Negative Power Terminal.		
PG	Power Good Indicator.		
NC	No Connect. Possible post-package trim input.		
VDD	Positive Power Supply Terminal.		
	ILIM CLASS DET VSS RTN PG NC		

OPERATION

The MP8001/MP8001A operate in the manner described here and in the IEEE 802.3af Powered Device (PD) Specifications. These devices (along with the power sourcing element (PSE)) operate as a safety device to supply potentially lethal voltages only when the power sourcing element recognizes a unique, tightly specified resistance at the end of an unknown length of Ethernet cable.

A 26.1k Ω resistance is presented as a load to the PSE in Detection Mode, when the PSE applies two "safe" voltages of less than 10.1V each while measuring the change in current drawn in order to determine the load resistance. If the PSE "sees" the correct load, then it may either further increase the applied voltage to enter the "classification" range of operation or switch on the nominal 48V power to the load.

The classification mode can further specify to the PSE the expected load range of the device under power so that the PSE can intelligently distribute power to as many loads as possible (within its maximum current capabilities). If a classification resistance is not present, the PD load is assumed to be the maximum of approximately 13 Watts. The classification mode is active between 14.5V and 20.5V.

The main power switch will pass a limited current above 31V, charging the external DC-to-DC converter's input capacitor in a controlled manner. The charging will continue until the controlled current drops below the either an externally programmed limiting level or 420mA/810mA, depending upon the Rlim current setting resistor. The main power switch is internally thermally protected to 135°C by reducing the output current using a foldback technique. The required power dissipation of the IC drops from the allowed peak value of 24W (420mA x 57V) to 0.18W ((420mA)² x R_{ON}) during the normal operation at turn-on. The minimum allowed capacitance of 5µF will charge in 500µs. A larger capacitor will take a proportionally longer time to charge due to the constant current charging method. If a capacitor that is too large will overheat the part and force it into thermal shutdown. The IC will reattempt charging for a number of cycles but ultimately will be shut down until the input voltage from the PSE is recycled. This is the way the IC protects itself under overload and/or shorted conditions.

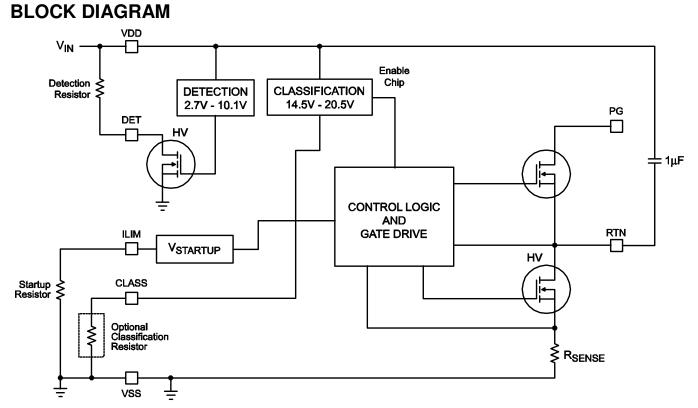
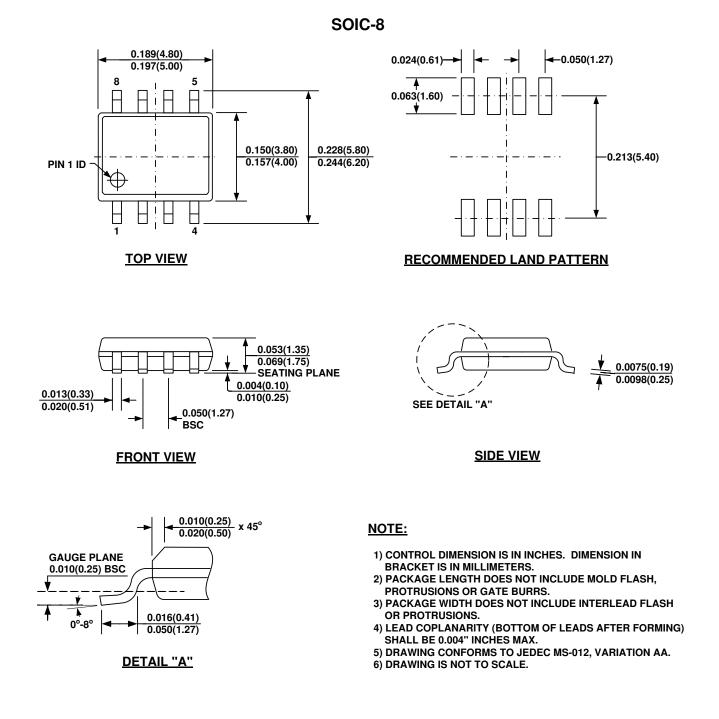



Figure 1—PD Block Diagram

PACKAGE INFORMATION

NOTICE: The information in this document is subject to change without notice. Please contact MPS for current specifications. Users should warrant and guarantee that third party Intellectual Property rights are not infringed upon when integrating MPS products into any application. MPS will not assume any legal responsibility for any said applications.