imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

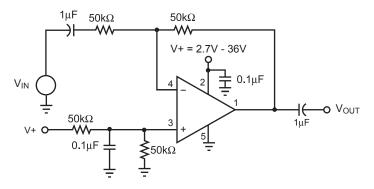
Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

The Future of Analog IC Technology

DESCRIPTION

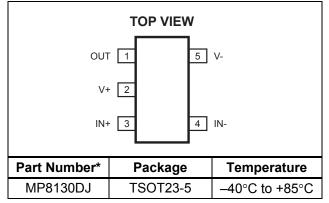
The MP8130 is a rail-to-rail output, high voltage operational amplifier in a TSOT-23 package. This amplifier provides 200KHz bandwidth while consuming an incredibly low 10 μ A of supply current. The MP8130 can operate over a single supply range of 2.7V to 36V. It is available in tiny TSOT23-5 packages.

FEATURES


- Single Supply Operation: 2.7V to 36V
- TSOT23-5 Package
- 200KHz –3dB Bandwidth
- 10µA Supply Current
- Rail-to-Rail Output
- Unity-Gain Stable
- Input Common Mode to Ground
- Drives Up to 1000pF of Capacitive Loads
- Available in a TSOT23-5 Package

APPLICATIONS

- Precision Micropower Amplifiers
- Micropower Signal Processing
- Test Equipment


"MPS" and "The Future of Analog IC Technology" are Registered Trademarks of Monolithic Power Systems, Inc.

TYPICAL APPLICATION

PACKAGE REFERENCE

* For Tape & Reel, add suffix –Z (eg. MP8130DJ–Z) For RoHS compliant packaging, add suffix –LF (eg. MP8130DJ–LF–Z)

ABSOLUTE MAXIMUM RATINGS (1)

Supply Voltage (V+ to V-)	+40.0V
Differential Input Voltage (V _{IN+} – V _{IN-})	+6.0V
Input Voltage	

 $V_{IN+} = V_{IN-}$ (V-) - 0.3V, (V+) + 0.3V

Recommended Operating Conditions ⁽²⁾

Supply Voltage	+2.7V to +36V
Operating Temperature	–40°C to +85°C

Thermal Resistance $^{(3)}$ θ_{JA} θ_{JC}

TSOT23-5..... 220.... 110.. °C/W

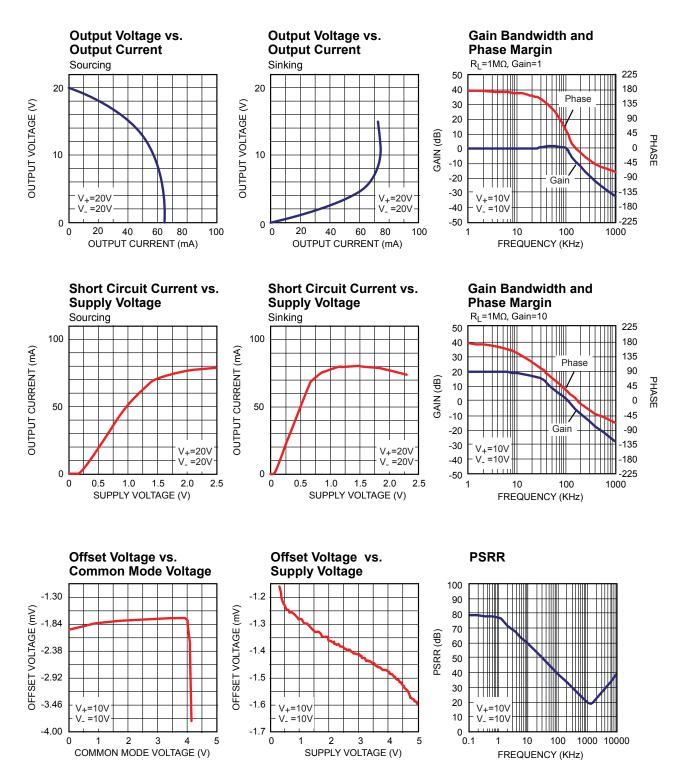
Notes:

- 1) Exceeding these ratings may damage the device.
- 2) The device is not guaranteed to function outside of its operating conditions.
- 3) Measured on approximately 1" square of 1 oz copper.

ELECTRICAL CHARACTERISTICS

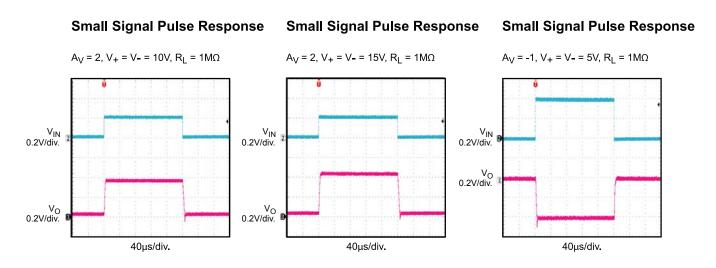
 V_{+} = +20V, V_{-} = 0V, V_{CM} = V+/2, R_{L} = 50k Ω , T_{A} = +25°C, unless otherwise noted.

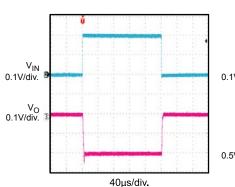
Parameter	Symbol	Condition	Min	Тур	Max	Units
Input Offset Voltage			-5	1	+5	mV
Input Offset Voltage Temp Coefficient	V _{os}			15		µV/∘C
Input Bias Current (4)	I _B			2		pА
Input Offset Current (4)	I _{OS}			0.2		pА
Input Voltage Range	V _{CM}	CMRR > 60dB (V+ = 36V)	0		36	V
Common-Mode Rejection Ratio	CMRR	$0 < V_{CM} < 36.0V (V+ = 36V)$	80	82		dB
Power Supply Rejection Ratio	PSRR	Supply Voltage change of 2.7V/ 36V		80		dB
Large Signal Voltage Gain	A _{VOL}	R_L = 100kΩ, V _{OUT} = 5.0 Peak to Peak	60	88		dB
Maximum Output Voltage Swing	V _{OUT}	R _L = 100k		(V+) – 50mV		V
Minimum Output Voltage Swing	V _{OUT}	R _L = 100k		(V–) + 50mV		V
Gain-Bandwidth Product ⁽⁴⁾	GBW	$ \begin{array}{l} R_{L} = 1M\Omega, C_{L} = 2pF, \\ V_{OUT} = 0V \end{array} $		100		KHz
–3dB Bandwidth (4)	BW			200		KHz
Slew Rate ⁽⁴⁾	SR			0.1		V/µs
Short Circuit Current	I _{SC}	Source	-20			mA
		Sink	20			mA
Supply Current	I _{sup}	No Load		10	15	μA


Note:

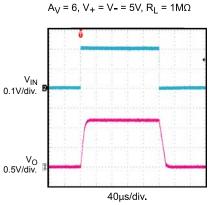
4) Guaranteed by design.

TYPICAL PERFORMANCE CHARACTERISTICS

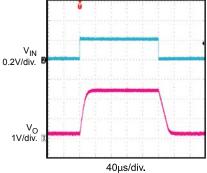

C1= C3 =0.1 μ F, C2=C4=10 μ F, R_L = 1M Ω (Reference Figure 3)


TYPICAL PERFORMANCE CHARACTERISTICS

C1= C3 =0.1 μ F, C2=C4=10 μ F, R_L = 1M Ω (Reference Figure 3)

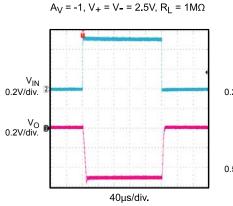

Small Signal Pulse Response

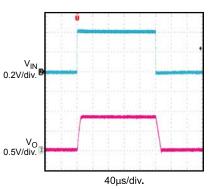
 $A_V = -1, V_+ = V_- = 12V, R_L = 1M\Omega$



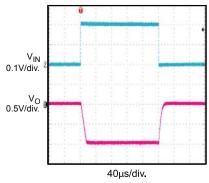
Small Signal Pulse Response

Small Signal Pulse Response


$A_V = 6$, $V_+ = V_- = 15V$, $R_L = 1M\Omega$

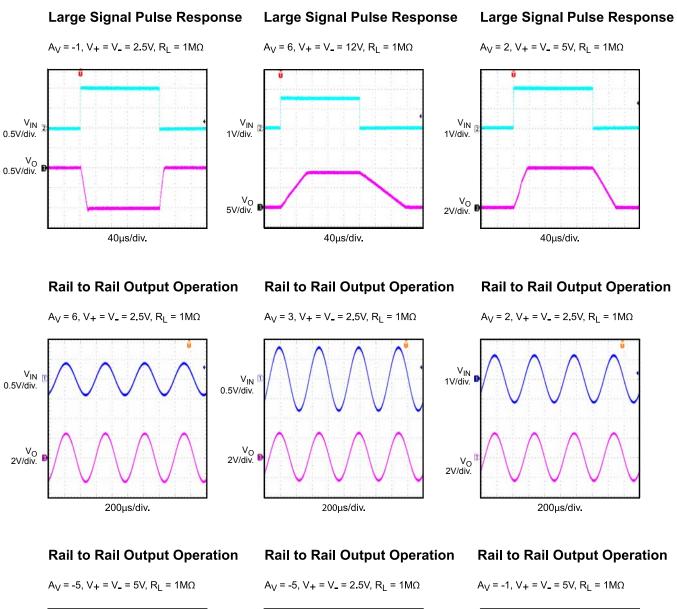

Small Signal Pulse Response

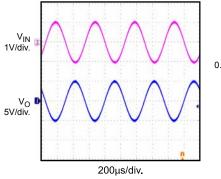
Small Signal Pulse Response

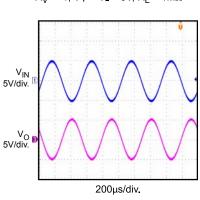

Small Signal Pulse Response

A_V = 2, V₊ = V**-** = 2.5V, R₁ = 1MΩ

$A_V = -5, V_+ = V_- = 12V, R_L = 1M\Omega$

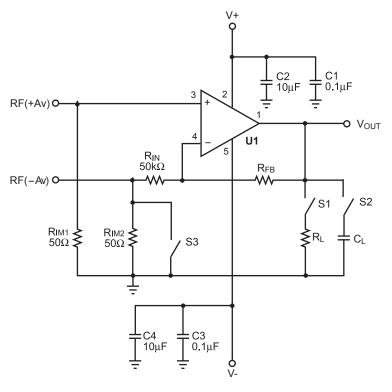



www.MonolithicPower.com MPS Proprietary Information. Unauthorized Photocopy and Duplication Prohibited. © 2007 MPS. All Rights Reserved.


TYPICAL PERFORMANCE CHARACTERISTICS

C1= C3 =0.1 μ F, C2=C4=10 μ F, R_L = 1M Ω (Reference Figure 3)

VIN B 0.5V/div. B 2V/div. D 2V/div. D 200µs/div.



PIN FUNCTIONS

Pin #	Name	Description
1	OUT	Output.
2	V+	Supply Voltage.
3	IN+	Non-Inverting Input.
4	IN-	Inverting Input.
5	V-	Ground or Supply Return Pin.

TEST CIRCUITS

Notes: Close S3 for positive gain. Input signal to RF(+Av) connector. The gain Av = $1 + R_{FB}/R_{IN}$. For unity gain, remove R_{IN} and short R_{FB} . Open S3 for negative gain. Input signal to RF(-Av) connector. The gain Av = $-R_{FB}/R_{IN}$. S1 and S2 are switches for possible resistor and capacitor load connections.

Figure 1—AC Test Circuit

TEST CIRCUITS (continued)

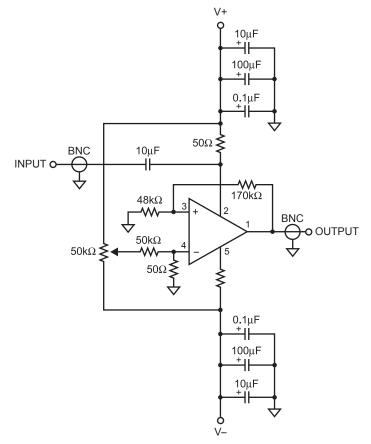


Figure 2—Positive Power Supply Rejection Ratio Measurement

APPLICATION INFORMATION

Power Supply Bypassing

Regular supply bypassing techniques are recommended. A 10μ F capacitor in parallel with a 0.1μ F capacitor on both the positive and negative supplies is ideal. For the best performance, all bypassing capacitors should be located as close to the op amp as possible and all capacitors should be low ESL (Equivalent Series Inductance) and low ESR

(Equivalent Series Resistance). Surface mount ceramic capacitors are ideal.

For large input signals, the op amp needs two clamp diodes to the input side. (See Figure 3 Large Input Signal Schematic).

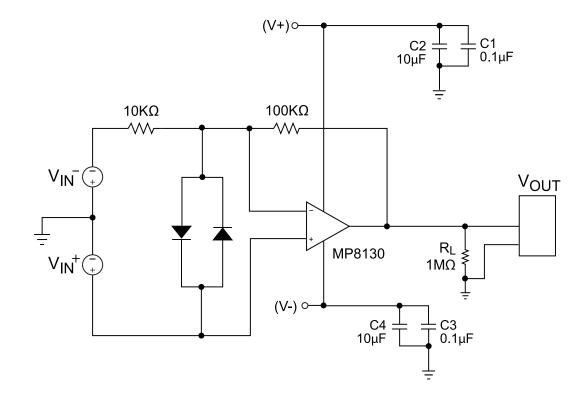
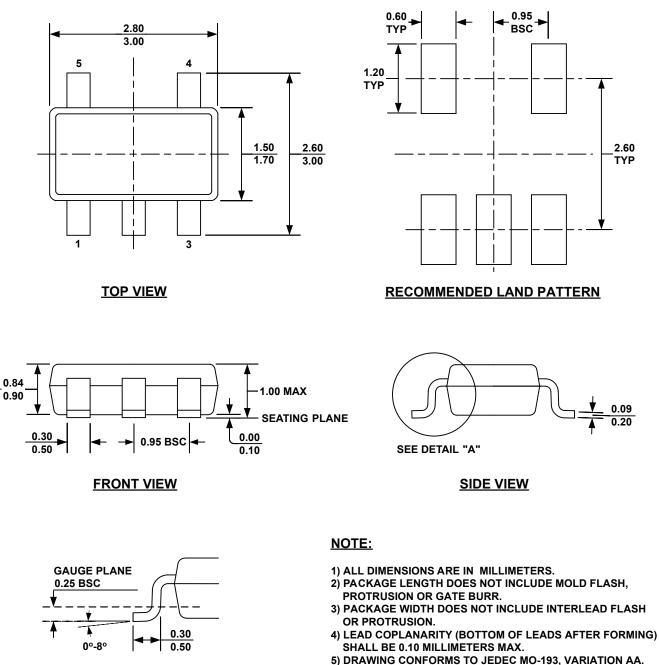



Figure 3—Large Input Signal Schematic Sold

PACKAGE INFORMATION

DETAIL "A"

TSOT23-5

NOTICE: The information in this document is subject to change without notice. Users should warrant and guarantee that third party Intellectual Property rights are not infringed upon when integrating MPS products into any application. MPS will not assume any legal responsibility for any said applications.

6) DRAWING IS NOT TO SCALE.

2.60

TYP

0.09

0.20