# imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!



# Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China



### Freescale Semiconductor User Manual

Document Number: MPC5604EEVB64UM

# MPC5604EEVB64 Evaluation board User Manual

# For MPC5604E Evaluation/Validation

by: Pavel Bohacik MSG Application Engineering

# 1 Introduction

The MPC5604EEVB64 Evaluation Board (EVB) is based on the e200z0 Power Architecture<sup>®</sup>. This board is shipped with the PPC5604EEMLH 64-pin LQFP MCU populated to allow the evaluation of the full functionality of this part.

This board is designed as a validation platform with the maximum flexibility. Where possible it is also designed for power and speed but the primary goal of this system is to allow main usecases of this processor.

# 2 References

- MPC5604ERM Reference Manual
- MPC5604E Data Sheet

#### Contents

| 1 | Introduction                    |
|---|---------------------------------|
| 2 | References                      |
| 3 | EVB Features                    |
| 4 | Configuration                   |
| 5 | Default Jumper Summary Table 16 |
| 6 | User Connector Descriptions     |
| 7 | Known Bugs List                 |



#### **EVB** Features

## 3 EVB Features

The following is a list of evaluation board features:

MPC5604E External Interfaces

- Video Encoder Wrapper connected to Omnivision connector
- Serial Audio Interface connected to the Audio connector
- Onboard Ethernet physical interface plus MII lite connector
- Crystal / clock
- JTAG
- One LIN and one UART interface selectable through Jumper setting
- One FlexCAN interface
- External Interrupts
- ADC connector

#### NOTE

Before the EVB is used or power is applied, please read the complete document on how to correctly configure the board. Failure to correctly configure the board may cause irreparable component, MCU or VB damage.

# 4 Configuration

This section details the configuration of each of the EVB functional blocks.

Throughout this document, all of the default jumper and switch settings are clearly marked with "(D)" and are shown in blue text. This should allow a more rapid return to the default state of the EVB if required. The EVB is designed with ease of use in mind and is segmented into functional blocks as shown below. Detailed silkscreen legend is used throughout the board to identify all switches, jumpers and user connectors.

#### Configuration

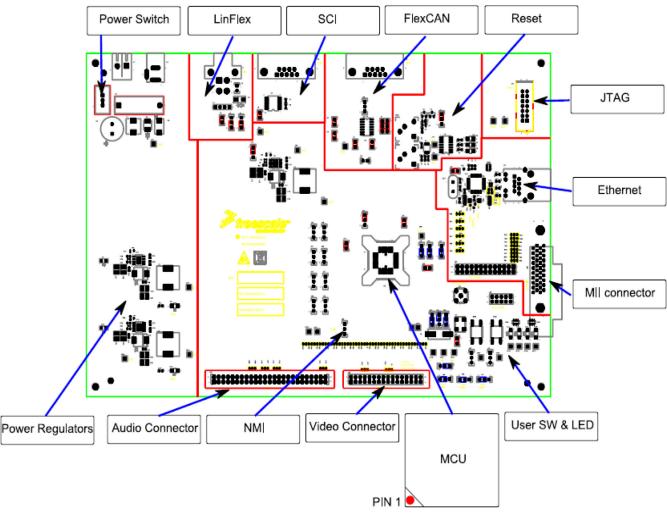



Figure 1. Evaluation board silkscreen legend

### 4.1 Processor

The MPC5604E processor is the fundamental control chip on the MPC5604EEVB64. This is a version 1 Power Architecture running at a maximum core speed of 64 MHz. The MPC5604EEVB64 allows you to fully evaluate the feature set of the MPC5604E MCU. Refer to Section 3, "EVB Features to review the list of board features.

### 4.2 Power

The EVB requires an external power supply voltage of 12V DC, minimum 1A. This allows the EVB to be easily used in a vehicle if required. The single input voltage is regulated on-board using switching regulators to provide the necessary EVB and MCU operating voltages of 5.0 V, 3.3 V and 1.2 V. For flexibility there are two different power supply input connectors on the EVB as detailed below.

### 4.3 **Power supply Connectors**

2.1 mm Barrel Connector – P4:

This connector should be used to connect the supplied wall-plug mains adapter.

#### NOTE

If a replacement or alternative adapter is used, care must be taken to ensure that the 2.1 mm plug uses the correct polarization as shown in Figure 2.



Figure 2. 2.1 mm Power Connector

2-Way Lever Connector – P1:

This can be used to connect a bare wire lead to the EVB, typically from a laboratory power supply. The polarization of the connectors is clearly marked on the bottom site of the EVB. Care must be taken to ensure correct connection.

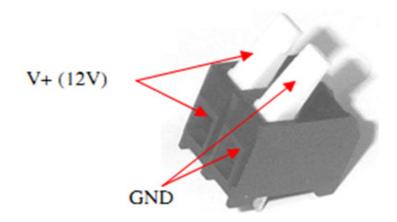



Figure 3. 2-Level Power Connector

### 4.4 Power Switch (SW1)

Side switch SW1 can be used to isolate power supply input from the EVB voltage regulators if required:

- Position 1 will turn the EVB OFF
- Position 3 will turn the EVB ON

### 4.5 Power Status—LEDs and Fuse

When Power is applied to the EVB, the Green Power LEDs adjacent to 5 V and 3.3 V of the voltage regulators show the presence of the supply voltage.

Green LED D9 = 3.3 V for EVB supply

Green LED D16 = 5 V for EVB supply

If there is no power to the MCU it is possible that either power switch SW1 is in the "OFF" position or that the fuse F1 has blown. The fuse will blow if power is applied to the EVB in reverse-bias, where a protection diode ensures that the main fuse blows rather than causing damage to the EVB circuitry. If the fuse has blown, check the bias of your power supply connection then replace fuse F1 with a 20 mm 2 A fast blow fuse.

### 4.6 MCU supply routing and Jumpers (J16, J18, J19, J20, J23)

The EVB is designed to run the MCU at two supported regulation modes:

Internal regulation mode

In this mode the I/O supply, Ballast supply and ADC supply are at the same potential of typical 3.3 V

(+/- 10%). To reduce power dissipation on the chip, the possibilities of connecting the I/O supply with the Ballast supply via a small resistor 2.5  $\Omega$  is being explored. This will lead to the Ballast supply being lower than the I/O supply.

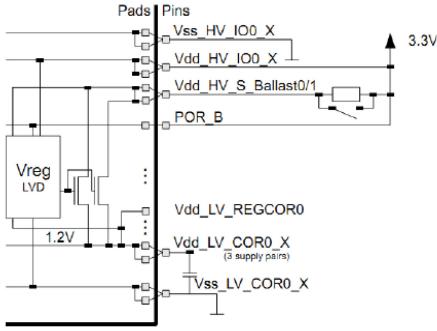



Figure 4. Internal regulation mode

#### External regulation mode

In this mode, the Ballast supply is shorted to 1.2 V (+/-10%) generated from an external regulator. The I/O supply and the MCU ADC supply continues to be at 3.3 V (+/-10%).

#### Configuration




Figure 5. External regulation mode

The FlexCAN circuity also has 5 V supplier to the transceiver.

Table 1. MCU Power Supply Jumpers – internal regulation mode

| Power Domain | Jumper                    | Position       | Description                                |
|--------------|---------------------------|----------------|--------------------------------------------|
| 1.2 V        | J18<br>(VDD_LV)           | X              | This supplies VDD_LV supply pins           |
| 3.3 V        | J19<br>(V_BALLAST_IN)     | 1-2            | This supplies<br>VDD_S_BALAST supply pin   |
| 3.3 V        | J20<br>(V_BALLAST_IN_HDR) | 2-3 <b>(D)</b> | VDD_S_BALAST routed via<br>BALAST resistor |
| 3.3 V        | J16<br>(VDD_HV)           | 1-2 <b>(D)</b> | This supplies VDD_HV supply pins           |
| 3.3 V        | J23<br>(VDD_HV_ADDR)      | 1-2 <b>(D)</b> | ADC reference voltage 3.3 V                |

The jumper configuration shown in Table 1, details the default state (D) of the EVB. In this configuration all power is supplied from the regulators.

| Power Domain | Jumper                    | Position         | Description                                |
|--------------|---------------------------|------------------|--------------------------------------------|
| 1.2 V        | J18<br>(VDD_LV)           | 1-2 <b>(D)</b>   | This supplies VDD_LV supply pins           |
| 3.3 V        | J19<br>(V_BALLAST_IN)     | 2-3 ( <b>D</b> ) | This supplies<br>VDD_S_BALAST supply       |
| 3.3 V        | J20<br>(V_BALLAST_IN_HDR) | 2-3 <b>(D)</b>   | VDD_S_BALAST routed via<br>BALAST resistor |
| 3.3 V        | J16<br>(VDD_HV)           | 1-2 <b>(D)</b>   | This supplies VDD_HV supply pins           |
| 3.3 V        | J23<br>(VDD_HV_ADR)       | 1-2 <b>(D)</b>   | ADC reference voltage 3.3 V                |

| Table 2. MCU Power Supply Jumpers – | - external regulation mode |
|-------------------------------------|----------------------------|
|-------------------------------------|----------------------------|

The jumper configuration shown in Table 2, details the default state (**D**) of the EVB. In this configuration all power supplied from the regulators.

### 4.7 MCU clock control - Main Clock Selection (J30, J31, J32, J34)

EVB supports three possible MCU clock sources:

- The local 25 MHz oscillator circuit (Y2)
- An 8 MHz Oscillator module (Y1) on the EVB, driving the MCU EXTAL signal
- An external clock input to the EVB via the SMA connector, driving the MCU EXTAL signal

The clock circuity is shown in the diagram below. Please refer to the appropriate EVB schematic for specific jumper numbers and circuity.

#### Configuration

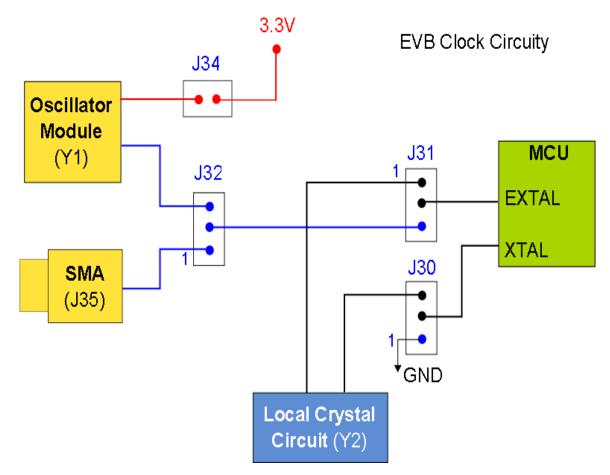



Figure 6. EVB Clock Selection

| Table 3. Table Clock source jumper selection ( | (J30, J31, J32, J34) |
|------------------------------------------------|----------------------|
|------------------------------------------------|----------------------|

| Jumper                | Position              | PCB Legend           | Description                                                                          |
|-----------------------|-----------------------|----------------------|--------------------------------------------------------------------------------------|
| J34 (Y1 PWR)          | FITTED (D)<br>REMOVED |                      | EVB oscillator module Y1 is<br>powered<br>EVB oscillator module Y1 is<br>not powered |
| J32 (OSC SEL)         | 1-2<br>2-3 (D)        | EXTAL-SMA<br>OSC-MOD | SMA external square wave<br>input<br>8 MHz Oscillator is routed<br>from Y1           |
| J30<br>Must Match J31 | 1-2<br><b>2-3 (D)</b> | Y2<br>GND            | MCU clock is Y2 XTALIN<br>GND                                                        |
| J31<br>Must Match J30 | <b>1-2 (D)</b><br>2-3 | EVB-EXTAL<br>Y2      | MCU clock is selected by<br>J68<br>MCU clock is Y2 XTALOUT                           |

#### NOTE

The MPC5604E clock circuity is 3.3 V based. Any external clock signal driven into the SMA connector must have a maximum voltage of 3.3 V.

### 4.8 Reset Boot Configuration (J44, J46, J47)

The MPC5604E has 3 boot configuration jumpers (BOOTCFG) that determine the boot location of the MCU based at POR (Power On Reset). This is shown in the Table 4:

| J47 (FAB) | J44 (ABS0) | J46 (ABS2) | Boot ID   | Boot Mode                                            |
|-----------|------------|------------|-----------|------------------------------------------------------|
| 1-2       | 2-3        | 2-3        |           | Serial Boot LinFlex<br>without autobaud              |
| 1-2       | 1-2        | 2-3        |           | Serial Boot FlexCAN without autobaud                 |
| 1-2       | 2-3        | 1-2        | —         | Serial Boot via LinFlex<br>or FlexCAN in<br>autobaud |
| 2-3       | _          | —          | Valid     | SC (Single Chip)                                     |
| 2-3       | _          | _          | Not Valid | Safe Mode                                            |

#### Table 4. BOOTCFG Control

### 4.9 NEXUS

The EVB supports a standard JTAG cable with a 14-pin 0.1" walled header footprint.

### 4.9.1 Debug Connector Pinouts

The EVB is fitted with 14-pin JTAG connector. The following diagram shows the 14-pin JTAG connector pin out (0.1) keyed header).

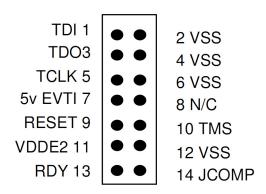



Figure 7. MPC5604E JTAG Connector

#### NOTE

In order to preserve the ability to accurately measure power consumption of the MCU pins, the JTAG connector reference voltages will be sourced directly from the 3.3 V regulator.

### 4.10 CAN Configuration (J10, J11, J12, J6, J9)

The EVB has one NXP TJA1041T high speed CAN transceiver on the MCU CAN channel. This can operate with 3.3 V I/O from the MCU. For flexibility, the CAN transceiver I/O is connected to a standard 0.1" connector and DB9 connector at the top edge of the PCB. Connectors P6 and P3 provides the CAN bus level signal interface for CAN-A. The pin out for these connectors is shown below.

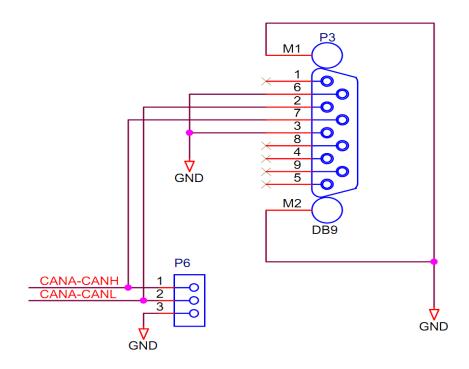



Figure 8. CAN physical interface connector

| Jumper             | Position              | PCB Legend | Description                                                                                                                    |
|--------------------|-----------------------|------------|--------------------------------------------------------------------------------------------------------------------------------|
| J11                | FITTED (D)<br>REMOVED |            | <ul> <li>5 V is applied to CAN<br/>transceiver VCC</li> <li>No 5 V power is applied to<br/>CAN transceiver</li> </ul>          |
| J12                | FITTED (D)<br>REMOVED |            | <ul> <li>12 V Power is applied to<br/>CAN transceiver VBAT</li> <li>No 12 V power is applied<br/>to CAN transceiver</li> </ul> |
| J6                 | FITTED (D)<br>REMOVED | ТХ         | MCU CAN_TXD is<br>connected to CAN<br>controller     MCU CAN_TXD is NOT<br>routed to CAN controller.                           |
| J10                | FITTED (D)<br>REMOVED | RX         | MCU CAN_RXD is<br>connected to CAN<br>controller     MCU CAN_RXD is NOT<br>routed to CAN controller.                           |
| J9<br>Position 1-2 | FITTED (D)<br>REMOVED | WAKE       | CAN Transceiver WAKE<br>is connected to GND     WAKE is not connected<br>and available on Pin 2                                |
| J9<br>Position 3-4 | FITTED (D)<br>REMOVED | STB        | CAN Transceiver STB is<br>connected to 5 V     STB is not connected and<br>available on Pin 4                                  |
| J9<br>Position 5-6 | FITTED (D)<br>REMOVED | EN         | <ul> <li>CAN Transceiver is<br/>Enabled</li> <li>EN is not connected and<br/>available on Pin 6</li> </ul>                     |

| Table 5. | CAN | Control | Jumpers | ; (J10. | J11. | J12. 、 | J6. J9) |
|----------|-----|---------|---------|---------|------|--------|---------|
|          |     |         |         | ,       | ,    | , -    |         |

Access to the Error and inhibit signals from the transceivers is provided on J14.

#### NOTE

You must do the fitting of the jumper headers carefully, as they can easily be fitted in the incorrect orientation.

### 4.11 RS232 Configuration (J3, J7, J8)

The EVB has a single MAX3223 RS232 transceiver device, providing RS232 signal translation for the MCU LINFlex channel.

The RS232 output from the MAX3223 device is connected to a DB9 connector, allowing a direct RS232 connection to a PC or terminal. Connector P2 provides the RS232 level interface for MCU SCI (LINFlex). The connector pinout is detailed below.

NOTE

The hardware flow control is not supported on this implementation.

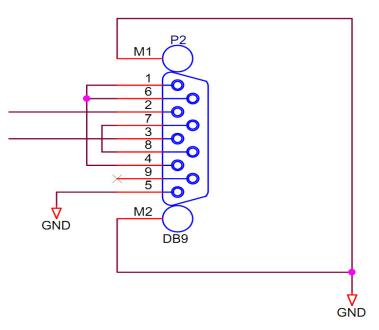



Figure 9. RS232 Physical Notifies Connector

The MPC5604E LINFlex also provides hardware LIN master capability which is supported on the EVB via LIN transceiver. Jumpers J7 and J8 are provided to isolate the MCU LINFlex signals from the RS232 interface as described below. There is also a global power jumper (J3) controlling the power to the RS232 transceiver.

| Jumper          | Position                    | Description                                                                                                                     |
|-----------------|-----------------------------|---------------------------------------------------------------------------------------------------------------------------------|
| J3<br>(SCI-PWR) | FITTED (D)<br>REMOVED       | <ul> <li>Power is applied to the<br/>MAX3223 transceiver</li> <li>No power is applied to the<br/>MAX3223 transceiver</li> </ul> |
| J7              | 2-3 ( <b>D</b> )<br>REMOVED | <ul> <li>MCU TXD is routed to<br/>MAX3223</li> <li>MCU TXD signal is<br/>disconnected from<br/>RS232/LIN</li> </ul>             |
| J8              | 2-3 ( <b>D</b> )<br>REMOVED | <ul> <li>MCU RXD is routed to<br/>MAX3223</li> <li>MCU RXD signal is<br/>disconnected from<br/>RS232/LIN</li> </ul>             |

The default configuration enables SCI. RS232 compliant interfaces (with no hardware flow control) are available at DB9 connector P2. If the MCU is configured such that SCI is set as a normal I/O port, then

the relevant jumpers must be removed to avoid any conflicts occurring. If required, jumper J3 can be used to completely disable the SCI transceiver.

### 4.12 LIN Configuration (J2, J5, J7, J8)

The EVB is fitted with one Freescale MCZ33661EF LIN transceiver. The LINFlex module incorporates a UART mode, and as such, the LIN transceiver are connected to the TX and RX signals of SCI via UART.

For flexibility, the LIN transceiver is connected to a standard 0.1" connector (P7) and to one pin molex connector (J1) at the top edge of the PCB as shown in the figure below.

For ease of use, the 12 V EVB supply is fed to pin1 of the P7 header and the LIN transceiver power input to pin 2. This allows the LIN transceiver to be powered directly from the EVB supply by simply linking pins 1 and 2 of header P7 using a 0.1" jumper shunt.

\*\* Ensure P7 is added before running LIN as it is not the default on the EVB

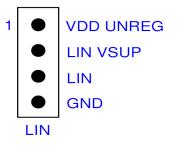



Figure 10. LIN physical Interface Connector P7

Along with the MCU signal routing jumpers (J7 / J8), there is jumper (J5) to enable or disable the LIN transceiver and jumper (J2) which determines if the LIN transceiver is operating in master or slave mode, as defined in the table below.

#### Configuration

| Jumper | Position              | Description                                                                                                                                     |
|--------|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|
| J2     | FITTED<br>REMOVED (D) | <ul> <li>LIN transceiver is<br/>configured for LIN Master<br/>mode</li> <li>LIN transceiver is<br/>configured for LIN Slave<br/>mode</li> </ul> |
| J5*    | FITTED (D)<br>REMOVED | <ul> <li>The LIN transceiver is<br/>enabled</li> <li>The LIN transceiver is<br/>disabled</li> </ul>                                             |
| J7     | <b>2-3 (D)</b><br>1-2 | <ul> <li>MCU LIN_TXD is<br/>connected to SCI TX</li> <li>MCU LIN0_TXD is<br/>connected to LIN Physical</li> </ul>                               |
| J8     | 2-3 (D)<br>1-2        | <ul> <li>MCU LIN_RXD is<br/>connected to SCI TX</li> <li>MCU LIN_RXD is<br/>connected to LIN Physical</li> </ul>                                |

#### NOTE

Jumper J5 do not route power to LIN transceivers, they only control an enable line on the LIN device. Power to the LIN transceiver is supplied via connector P7, Pin 2.

The Default LIN configuration is with the module enabled in master mode, LIN slave mode can be enabled by removing jumper J2.

### 4.13 Ethernet

### 4.13.1 Ethernet Physical Interface (J22)

The EVB is fitted with a National Semiconductor DP83848C Ethernet physical interface (U10) and a RJ45 connector with integrated activity LEDs and magnetics (J24).

The National Semiconductor DP83848C physical interface is connected to the MII on the MPC5604E. This is a fixed connection with no means of isolation. Pullups are also present on some of these signals. These are detailed in the table below. Please be aware of this when using the related GPIOs.

| Port Pin  | Pull Direction | Strength |
|-----------|----------------|----------|
| FEC_CRS   | Down (GND)     | 2.2 kΩ   |
| FEC_RX_ER | Down (GND)     | 2.2 kΩ   |
| FEC_RX_DV | Down (GND)     | 2.2 kΩ   |
| FEC_RXD0  | Down (GND)     | 2.2 kΩ   |

Table 8. Pull up/Pull down resistors for Ethernet Physical

#### Configuration

| Port Pin     | Pull Direction | Strength       |
|--------------|----------------|----------------|
| FEC_RXD1     | Down (GND)     | 2.2 kΩ         |
| FEC_RXD2     | Down (GND)     | 2.2 kΩ         |
| FEC_RXD3     | Down (GND)     | 2.2 kΩ         |
| FEC_TX_EN    | Down (GND)     | 2.2 kΩ         |
| FEC_TXD0     | Down (GND)     | 2.2 kΩ         |
| FEC_TXD1     | Down (GND)     | 2.2 kΩ         |
| FEC_TXD2     | Down (GND)     | 2.2 kΩ         |
| FEC_TXD3     | Down (GND)     | 2.2 kΩ         |
| FEC_MDC_PHY  | Up (3.3 V)     | 1.5 k $\Omega$ |
| FEC_MDIO_PHY | Up (3.3 V)     | 1.5 kΩ         |

Table 8. Pull up/Pull down resistors for Ethernet Physical

The voltage domain that is used by the GPIO should be set to 3.3 V when power is applied to the physical interface. Power can be removed from the physical interface via J22.

Table 9. Ethernet Physical Interface Power Supply Enabled (J22)

| Jumper           | Position              | PCB legend | Description                                                                                                                                                                      |
|------------------|-----------------------|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| J22<br>(PHY PWR) | FITTED (D)<br>REMOVED | PHY PWR    | <ul> <li>The DP83848C Ethernet<br/>Physical Interface is<br/>powered from the 3.3 V<br/>SR.</li> <li>The DP83848C Ethernet<br/>Physical Interface is not<br/>powered.</li> </ul> |

### 4.13.2 Ethernet MII connector (J49)

An universal 40-pin MII Connector is also provided on the board to provide possibility to connect customer Ethernet Physical Interface to MPC5604E interface signals. Since this connector is normally used by the Ethernet PHY daughter cards of standard PHY vendors, this provides a flexibility of supporting validation with multiple PHY vendors.

Connector pin definition is located in the Section 6.1, "FEC (J33, J49) below.

Following resistors must be populated to enable connection between MPC5604E and MII connector on board:

| Resistor to be populated | Value | Description                          |
|--------------------------|-------|--------------------------------------|
| R62                      | 0Ω    | FEC_TX_CLK routed to FEC_TX_CLK_CONN |
| R60                      | 0Ω    | FEC_TX_EN routed to FEC_TX_EN_CONN   |
| R58                      | Ω0    | FEC_TXD0 routed to FEC_TXD0_CONN     |
| R56                      | 0Ω    | FEC_TXD1 routed to FEC_TXD1_CONN     |
| R54                      | 0Ω    | FEC_TXD2 routed to FEC_TXD2_CONN     |
| R53                      | 0Ω    | FEC_TXD3 routed to FEC_TXD3_CONN     |
| R82                      | 0Ω    | FEC_RXD3 routed to FEC_RXD3_CONN     |
| R84                      | 0Ω    | FEC_RXD2 routed to FEC_RXD2_CONN     |
| R86                      | 0Ω    | FEC_RXD1 routed to FEC_RXD1_CONN     |
| R88                      | 0Ω    | FEC_RXD0 routed to FEC_RXD0_CONN     |
| R90                      | 0Ω    | FEC_RX_DV routed to FEC_RX_DV_CONN   |
| R92                      | 0Ω    | FEC_RX_CLK routed to FEC_RX_CLK_CONN |
| R94                      | Ω     | FEC_MDIO routed to FEC_MDIO_CONN     |

Table 10. Resistor configuration for MPC5604E MII interface routed to MII connector

### 4.14 Video Connector (J45)

EVB has a possibility to connect Camera module to Video connector (J45). Camera signals are then routed to the Video Encoder Wrapper module of MPC5604E. Video connector fits to standard connector used on Omnivision camera evaluation boards.

Connector pin definition is located in the Section 6.4, "VIDEO (J45) below.

Following resistors and capacitors have to be populated to enable connection between MPC5604E and Video connector on board:

| Resistor and<br>capacitor to be<br>populated | Value | Description                      |
|----------------------------------------------|-------|----------------------------------|
| R33                                          | 10Ω   | PORT_A0 routed to CON_VID_DATA11 |
| R26                                          | 10Ω   | PORT_A1 routed to CON_VID_DATA10 |
| R35                                          | 10Ω   | PORT_A2 routed to CON_VID_DATA9  |
| R28                                          | 10Ω   | PORT_A3 routed to CON_VID_DATA8  |
| R37                                          | 10Ω   | PORT_A4 routed to CON_VID_DATA7  |
| L4                                           | 75Ω   | PORT_A5 routed to CON_VID_CLK    |
| R39                                          | 10Ω   | PORT_A6 routed to CON_VID_VSYNC  |
| R41                                          | 10Ω   | PORT_A7 routed to CON_VID_HSYNC  |
| R43                                          | 10Ω   | PORT_A8 routed to CON_VID_DATA6  |

Table 11.

| Table 1 | 11 |  |
|---------|----|--|
|---------|----|--|

| Resistor and<br>capacitor to be<br>populated | Value | Description                      |
|----------------------------------------------|-------|----------------------------------|
| R31                                          | 10Ω   | PORT_A9 routed to CON_VID_DATA5  |
| R45                                          | 10Ω   | PORT_A10 routed to CON_VID_DATA4 |
| R47                                          | 10Ω   | PORT_A11 routed to CON_VID_DATA3 |
| R49                                          | 10Ω   | PORT_A12 routed to CON_VID_DATA2 |
| R77                                          | 10Ω   | PORT_A15 routed to VID_PWDN      |
| L6                                           | 75Ω   | PORT_C4 routed to MC_RGM_ABS0    |

Most of the Omnivision camera evaluation boards are configured via I2C interface. For this purpose J27, J28, J39 and J37 should be connected correctly. For pin definitions see Section 6.8, "I2C clock selection (J27, J28, J36, J37, J39, J40).

#### 4.14.1 Audio Connector

EVB has a possibility to connect Sahara SGTL5000 daughter card to Audio connector J48. Audio signals are routed to Serial Audio Interface module of MPC5604E.

Connector pin definition is located in the Section 6.3, "Audio (J48) below.

Following resistors and capacitors have to be populated to enable connection between MPC5604E and Audio connector on board.

| Resistor and<br>capacitor to be<br>populated | Value | Description                  |
|----------------------------------------------|-------|------------------------------|
| R64                                          | Ω     | PORT_C3 routed to ETC1       |
| R66                                          | Ω     | PORT_C2 routed to ETC0       |
| R32                                          | Ω     | PORT_A0 routed to SAI0_DATA0 |
| R25                                          | Ω     | PORT_A1 routed to SAI0_DATA1 |
| R34                                          | Ω     | PORT_A2 routed to SAI0_DATA2 |
| R27                                          | Ω     | PORT_A3 routed to SAI0_DATA3 |
| R36                                          | Ω     | PORT_A4 routed to SAI0_SYNC  |
| R29                                          | Ω     | PORT_A5 routed to SAI1_SYNC  |
| R38                                          | Ω     | PORT_A6 routed to SAI2_SYNC  |
| R40                                          | Ω     | PORT_A7 routed to SAI0_BCLK  |
| R42                                          | Ω     | PORT_A8 routed to SAI2_DATA0 |
| R30                                          | Ω     | PORT_A9 routed to SAI2_BCLK  |
| R44                                          | Ω     | PORT_A10 routed to SAI2_MCLK |

| Table ' | 12. |
|---------|-----|
|---------|-----|

| Resistor and<br>capacitor to be<br>populated | Value | Description                  |
|----------------------------------------------|-------|------------------------------|
| R70                                          | Ω     | PORT_B1 routed to SAI1_DATA0 |
| R72                                          | Ω     | PORT_B0 routed to SAI1_BCLK  |
| R76                                          | Ω     | PORT_A15 routed to SAI1_MCLK |
| R78                                          | Ω     | PORT_C4 routed to SAI0_MCLK  |

Table 12.

Sahara SGTL5000 audio daughter card uses I2C interface for configuration. For this purpose J27, J28, J39 and J37 should be connected correctly. For pin definitions see Section 6.8, "I2C clock selection (J27, J28, J36, J37, J39, J40).

# 5 Default Jumper Summary Table

| Jumper<br>Reference | Default Setting   | Jump<br>Count | Description                                                    |
|---------------------|-------------------|---------------|----------------------------------------------------------------|
| J2                  | REMOVED           | 1             | Master Mode Pullup disable                                     |
| J3                  | 1-2               | 1             | Power on SCI is enabled                                        |
| J4                  | 1-2               | 1             | Power for User switches is disabled                            |
| J5                  | 1-2               | 1             | Power on LIN is enabled                                        |
| J6                  | 1-2               | 1             | CAN TXD is connected to MCU                                    |
| J7                  | 2-3               | 1             | UART TXD is connected to MCU                                   |
| J8                  | 2-3               | 1             | UART RXD is connected to MCU                                   |
| 18                  | 1-2<br>3-4<br>5-6 | 3             | CAN control signals are on                                     |
| J10                 | 1-2               | 1             | CAN RXD is connected to MCU                                    |
| J11                 | 1-2               | 1             | Power on CAN PHY is enabled                                    |
| J12                 | 1-2               | 1             | Power on CAN PHY is enabled                                    |
| J13                 | 2-3               | 1             | 1.2 power supply switch is supplied from 12 V $$               |
| J15                 | 1-2               | 1             | VPP_TEST should be grounded                                    |
| J16                 | 1-2               | 1             | VDD_HV is enabled                                              |
| J18                 | 1-2               | 1             | VDD_LV is enabled (external regulation mode)                   |
| J19                 | 2-3               | 1             | VDD_BALAST is powered from 1.2 V<br>(external regulation mode) |
| J20                 | 2-3               | 1             | VDD_BALAST_IN resistor is connected                            |
| J21                 | 2-3               | 1             | JTAG_RST is connected to Ethernet PHY                          |

#### Table 13. Default Jumper Positions

| Jumper<br>Reference | Default Setting | Jump<br>Count | Description                          |
|---------------------|-----------------|---------------|--------------------------------------|
| J22                 | 1-2             | 1             | Power on Ethernet PHY is enabled     |
| J23                 | 1-2             | 1             | Power on VDD_HV_ADR is enabled       |
| J30                 | 2-3             | 1             | Use on board 8.0 MHz crystal         |
| J31                 | 1-2             | 1             | Use on board 8.0 MHz crystal         |
| J32                 | 2-3             | 1             | Use on board 8.0 MHz crystal         |
| J34                 | 1-2             | 1             | Use on board 8.0 MHz crystal         |
| J41                 | 1-2             | 1             | 3.3 V connected to FEC MII connector |
| J44                 | 2-3             | 1             | MC_RGM_ABS0 is tied to ground        |
| J46                 | 2-3             | 1             | MC_RGM_ABS2 is tied to ground        |
| J47                 | 2-3             | 1             | MC_RGM_FAB is tied to ground         |

Table 13. Default Jumper Positions

# 6 User Connector Descriptions

This section details the pinout of the EVB user connectors. The connectors are 0.1 inch pitch turned pin headers and are located at various locations on the EVB. They are grouped by port functionality and the PCB legend shows the respective port number adjacent to each pin.

### 6.1 FEC (J33, J49)

| Pin | Function   |
|-----|------------|
| 1   | GND        |
| 2   | GND        |
| 3   | FEC_TXD3   |
| 4   | FEC_RXD2   |
| 5   | FEC_TXD2   |
| 6   | FEC_RXD3   |
| 7   | FEC_TXD0   |
| 8   | FEC_RXD1   |
| 9   | FEC_TXD1   |
| 10  | FEC_RXD0   |
| 11  | FEC_TX_CLK |
| 12  | EC_RX_CLK  |
| 13  | GND        |
| 14  | GND        |
| 15  | FEC_TX_EN  |

| Table 14. | FEC | Connector   | Pinout ( | (J33) |
|-----------|-----|-------------|----------|-------|
|           |     | 00111100101 | 1 mout   | 000)  |

| Pin | Function  |
|-----|-----------|
| 16  | NC        |
| 17  | NC        |
| 18  | NC        |
| 19  | GND       |
| 20  | GND       |
| 21  | FEC_MDC   |
| 22  | NC        |
| 23  | FEC_MDIO  |
| 24  | FEC_RX_DV |
| 25  | GND       |
| 26  | GND       |

#### Table 14. FEC Connector Pinout (J33)

#### Table 15. MII Connector Pinout (J49)

| Pin | Function       |
|-----|----------------|
| 1   | POWER_MII_CONN |
| 2   | MDIO           |
| 3   | MDC            |
| 4   | RXD3           |
| 5   | RXD2           |
| 6   | RXD1           |
| 7   | RXD0           |
| 8   | RXDV           |
| 9   | RXCLK          |
| 10  | RXER           |
| 11  | TXER           |
| 12  | TXCLK          |
| 13  | TXEN           |
| 14  | TXD0           |
| 15  | TXD1           |
| 16  | TXD2           |
| 17  | TXD3           |
| 18  | COL            |
| 19  | CRS            |
| 20  | POWER_MII_CONN |
| 21  | POWER_MII_CONN |

| Pin | Function       |
|-----|----------------|
| 22  | GND            |
| 23  | GND            |
| 24  | GND            |
| 25  | GND            |
| 26  | GND            |
| 27  | GND            |
| 28  | GND            |
| 29  | GND            |
| 30  | GND            |
| 31  | GND            |
| 32  | GND            |
| 33  | GND            |
| 34  | GND            |
| 35  | GND            |
| 36  | GND            |
| 37  | GND            |
| 38  | GND            |
| 39  | GND            |
| 40  | POWER_MII_CONN |

#### Table 15. MII Connector Pinout (J49) (continued)

### 6.2 ADC(J38)

| Pin | Function    |
|-----|-------------|
| 1   | GND         |
| 2   | GND         |
| 3   | ADC0_AN[11] |
| 4   | ADC0_AN[13] |
| 5   | GND         |
| 6   | GND         |
| 7   | ADC0_AN[12] |
| 8   | ADC0_AN[14] |
| 9   | GND         |
| 10  | GND         |

#### Table 16. ADC Connector Pinout (J38)

### 6.3 Audio (J48)

#### Table 17. Audio Connector Pinout (J48)

| Pin | Function               |
|-----|------------------------|
| 1   | 3.3 V                  |
| 2   | GND                    |
| 3   | SAI0_DATA3             |
| 4   | GND                    |
| 5   | SAI0_DATA2             |
| 6   | GND                    |
| 7   | SAI0_DATA1             |
| 8   | GND                    |
| 9   | SAI0_DATA0             |
| 10  | GND                    |
| 11  | SAI0_BCLK              |
| 12  | GND                    |
| 13  | SAI0_SYNC              |
| 14  | GND                    |
| 15  | SAI0_MCLK              |
| 16  | GND                    |
| 17  | ETC2/AN14 (ADC signal) |
| 18  | GND                    |
| 19  | AUD_IIC1_CLK           |

| Pin | Function         |
|-----|------------------|
| 20  | GND              |
| 21  | AUD_IIC1_DATA    |
| 22  | GND              |
| 23  | SAI1_D0          |
| 24  | GND              |
| 25  | SAI1_BCLK        |
| 26  | GND              |
| 27  | ETC1             |
| 28  | GND              |
| 29  | SAI1_SYNC        |
| 30  | GND              |
| 31  | SAI1_MCLK        |
| 32  | GND              |
| 33  | AUD_IIC0_CLK     |
| 34  | GND              |
| 35  | AUD_IIC0_DATA    |
| 36  | GND              |
| 37  | SAI2_DATA0       |
| 38  | GND              |
| 39  | SAI2_BCLK        |
| 40  | GND              |
| 41  | SAI2_SYNC        |
| 42  | GND              |
| 43  | SAI2_MCLK        |
| 44  | GND              |
| 45  | ETC0             |
| 46  | GND              |
| 47  | AN13(ADC signal) |
| 48  | GND              |
| 49  | 5V               |
| 50  | GND              |

#### Table 17. Audio Connector Pinout (J48) (continued)

### 6.4 VIDEO (J45)

| Pin | Function       |
|-----|----------------|
| 1   | CON_VID_DATA4  |
| 2   | CON_VID_DATA5  |
| 3   | CON_VID_DATA6  |
| 4   | CON_VID_DATA7  |
| 5   | CON_VID_DATA8  |
| 6   | CON_VID_DATA9  |
| 7   | CON_VID_DATA10 |
| 8   | CON_VID_DATA11 |
| 9   | VID_PWDN       |
| 10  | NC             |
| 11  | VID_IIC_DATA   |
| 12  | NC             |
| 13  | VID_IIC_CLK    |
| 14  | CON_VID_HSYNC  |
| 15  | GND            |
| 16  | CON_VID_VSYNC  |
| 17  | GND            |
| 18  | CON_VID_CLK    |
| 19  | MC_RGM_ABS0    |
| 20  | 5 V            |
| 21  | GND            |
| 22  | 5 V            |
| 23  | CON_VID_DATA2  |
| 24  | CON_VID_DATA3  |
| 25  | NC             |
| 26  | NC             |
| 27  | NC             |
| 28  | NC             |
| 29  | NC             |
| 30  | NC             |
| 31  | GND            |
| 32  | GND            |

#### Table 18. Video Connector Pinout (J45)

### 6.5 NMI (J29)

| Table 19 | . NMI | Connector | Pinout | (J29) |
|----------|-------|-----------|--------|-------|
|----------|-------|-----------|--------|-------|

| Pin | Function |
|-----|----------|
| 1   | GND      |
| 2   | NMI      |
| 3   | 3.3 V    |

### 6.6 LINFLEX (P7)

Table 20. LINFLEX Connector Pinout (P7)

| Pin | Function  |  |
|-----|-----------|--|
| 1   | 12 V      |  |
| 2   | LINC-VSUP |  |
| 3   | LINC-LIN  |  |
| 4   | GND       |  |

### 6.7 FlexCAN (P6)

Table 21. FLEXCAN Connector Pinout (P6)

| Pin | Function |  |
|-----|----------|--|
| 1   | CANH     |  |
| 2   | CANL     |  |
| 3   | GND      |  |

### 6.8 I2C clock selection (J27, J28, J36, J37, J39, J40)

Table 22. Routing IIC0 to Video Connector – video usecase

| Signal description | Jumper Reference | Configuration | Description                                 |
|--------------------|------------------|---------------|---------------------------------------------|
| IIC 0 clock        | J25              | 2-3           | Port_C5 routed to J39 as<br>IIC0_CLK signal |
|                    | J39              | 1-2           | IIC0_CLK signal routed to J28               |
|                    | J28              | 2-3           | IIC0_CLK is selected for<br>Video IIC clock |
| IIC 0 data         | J26              | 2-3           | Port_C6 routed to J40 as IIC0_DATA signal   |
|                    | J40              | 1-2           | IIC0_DATA signal routed to J37              |
|                    | J37              | 2-3           | IIC0_DATA is selected for<br>Video IIC data |