Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs. With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas. We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry! # Contact us Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China # MPC8309 PowerQUICC II Pro Integrated Communications Processor Family Hardware Specifications This document provides an overview of the *MPC*8309 *PowerQUICC II Pro* processor features. The MPC8309 is a cost-effective, highly integrated communications processor that addresses the requirements of several networking applications including residential gateways, modem/routers, industrial control, and test and measurement applications. The MPC8309 extends current PowerQUICC offerings, adding higher CPU performance, additional functionality, and faster interfaces, while addressing the requirements related to time-to-market, price, power consumption, and board real estate. This document describes the electrical characteristics of MPC8309. To locate published errata or updates for this document, refer to the MPC8309 product summary page on our website listed on the back cover of this document or contact your local Freescale sales office. ### Contents | 2. | Electrical characteristics | 7 | |-----|-----------------------------|-----| | 3. | Power characteristics | 11 | | 4. | Clock input timing | 12 | | 5. | RESET initialization | 13 | | 6. | DDR2 SDRAM | 14 | | 7. | Enhanced local bus | 19 | | 8. | Ethernet and MII management | 22 | | 9. | TDM/SI | 29 | | 10. | HDLC | 30 | | 11. | PCI | 32 | | 12. | USB | 34 | | 13. | DUART 3 | 36 | | 14. | eSDHC | 37 | | 15. | FlexCAN | 39 | | 16. | I^2C | 10 | | 17. | Timers | 12 | | 18. | GPIO | 13 | | 19. | IPIC | 14 | | 20. | SPI | 14 | | 21. | JTAG | 16 | | 22. | Package and pin listings | 5(| | 23. | Clocking | 53 | | 24. | Thermal | 70 | | 25. | System design information | 73 | | 26. | Ordering information | 16 | | 27 | Dogument particion history | 7 C | Overview # 1 Overview The MPC8309 incorporates the e300c3 (MPC 6 03e-based) core built on Power Architecture® technology, which includes 16 KB of each L1 instruction and data caches, dual integer units, and on-chip memory management units (MMUs). The MPC8309 also includes a 32-bit PCI controller, two DMA engines and a 16/32-bit DDR2 memory controller with 8-bit ECC. A new communications complex based on QUICC Engine technology forms the heart of the networking capability of the MPC8309. The QUICC Engine block contains several peripheral controllers and a 32-bit RISC controller. Protocol support is provided by the main workhorses of the device—the unified communication controllers (UCCs). A block diagram of the MPC8309 is shown in the following figure. Figure 1. MPC8309 block diagram Each of the five UCCs can support a variety of communication protocols such as 10/100 Mbps MII/RMII Ethernet, HDLC and TDM. In summary, the MPC8309 provides users with a highly integrated, fully programmable communications processor. This helps to ensure that a low-cost system solution can be quickly developed and offers flexibility to accommodate new standards and evolving system requirements. MPC8309 PowerQUICC II Pro Integrated Communications Processor Family Hardware Specifications, Rev. 2 3 ### 1.1 Features The major features of the device are as follows: - e300c3 Power Architecture processor core - Enhanced version of the MPC603e core - High-performance, superscalar processor core with a four-stage pipeline and low interrupt latency times - Floating-point, dual integer units, load/store, system register, and branch processing units - 16-KB instruction cache and 16-KB data cache with lockable capabilities - Dynamic power management - Enhanced hardware program debug features - Software-compatible with Freescale processor families implementing Power Architecture technology - Separate PLL that is clocked by the system bus clock - Performance monitor - QUICC Engine block - 32-bit RISC controller for flexible support of the communications peripherals with the following features: - One clock per instruction - Separate PLL for operating frequency that is independent of system's bus and e300 core frequency for power and performance optimization - 32-bit instruction object code - Executes code from internal IRAM - 32-bit arithmetic logic unit (ALU) data path - Modular architecture allowing for easy functional enhancements - Slave bus for CPU access of registers and multiuser RAM space - 48 KB of instruction RAM - 16 KB of multiuser data RAM - Serial DMA channel for receive and transmit on all serial channels - Five unified communication controllers (UCCs) supporting the following protocols and interfaces: - 10/100 Mbps Ethernet/IEEE Std. 802.3® through MII and RMII interfaces. - IEEE Std. 1588TM support - HDLC/Transparent (bit rate up to QUICC Engine operating frequency / 8) - HDLC Bus (bit rate up to 10 Mbps) - Asynchronous HDLC (bit rate up to 2 Mbps) - Two TDM interfaces supporting up to 128 QUICC multichannel controller channels, each running at 64 kbps MPC8309 PowerQUICC II Pro Integrated Communications Processor Family Hardware Specifications, Rev. 2 ### Overview For more information on QUICC Engine sub-modules, see *QUICC Engine Block Reference Manual with Protocol Interworking*. - DDR SDRAM memory controller - Programmable timing supporting DDR2 SDRAM - Integrated SDRAM clock generation - Supports 8-bit ECC - 16/32-bit data interface, up to 333-MHz data rate - 14 address lines - The following SDRAM configurations are supported: - Up to two physical banks (chip selects), 512-MB addressable space for 32 bit data interface - 64-Mbit to 2-Gbit devices with x8/x16/x32 data ports (no direct x4 support) - One 16-bit device or two 8-bit devices on a 16-bit bus, or two 16-bit devices or four 8-bit devices on a 32-bit bus Support for up to 16 simultaneous open pages for DDR2 - Two clock pair to support up to 4 DRAM devices - Supports auto refresh - On-the-fly power management using CKE - Enhanced local bus controller (eLBC) - Multiplexed 26-bit address and 8-/16-bit data operating at up to 66 MHz - Eight chip selects supporting eight external slaves - Four chip selects dedicated - Four chip selects offered as multiplexed option - Supports boot from parallel NOR Flash and parallel NAND Flash - Supports programmable clock ratio dividers - Up to eight-beat burst transfers - 16- and 8-bit ports, separate $\overline{\text{LWE}}$ for each 8 bit - Three protocol engines available on a per chip select basis: - General-purpose chip select machine (GPCM) - Three user programmable machines (UPMs) - NAND Flash control machine (FCM) - Variable memory block sizes for FCM, GPCM, and UPM mode - Default boot ROM chip select with configurable bus width (8 or 16) - Provides two Write Enable signals to allow single byte write access to external 16-bit eLBC slave devices - Integrated programmable interrupt controller (IPIC) - Functional and programming compatibility with the MPC8260 interrupt controller - Support for external and internal discrete interrupt sources - Programmable highest priority request - Six groups of interrupts with programmable priority MPC8309 PowerQUICC II Pro Integrated Communications Processor Family Hardware Specifications, Rev. 2 - External and internal interrupts directed to host processor - Unique vector number for each interrupt source - PCI interface - Designed to comply with PCI Local Bus Specification, Revision 2.3 - 32-bit PCI interface operating at up to 66 MHz - PCI 3.3-V compatible - Not 5-V compatible - Support for host and agent modes - Support for PCI-to-memory and memory-to-PCI streaming - Memory pre-fetching of PCI read accesses and support for delayed read transactions - Support for posting of processor-to-PCI and PCI-to-memory writes - On-chip arbitration, supporting three masters on PCI - Arbiter support for two-level priority request/grant signal pairs - Support for accesses to all PCI address spaces - Support for parity - Selectable hardware-enforced coherency - Address translation units for address mapping between host and peripheral - Mapping from an external 32-/64-bit address space to the internal 32-bit local space - Support for dual address cycle (DAC) (as a target only) - Internal configuration registers accessible from PCI - Selectable snooping for inbound transactions - Four outbound Translation Address Windows - Support for mapping 32-bit internal local memory space to an external 32-bit PCI address space and translating that address within the PCI space - Four inbound Translation Address Windows corresponding to defined PCI BARs - The first BAR is 32-bits and dedicated to on-chip register access - The second BAR is 32-bits for general use - The remaining two BARs may be 32- or 64-bits and are also for general use - Enhanced secure digital host controller (eSDHC) - Compatible with the SD Host Controller Standard Specification Version 2.0 with test event register support - Compatible with the MMC System Specification Version 4.2 - Compatible with the SD Memory Card Specification Version 2.0 and supports the high capacity SD memory card - Compatible with the SD Input/Output (SDIO) Card Specification, Version 2.0 - Designed to work with SD Memory, miniSD Memory, SDIO, miniSDIO, SD Combo, MMC, MMCplus, and RS-MMC cards - Card bus clock frequency up to 33.33 MHz. MPC8309 PowerQUICC II Pro Integrated Communications Processor Family Hardware Specifications, Rev. 2 ### Overview - Supports 1-/4-bit SD and SDIO modes, 1-/4-bit modes - Up to 133 Mbps data transfer for SD/SDIO/MMC cards using 4 parallel data lines - Supports block sizes of 1 ~ 4096 bytes - Universal serial bus (USB) dual-role controller - Designed to comply with *Universal Serial Bus Revision 2.0 Specification* - Supports operation as a stand-alone USB host controller - Supports operation as a stand-alone USB device - Supports high-speed (480-Mbps), full-speed (12-Mbps), and low-speed (1.5-Mbps) operations. Low speed is only supported in host mode. ### FlexCAN module - Full implementation of the CAN protocol specification version 2.0B - Up to 64 flexible message buffers of zero to eight bytes data length - Powerful Rx FIFO ID filtering, capable of matching incoming IDs - Selectable backwards compatibility with previous FlexCAN module version - Programmable loop-back mode supporting self-test operation - Global network time, synchronized by a specific message - Independent of the transmission medium (an external transceiver is required) - Short latency time due to an arbitration scheme for high-priority messages ### • Dual I²C interfaces - Two-wire interface - Multiple-master support - Master or slave I²C mode support - On-chip digital filtering rejects spikes on the bus - I^2C1 can be used as the boot sequencer ### DMA Engine1 - Support for the DMA engine with the following features: - Sixteen DMA channels - All data movement via dual-address transfers: read from source, write to destination - Transfer control descriptor (TCD) organized to support two-deep, nested transfer operations - Channel activation via one of two methods (for both the methods, one activation per execution of the minor loop is required): - Explicit software initiation - Initiation via a channel-to-channel linking mechanism for continuous transfers (independent channel linking at end of minor loop and/or major loop) - Support for fixed-priority and round-robin channel arbitration - Channel completion reported via optional interrupt requests - Support for scatter/gather DMA processing - IO Sequencer MPC8309 PowerQUICC II Pro Integrated Communications Processor Family Hardware Specifications, Rev. 2 - Direct memory access (DMA) controller (DMA Engine 2) - Four independent fully programmable DMA channels - Concurrent execution across multiple channels with programmable bandwidth control - Misaligned transfer capability for source/destination address - Data chaining and direct mode - Interrupt on completed segment, error, and chain - DUART - Supports 2 DUART - Each has two 2-wire interfaces (RxD, TxD) - The same can be configured as one 4-wire interface (RxD, TxD, RTS, CTS) - Programming model compatible with the original 16450 UART and the PC16550D - Serial peripheral interface (SPI) - Master or slave support - Power management controller (PMC) - Supports core doze/nap/sleep/ power management - Exits low power state and returns to full-on mode when - The core internal time base unit invokes a request to exit low power state - The power management controller detects that the system is not idle and there are outstanding transactions on the internal bus or an external interrupt. - Parallel I/O - General-purpose I/O (GPIO) - 56 parallel I/O pins multiplexed on various chip interfaces - Interrupt capability - System timers - Periodic interrupt timer - Software watchdog timer - Eight general-purpose timers - Real time clock (RTC) module - Maintains a one-second count, unique over a period of thousands of years - Two possible clock sources: - External RTC clock (RTC_PIT_CLK) - CSB bus clock - IEEE Std. 1149.1TM compliant JTAG boundary scan # 2 Electrical characteristics This section provides the AC and DC electrical specifications and thermal characteristics for the MPC8309. The MPC8309 is currently targeted to these specifications. Some of these specifications are independent of the I/O cell, but are included for a more complete reference. These are not purely I/O buffer design specifications. MPC8309 PowerQUICC II Pro Integrated Communications Processor Family Hardware Specifications, Rev. 2 ### 2.1 Overall DC electrical characteristics This section covers the ratings, conditions, and other characteristics. # 2.1.1 Absolute maximum ratings The following table provides the absolute maximum ratings. Table 1. Absolute maximum ratings¹ | Ch | Characteristic | | | Unit | Notes | |--|--|---|----------------------------------|------|-------| | Core supply voltage | | V_{DD} | -0.3 to 1.26 | V | _ | | PLL supply voltage | | AV _{DD1}
AV _{DD2}
AV _{DD3} | -0.3 to 1.26 | V | _ | | DDR2 DRAM I/O voltage | GV _{DD} | -0.3 to 1.98 | V | _ | | | PCI, Local bus, DUART, system control and power management, I ² C, SPI, MII, RMII, MII management, eSDHC, FlexCAN, USB and JTAG I/O voltage | | OV _{DD} | -0.3 to 3.6 | V | 2 | | Input voltage | DDR2 DRAM signals | MV _{IN} | -0.3 to (GV _{DD} + 0.3) | ٧ | 3 | | | DDR2 DRAM reference | MV_REF | -0.3 to (GV _{DD} + 0.3) | V | 3 | | | Local bus, DUART, SYS_CLK_IN, system control and power management, I ² C, SPI, and JTAG signals | OV _{IN} | -0.3 to (OV _{DD} + 0.3) | V | 4 | | | PCI | OV _{IN} | -0.3 to (OV _{DD} + 0.3) | V | | | Storage temperature range | • | T _{STG} | -55 to 150 | °C | _ | ### Notes: - 1. Functional and tested operating conditions are given in Table 2. Absolute maximum ratings are stress ratings only, and functional operation at the maximums is not guaranteed. Stresses beyond those listed may affect device reliability or cause permanent damage to the device. - 2. OVDD here refers to NVDDA, NVDDB, NVDDC, NVDDF, NVDDG, and NVDDH from the ball map. - 3. Caution: MV_{IN} must not exceed GV_{DD} by more than 0.3 V. This limit may be exceeded for a maximum of 100 ms during power-on reset and power-down sequences. - 4. Caution: OV_{IN} must not exceed OV_{DD} by more than 0.3 V. This limit may be exceeded for a maximum of 100 ms during power-on reset and power-down sequences. ${\bf MPC8309\ PowerQUICC\ II\ Pro\ Integrated\ Communications\ Processor\ Family\ Hardware\ Specifications,\ Rev.\ 2}$ # 2.1.2 Power supply voltage specification The following table provides the recommended operating conditions for the MPC8309. Note that these values are the recommended and tested operating conditions. Proper device operation outside of these conditions is not guaranteed. | Characteristic | Symbol | Recommended
Value | Unit | Note | |---|---|----------------------|------|------| | Core supply voltage | V_{DD} | 1.0 V ± 50 mV | V | 1 | | PLL supply voltage | AV _{DD1}
AV _{DD2}
AV _{DD3} | 1.0 V ± 50 mV | V | 1 | | DDR2 DRAM I/O voltage | GV _{DD} | 1.8 V ± 100 mV | V | 1 | | PCI, Local bus, DUART, system control and power management, I ² C, SPI, MII, RMII, MII management, eSDHC, FlexCAN,USB and JTAG I/O voltage | OV _{DD} | 3.3 V ± 300 mV | V | 1, 3 | | Junction temperature | T _A /T _J | 0 to 105 | °C | 2 | Table 2. Recommended operating conditions ### Notes: - 1. GV_{DD}, OV_{DD}, AV_{DD}, and V_{DD} must track each other and must vary in the same direction—either in the positive or negative direction. - 2. Minimum temperature is specified with T_A(Ambient Temperature); maximum temperature is specified with T_J(Junction Temperature). - 3. OVDD here refers to NVDDA, NVDDB, NVDDC, NVDDF, NVDDG, and NVDDH from the ball map. The following figure shows the undershoot and overshoot voltages at the interfaces of the MPC8309 Figure 2. Overshoot/Undershoot voltage for GV_{DD}/OV_{DD} MPC8309 PowerQUICC II Pro Integrated Communications Processor Family Hardware Specifications, Rev. 2 Freescale Semiconductor 9 # 2.1.3 Output driver characteristics The following table provides information on the characteristics of the output driver strengths. Table 3. Output drive capability | Driver Type | Output Impedance (Ω) | Supply Voltage (V) | |---------------------------------------|----------------------|------------------------| | Local bus interface utilities signals | 42 | OV _{DD} = 3.3 | | PCI Signal | 25 | | | DDR2 signal | 18 | GV _{DD} = 1.8 | | DUART, system control, I2C, SPI, JTAG | 42 | OV _{DD} = 3.3 | | GPIO signals | 42 | OV _{DD} = 3.3 | # 2.1.4 Input capacitance specification The following table describes the input capacitance for the SYS_CLK_IN pin in the MPC8309. Table 4. Input capacitance specification | Parameter/Condition | Symbol | Min | Max | Unit | Note | |--|----------------------|-----|-----|------|------| | Input capacitance for all pins except SYS_CLK_IN and QE_CLK_IN | C _I | 6 | 8 | pF | _ | | Input capacitance for SYS_CLK_IN and QE_CLK_IN | C _{ICLK_IN} | 10 | _ | pF | 1 | ### Note: # 2.2 Power sequencing The device does not require the core supply voltage (V_{DD}) and I/O supply voltages (GV_{DD}) and OV_{DD} to be applied in any particular order. Note that during power ramp-up, before the power supplies are stable and if the I/O voltages are supplied before the core voltage, there might be a period of time that all input and output pins are actively driven and cause contention and excessive current. In order to avoid actively driving the I/O pins and to eliminate excessive current draw, apply the core voltage (V_{DD}) before the I/O voltage (GV_{DD}) and assert $\overline{PORESET}$ before the power supplies fully ramp up. In the case where the core voltage is applied first, the core voltage supply must rise to 90% of its nominal value before the I/O supplies reach 0.7 V; see Figure 3. Once both the power supplies (I/O voltage and core voltage) are stable, wait for a minimum of 32 clock cycles before negating $\overline{PORESET}$. ### **NOTE** There is no specific power down sequence requirement for the device. I/O voltage supplies (GV_{DD} and OV_{DD}) do not have any ordering requirements with respect to one another. MPC8309 PowerQUICC II Pro Integrated Communications Processor Family Hardware Specifications, Rev. 2 ^{1.} The external clock generator should be able to drive 10 pF. Figure 3. MPC8309 Power-Up sequencing example # 3 Power characteristics The typical power dissipation for this family of MPC8309 devices is shown in the following table. | Core
Frequency (MHz) | QUICC Engine
Frequency (MHz) | CSB
Frequency (MHz) | Typical | Maximum | Unit | Note | |-------------------------|---------------------------------|------------------------|---------|---------|------|---------| | 266 | 233 | 133 | 0.341 | 0.920 | W | 1, 2, 3 | | 333 | 233 | 133 | 0.361 | 0.938 | W | 1, 2, 3 | | 400 | 233 | 133 | 0.381 | 0.969 | W | 1,2,3 | | 417 | 233 | 167 | 0.429 | 1.003 | W | 1,2,3 | Table 5. MPC8309 Power dissipation ### Notes: - 1. The values do not include I/O supply power (OV $_{DD}$ and GV $_{DD}$), but it does include V $_{DD}$ and AV $_{DD}$ power. For I/O power values, see Table 6. - 2. Typical power is based on a nominal voltage of $V_{DD} = 1.0 \text{ V}$, ambient temperature, and the core running a Dhrystone benchmark application. The measurements were taken on the evaluation board using WC process silicon. - 3. Maximum power is based on a voltage of V_{DD} = 1.05 V, WC process, a junction T_J = 105°C, and a smoke test code. MPC8309 PowerQUICC II Pro Integrated Communications Processor Family Hardware Specifications, Rev. 2 ### **Clock input timing** The following table shows the estimated typical I/O power dissipation for the device. Table 6. Typical I/O power dissipation | Interface | Parameter | GV _{DD}
(1.8 V) | OV _{DD}
(3.3 V) | Unit | Comments | |--|---|-----------------------------|-----------------------------|------|----------| | DDR I/O 65% utilization 1.8 V $R_s = 20 \Omega$ $R_t = 50 \Omega$ 1 pair of clocks | 266 MHz, 1 × 16 bits | 0.149 | _ | W | _ | | Local bus I/O load = 25 pF 1 pair of clocks QUICC Engine block and other I/Os | 66 MHz, 26 bits TDM serial, HDLC/TRAN serial, DUART, MII, RMII, Ethernet | | 0.415 | W | 1 | | | management, USB, PCI, SPI, Timer output, FlexCAN, eSDHC | | | | | ### Note: # 4 Clock input timing This section provides the clock input DC and AC electrical characteristics for the MPC8309. ### NOTE The rise/fall time on QUICC Engine input pins should not exceed 5 ns. This should be enforced especially on clock signals. Rise time refers to signal transitions from 10% to 90% of OV_{DD} ; fall time refers to transitions from 90% to 10% of OV_{DD} . # 4.1 DC electrical characteristics The following table provides the clock input (SYS_CLK_IN/PCI_SYNC_IN) DC specifications for the MPC8309. These specifications are also applicable for QE_CLK_IN. Table 7. SYS_CLK_IN DC electrical characteristics | Parameter | Condition | Symbol | Min | Max | Unit | |--------------------------|--|-----------------|------|------------------------|------| | Input high voltage | _ | V _{IH} | 2.4 | OV _{DD} + 0.3 | V | | Input low voltage | _ | V _{IL} | -0.3 | 0.4 | V | | SYS_CLK_IN input current | $0 \text{ V} \leq \text{V}_{\text{IN}} \leq \text{OV}_{\text{DD}}$ | I _{IN} | _ | ±5 | μΑ | | SYS_CLK_IN input current | $\begin{array}{c} 0 \text{ V} \leq V_{IN} \leq 0.5 \text{ V or} \\ \text{OV}_{DD} - 0.5 \text{ V} \leq V_{IN} \leq \text{OV}_{DD} \end{array}$ | I _{IN} | _ | ±5 | μΑ | | SYS_CLK_IN input current | $0.5 \text{ V} \le \text{V}_{\text{IN}} \le \text{OV}_{\text{DD}} - 0.5 \text{ V}$ | I _{IN} | _ | ±50 | μΑ | MPC8309 PowerQUICC II Pro Integrated Communications Processor Family Hardware Specifications, Rev. 2 Typical I/O power is based on a nominal voltage of V_{DD} = 3.3V, ambient temperature, and the core running a Dhrystone benchmark application. The measurements were taken on the evaluation board using WC process silicon. ### 4.2 AC electrical characteristics The primary clock source for the MPC8309 can be one of two inputs, SYS_CLK_IN or PCI_SYNC_IN, depending on whether the device is configured in PCI host or agent mode. The following table provides the clock input (SYS_CLK_IN/PCI_SYNC_IN) AC timing specifications for the MPC8309. These specifications are also applicable for QE_CLK_IN. | Parameter/Condition | Symbol | Min | Typical | Max | Unit | Note | |--------------------------------|-------------------------------------|------|---------|-------|------|------| | SYS_CLK_IN frequency | fsys_clk_in | 24 — | | 66.67 | MHz | 1 | | SYS_CLK_IN cycle time | t _{SYS_CLK_IN} | 15 | _ | 41.6 | ns | _ | | SYS_CLK_IN rise and fall time | t _{KH} , t _{KL} | 1.1 | _ | 2.8 | ns | 2 | | PCI_SYNC_IN rise and fall time | t _{PCH} , t _{PCL} | 1.1 | _ | 2.8 | ns | 2 | | SYS_CLK_IN duty cycle | tkHK/tsYs_CLK_
IN | 40 | _ | 60 | % | 3 | | SYS_CLK_IN jitter | _ | _ | _ | ±150 | ps | 4, 5 | Table 8. SYS_CLK_IN AC timing specifications ### Notes: - Caution: The system, core and QUICC Engine block must not exceed their respective maximum or minimum operating frequencies. - 2. Rise and fall times for SYS_CLK_IN are measured at 0.33 and 2.97 V. - 3. Timing is guaranteed by design and characterization. - 4. This represents the total input jitter—short term and long term—and is guaranteed by design. - 5. The SYS_CLK_IN driver's closed loop jitter bandwidth should be < 500 kHz at -20 dB. The bandwidth must be set low to allow cascade-connected PLL-based devices to track SYS_CLK_IN drivers with the specified jitter. - 6. Spread spectrum is allowed up to 1% down-spread @ 33kHz (max rate). # 5 RESET initialization This section describes the AC electrical specifications for the reset initialization timing requirements of the MPC8309. The following table provides the reset initialization AC timing specifications for the reset component(s). Table 9. RESET initialization timing specifications | Parameter/Condition | Min | Max | Unit | Note | |---|-----|-----|-------------------------|------| | Required assertion time of HRESET to activate reset flow | 32 | _ | t _{SYS_CLK_IN} | 1 | | Required assertion time of PORESET with stable clock applied to SYS_CLK_IN or PCI_SYNC_IN (in agent mode) | 32 | _ | tsys_clk_in | 1 | | HRESET assertion (output) | 512 | _ | tsys_clk_in | 1 | MPC8309 PowerQUICC II Pro Integrated Communications Processor Family Hardware Specifications, Rev. 2 | Input setup time for POR configuration signals (CFG_RESET_SOURCE[0:3]) with respect to negation of PORESET | 4 | _ | tsys_clk_in | 1, 2 | |--|---|---|-------------|------| | Input hold time for POR config signals with respect to negation of HRESET | 0 | _ | ns | 1, | ### Notes: - t_{SYS_CLK_IN} is the clock period of the input clock applied to SYS_CLK_IN. For more details, see the MPC8309 PowerQUICC II Pro Integrated Communications Processor Family Reference Manual. - 2. POR configuration signals consist of CFG_RESET_SOURCE[0:3]. The following table provides the PLL lock times. Table 10. PLL lock times | Parameter/Condition | Min | Max | Unit | Note | |---------------------|-----|-----|------|------| | PLL lock times | _ | 100 | μs | _ | # 5.1 Reset signals DC electrical characteristics The following table provides the DC electrical characteristics for the MPC8309 reset signals mentioned in Table 9. Table 11. Reset signals DC electrical characteristics | Characteristic | Symbol | Condition | Min | Max | Unit | Note | |---------------------|-----------------|--|------|------------------------|------|------| | Output high voltage | V _{OH} | $I_{OH} = -6.0 \text{ mA}$ | 2.4 | _ | V | 1 | | Output low voltage | V _{OL} | I _{OL} = 6.0 mA | _ | 0.5 | V | 1 | | Output low voltage | V _{OL} | I _{OL} = 3.2 mA | _ | 0.4 | V | 1 | | Input high voltage | V _{IH} | _ | 2.0 | OV _{DD} + 0.3 | V | 1 | | Input low voltage | V _{IL} | _ | -0.3 | 0.8 | V | _ | | Input current | I _{IN} | $0 \text{ V} \leq V_{IN} \leq OV_{DD}$ | — ± | 5 | μΑ | _ | ### Note: # 6 DDR2 SDRAM This section describes the DC and AC electrical specifications for the DDR2 SDRAM interface of the MPC8309. Note that DDR2 SDRAM is $GV_{DD}(typ) = 1.8 \text{ V}$. # 6.1 DDR2 SDRAM DC electrical characteristics The following table provides the recommended operating conditions for the DDR2 SDRAM component(s) of the MPC8309 when $GV_{DD}(typ) = 1.8 \text{ V}$. The following table provides the DDR2 capacitance when $GV_{DD}(typ) = 1.8 \text{ V}$. MPC8309 PowerQUICC II Pro Integrated Communications Processor Family Hardware Specifications, Rev. 2 14 Freescale Semiconductor 2 ^{1.} This specification applies when operating from 3.3 V supply. Table 12. DDR2 SDRAM DC electrical characteristics for GV_{DD}(typ) = 1.8 V | Parameter/Condition | Symbol | Min | Max | Unit | Note | |---|-----------------|-------------------------------------|-------------------------------------|------|------| | I/O supply voltage | GV_DD | 1.7 | 1.9 | V | 1 | | I/O reference voltage | MVREF | $0.49 \times \text{GV}_{\text{DD}}$ | $0.51 \times \text{GV}_{\text{DD}}$ | V | 2 | | I/O termination voltage | V _{TT} | MVREF - 0.04 | MVREF + 0.04 | V | 3 | | Input high voltage | V _{IH} | MVREF+ 0.125 | GV _{DD} + 0.3 | V | _ | | Input low voltage | V_{IL} | -0.3 | MVREF - 0.125 | V | _ | | Output leakage current | l _{OZ} | -9.9 | 9.9 | μΑ | 4 | | Output high current (V _{OUT} = 1.35 V) | I _{OH} | -13.4 | _ | mA | _ | | Output low current (V _{OUT} = 0.280 V) | l _{OL} | 13.4 | _ | mA | _ | ### Notes: - 1. ${\rm GV_{DD}}$ is expected to be within 50 mV of the DRAM ${\rm GV_{DD}}$ at all times. - 2. MVREF is expected to be equal to $0.5 \times \text{GV}_{DD}$, and to track GV_{DD} DC variations as measured at the receiver. Peak-to-peak noise on MVREF may not exceed $\pm 2\%$ of the DC value. - V_{TT} is not applied directly to the device. It is the supply to which far end signal termination is made and is expected to be equal to MVREF. This rail should track variations in the DC level of MVREF. - 4. Output leakage is measured with all outputs disabled, $0 \text{ V} \leq \text{V}_{\text{OUT}} \leq \text{GV}_{\text{DD}}$. Table 13. DDR2 SDRAM capacitance for $GV_{DD}(typ) = 1.8 V$ | Parameter/Condition | Symbol | Min | Max | Unit | Note | |---|------------------|-----|-----|------|------| | Input/output capacitance: DQ, DQS | C _{IO} | 6 | 8 | pF | 1 | | Delta input/output capacitance: DQ, DQS | C _{DIO} | _ | 0.5 | pF | 1 | ### Note: 1. This parameter is sampled. GV_{DD} = 1.8 V ± 0.100 V, f = 1 MHz, T_A = 25 °C, V_{OUT} = GV_{DD} ÷ 2, V_{OUT} (peak-to-peak) = 0.2 V. # 6.2 DDR2 SDRAM AC electrical characteristics This section provides the AC electrical characteristics for the DDR2 SDRAM interface. # 6.2.1 DDR2 SDRAM input AC timing specifications This table provides the input AC timing specifications for the DDR2 SDRAM ($GV_{DD}(typ) = 1.8 \text{ V}$). Table 14. DDR2 SDRAM input AC timing specifications for 1.8-V interface At recommended operating conditions with $\mbox{GV}_{\mbox{\scriptsize DD}}$ of 1.8 V± 100mV. | Parameter | Symbol | Min Max | | Unit | Note | |-----------------------|-----------------|--------------|--------------|------|------| | AC input low voltage | V _{IL} | _ | MVREF - 0.25 | V | _ | | AC input high voltage | V _{IH} | MVREF + 0.25 | | V | _ | The following table provides the input AC timing specifications for the DDR2 SDRAM interface. MPC8309 PowerQUICC II Pro Integrated Communications Processor Family Hardware Specifications, Rev. 2 ### Table 15. DDR2 SDRAM input AC timing specifications At recommended operating conditions with GV $_{DD}$ of 1.8V \pm 100mV. | Parameter | Symbol | Min | Max | Unit | Note | |----------------------------------|---------------------|------|-----|------|------| | Controller skew for MDQS—MDQ/MDM | t _{CISKEW} | | | ps | 1, 2 | | 266 MHz | | -750 | 750 | | | ### Notes: - 1. t_{CISKEW} represents the total amount of skew consumed by the controller between MDQS[n] and any corresponding bit that is captured with MDQS[n]. This should be subtracted from the total timing budget. - 2. The amount of skew that can be tolerated from MDQS to a corresponding MDQ signal is called t_{DISKEW}. This can be determined by the equation: t_{DISKEW} = ±(T/4 abs(t_{CISKEW})) where T is the clock period and abs(t_{CISKEW}) is the absolute value of t_{CISKEW}. The following figure shows the input timing diagram for the DDR controller. Figure 4. DDR input timing diagram # 6.2.2 DDR2 SDRAM output AC timing specifications The following table provides the output AC timing specifications for the DDR2 SDRAM interfaces. ### Table 16. DDR2 SDRAM output AC timing specifications At recommended operating conditions with GV $_{DD}$ of 1.8V \pm 100mV. | Parameter | Symbol ¹ | Min | Max | Unit | Note | |---|---------------------|------------|-----|------|------| | MCK cycle time, (MCK/MCK crossing) | t _{MCK} | 5.988 | 8 | ns | 2 | | ADDR/CMD output setup with respect to MCK
333 MHz
266 MHz | ^t DDKHAS | 2.4
2.5 | | ns | 3 | | ADDR/CMD output hold with respect to MCK 333 MHz 266 MHz | ^t DDKHAX | 2.4
2.5 | _ | ns | 3 | MPC8309 PowerQUICC II Pro Integrated Communications Processor Family Hardware Specifications, Rev. 2 ### Table 16. DDR2 SDRAM output AC timing specifications (continued) At recommended operating conditions with GV_{DD} of 1.8V \pm 100mV. | Parameter | Symbol ¹ | Min | Max | Unit | Note | |---|---|-------------------------|------------------------|------|------| | MCS output setup with respect to MCK | t _{DDKHCS} | | | ns | 3 | | 333 MHz
266 MHz | | 2.4
2.5 | _ | | | | MCS output hold with respect to MCK | t _{DDKHCX} | | | ns | 3 | | 333 MHz
266 MHz | | 2.4
2.5 | _ | | | | MCK to MDQS Skew | t _{DDKHMH} | -0.6 | 0.6 | ns | 4 | | MDQ/MDM output setup with respect to MDQS | t _{DDKHDS,}
t _{DDKLDS} | | | ns | 5 | | 333 MHz
266 MHz | | 0.8
0.9 | _ | | | | MDQ/MDM output hold with respect to MDQS | t _{DDKHDX,}
t _{DDKLDX} | | | ps | 5 | | 333 MHz
266 MHz | | 900
1100 | _ | | | | MDQS preamble start | t _{DDKHMP} | 0.75 x t _{MCK} | _ | ns | 6 | | MDQS epilogue end | t _{DDKHME} | 0.4 x t _{MCK} | 0.6 x t _{MCK} | ns | 6 | ### Notes: - 1. The symbols used for timing specifications follow the pattern of t_{(first two letters of functional block)(signal)(state)} for inputs and t_(first two letters of functional block)(reference)(state)(signal)(state)</sub> for outputs. Output hold time can be read as DDR timing (DD) from the rising or falling edge of the reference clock (KH or KL) until the output went invalid (AX or DX). For example, t_{DDKHAS} symbolizes DDR timing (DD) for the time t_{MCK} memory clock reference (K) goes from the high (H) state until outputs (A) are setup (S) or output valid time. Also, t_{DDKLDX} symbolizes DDR timing (DD) for the time t_{MCK} memory clock reference (K) goes low (L) until data outputs (D) are invalid (X) or data output hold time. - 2. All MCK/MCK referenced measurements are made from the crossing of the two signals ±0.1 V. - ADDR/CMD includes all DDR SDRAM output signals except MCK/MCK, MCS, and MDQ/MDM/MDQS. For the ADDR/CMD setup and hold specifications, it is assumed that the Clock Control register is set to adjust the memory clocks by 1/2 applied cycle. - 4. Note that t_{DDKHMH} follows the symbol conventions described in note 1. For example, t_{DDKHMH} describes the DDR timing (DD) from the rising edge of the MCK(n) clock (KH) until the MDQS signal is valid (MH). t_{DDKHMH} can be modified through control of the DQSS override bits in the TIMING_CFG_2 register. This is typically set to the same delay as the clock adjusts in the CLK_CNTL register. The timing parameters listed in the table assume that these 2 parameters have been set to the same adjustment value. See the MPC8309 PowerQUICC II Pro Integrated Communications Processor Family Reference Manual for a description and understanding of the timing modifications enabled by use of these bits. - 5. Determined by maximum possible skew between a data strobe (MDQS) and any corresponding bit of data (MDQ), or data mask (MDM). The data strobe should be centered inside of the data eye at the pins of the microprocessor. - 6. t_{DDKHMP} follows the symbol conventions described in note 1. ### **DDR2 SDRAM** The following figure shows the DDR SDRAM output timing for the MCK to MDQS skew measurement (t_{DDKHMH}) . Figure 5. Timing diagram for t_{DDKHMH} The following figure shows the DDR2 SDRAM output timing diagram. Figure 6. DDR2 SDRAM output timing diagram MPC8309 PowerQUICC II Pro Integrated Communications Processor Family Hardware Specifications, Rev. 2 μΑ ±5 # 7 Enhanced local bus This section describes the DC and AC electrical specifications for the enhanced local bus interface of the MPC8309. ### 7.1 Enhanced local bus DC electrical characteristics The following table provides the DC electrical characteristics for the enhanced local bus interface. Unit **Parameter** Symbol Min Max High-level input voltage V_{IH} 2 $OV_{DD} + 0.3$ ٧ V_{IL} -0.3 0.8 V Low-level input voltage High-level output voltage, $I_{OH} = -100 \mu A$ V_{OH} $OV_{DD} - 0.2$ ٧ ٧ V_{OL} 0.2 Low-level output voltage, $I_{OL} = 100 \mu A$ I_{IN} Table 17. Enhanced local bus DC electrical characteristics # 7.2 Enhanced local bus AC electrical specifications The following table describes the general timing parameters of the enhanced local bus interface of MPC8309. | Parameter | Symbol ¹ | Min | Max | Unit | Note | |--|----------------------|------|-----|------|------| | Local bus cycle time | t _{LBK} | 15 | _ | ns | 2 | | Input setup to local bus clock (LCLKn) | t _{LBIVKH} | 7 | _ | ns | 3, | | Input hold from local bus clock (LCLKn) | t _{LBIXKH} | 1.0 | _ | ns | 3, 4 | | Local bus clock (LCLKn) to output valid | t _{LBKHOV} | _ | 3 | ns | 3 | | Local bus clock (LCLKn) to output high impedance for LAD/LDP | t _{LBKHOZ} | _ | 4 | ns | 5 | | LALE output fall to LAD output transition (LATCH hold time) | t _{LBOTOT} | 3 | _ | ns | _ | | LALE output rise to LCLK negative edge | t _{LALEHOV} | _ | 3 | ns | _ | | LALE output fall to LCLK negative edge | t _{LALETOT} | -5.0 | _ | ns | _ | Table 18. Enhanced local bus general timing parameters ### Notes: Input current - 1. The symbols used for timing specifications follow the pattern of t_{(first two letters of functional block)(signal)(state)(reference)(state)} for inputs and t_(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, t_{LBIXKH1} symbolizes local bus timing (LB) for the input (I) to go invalid (X) with respect to the time the t_{LBK} clock reference (K) goes high (H), in this case for clock one(1). - 2. All timings are in reference to falling edge of LCLK0 (for all outputs and for $\overline{\text{LGTA}}$ and LUPWAIT inputs) or rising edge of LCLK0 (for all other inputs). - 3. All signals are measured from $OV_{DD}/2$ of the rising/falling edge of LCLK0 to $0.4 \times OV_{DD}$ of the signal in question for 3.3-V signaling levels. - 4. Input timings are measured at the pin. - 5. For purposes of active/float timing measurements, the Hi-Z or off state is defined to be when the total current delivered through the component pin is less than or equal to the leakage current specification. MPC8309 PowerQUICC II Pro Integrated Communications Processor Family Hardware Specifications, Rev. 2 Freescale Semiconductor 19 4 ### **Enhanced local bus** The following figure provides the AC test load for the local bus. Figure 7. Enhanced local bus ac test load The following figures show the local bus signals. These figures have been given indicate timing parameters only and do not reflect actual functional operation of interface. Figure 9. Enhanced local bus signals, GPCM/UPM signals for LCRR[CLKDIV] = 2 Figure 10. Enhanced local bus signals, GPCM/UPM Signals for LCRR[CLKDIV] = 4 # 8 Ethernet and MII management This section provides the AC and DC electrical characteristics for Ethernet interfaces. # 8.1 Ethernet controller (10/100 Mbps)—MII/RMII electrical characteristics The electrical characteristics specified here apply to all MII (media independent interface) and RMII (reduced media independent interface), except MDIO (management data input/output) and MDC (management data clock). The MII and RMII are defined for 3.3 V. The electrical characteristics for MDIO and MDC are specified in Section 8.3, "Ethernet management interface electrical characteristics." ### 8.1.1 DC electrical characteristics All MII and RMII drivers and receivers comply with the DC parametric attributes specified in the following table. MPC8309 PowerQUICC II Pro Integrated Communications Processor Family Hardware Specifications, Rev. 2 Table 19. MII and RMII DC electrical characteristics | Parameter | Symbol | Conditions | | Min | Max | Unit | |----------------------|------------------|----------------------------|---------------------------------|--------|------------------------|------| | Supply voltage 3.3 V | OV _{DD} | _ | | 3 | 3.6 | V | | Output high voltage | V _{OH} | $I_{OH} = -4.0 \text{ mA}$ | OV _{DD} = Min | 2.40 | OV _{DD} + 0.3 | V | | Output low voltage | V _{OL} | I _{OL} = 4.0 mA | OV _{DD} = Min | GND 0. | 50 | V | | Input high voltage | V _{IH} | _ | _ | 2.0 | OV _{DD} + 0.3 | V | | Input low voltage | V _{IL} | _ | _ | -0.3 | 0.90 | V | | Input current | I _{IN} | 0 V ≤ V _{IN} | _N ≤ OV _{DD} | _ | ±5 | μΑ | # 8.2 MII and RMII AC timing specifications The AC timing specifications for MII and RMII are presented in this section. # 8.2.1 MII AC timing specifications This section describes the MII transmit and receive AC timing specifications. # 8.2.1.1 MII transmit AC timing specifications The following table provides the MII transmit AC timing specifications. ### Table 20. MII transmit AC timing specifications At recommended operating conditions with OV_{DD} of 3.3 V \pm 300mV. | Parameter/Condition | Symbol ¹ | Min | Typical | Max | Unit | |---|-------------------------------------|-----|---------|-----|------| | TX_CLK clock period 10 Mbps | t _{MTX} | _ | 400 | _ | ns | | TX_CLK clock period 100 Mbps | t _{MTX} | _ | 40 | _ | ns | | TX_CLK duty cycle | t _{MTXH} /t _{MTX} | 35 | _ | 65 | % | | TX_CLK to MII data TXD[3:0], TX_ER, TX_EN delay | t _{MTKHDX} | 1 | 5 | 15 | ns | | TX_CLK data clock rise V _{IL} (min) to V _{IH} (max) | t _{MTXR} | 1.0 | _ | 4.0 | ns | | TX_CLK data clock fall V _{IH} (max) to V _{IL} (min) t | MTXF | 1.0 | _ | 4.0 | ns | ### Note: ${\bf MPC8309\ PowerQUICC\ II\ Pro\ Integrated\ Communications\ Processor\ Family\ Hardware\ Specifications,\ Rev.\ 2}$ ^{1.} The symbols used for timing specifications follow the pattern of t_{(first two letters of functional block)(signal)(state)(reference)(state)} for inputs and t_(first two letters of functional block)(reference)(state)(signal)(state)</sub> for outputs. For example, t_{MTKHDX} symbolizes MII transmit timing (MT) for the time t_{MTX} clock reference (K) going high (H) until data outputs (D) are invalid (X). Note that, in general, the clock reference symbol representation is based on two to three letters representing the clock of a particular functional. For example, the subscript of t_{MTX} represents the MII(M) transmit (TX) clock. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall). ### **Ethernet and MII management** The following figure provides the AC test load. Figure 11. AC test load The following figure shows the MII transmit AC timing diagram. Figure 12. MII transmit AC timing diagram ## 8.2.1.2 MII receive AC timing specifications The following table provides the MII receive AC timing specifications. ### Table 21. MII receive AC timing specifications At recommended operating conditions with OV_{DD} of 3.3 V \pm 300mV. | Parameter/Condition | Symbol ¹ | Min | Typical | Max | Unit | |---|-------------------------------------|------|---------|-----|------| | RX_CLK clock period 10 Mbps | t _{MRX} | _ | 400 | _ | ns | | RX_CLK clock period 100 Mbps | t _{MRX} | _ | 40 | _ | ns | | RX_CLK duty cycle | t _{MRXH} /t _{MRX} | 35 | _ | 65 | % | | RXD[3:0], RX_DV, RX_ER setup time to RX_CLK | t _{MRDVKH} | 10.0 | _ | _ | ns | | RXD[3:0], RX_DV, RX_ER hold time to RX_CLK | t _{MRDXKH} | 10.0 | _ | _ | ns | | RX_CLK clock rise V _{IL} (min) to V _{IH} (max) | t _{MRXR} | 1.0 | _ | 4.0 | ns | | RX_CLK clock fall time V _{IH} (max) to V _{IL} (min) | t _{MRXF} | 1.0 | _ | 4.0 | ns | ### Note: 1. The symbols used for timing specifications follow the pattern of t_{(first two letters of functional block)(signal)(state)(reference)(state)} for inputs and t_(first two letters of functional block)(reference)(state)(signal)(state)</sub> for outputs. For example, t_{MRDVKH} symbolizes MII receive timing (MR) with respect to the time data input signals (D) reach the valid state (V) relative to the t_{MRX} clock reference (K) going to the high (H) state or setup time. Also, t_{MRDXKL} symbolizes MII receive timing (GR) with respect to the time data input signals (D) went invalid (X) relative to the t_{MRX} clock reference (K) going to the low (L) state or hold time. Note that, in general, the clock reference symbol representation is based on three letters representing the clock of a particular functional. For example, the subscript of t_{MRX} represents the MII (M) receive (RX) clock. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall). MPC8309 PowerQUICC II Pro Integrated Communications Processor Family Hardware Specifications, Rev. 2 The following figure shows the MII receive AC timing diagram. Figure 13. MII receive AC timing diagram # 8.2.2 RMII AC timing specifications This section describes the RMII transmit and receive AC timing specifications. # 8.2.2.1 RMII transmit AC timing specifications The following table provides the RMII transmit AC timing specifications. ### Table 22. RMII transmit AC timing specifications At recommended operating conditions with OV_{DD} of 3.3 V \pm 300mV. | Parameter/Condition | Symbol ¹ | Min | Typical | Max | Unit | |--|-------------------------------------|-----|---------|-------|------| | REF_CLK clock | t _{RMX} | _ | 20 | _ | ns | | REF_CLK duty cycle | t _{RMXH} /t _{RMX} | 35 | _ | 65 | % | | REF_CLK to RMII data TXD[1:0], TX_EN delay | t _{RMTKHDX} | 2 | _ | 13 ns | | | REF_CLK data clock rise V _{IL} (min) to V _{IH} (max) | t _{RMXR} | 1.0 | _ | 4.0 | ns | | REF_CLK data clock fall V _{IH} (max) to V _{IL} (min) t | RMXF | 1.0 | _ | 4.0 | ns | ### Note: 1. The symbols used for timing specifications follow the pattern of t_{(first three letters of functional block)(signal)(state)} for inputs and t_(first two letters of functional block)(reference)(state)(signal)(state)</sub> for outputs. For example, t_{RMTKHDX} symbolizes RMII transmit timing (RMT) for the time t_{RMX} clock reference (K) going high (H) until data outputs (D) are invalid (X). Note that, in general, the clock reference symbol representation is based on two to three letters representing the clock of a particular functional. For example, the subscript of t_{RMX} represents the RMII(RM) reference (X) clock. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall). The following figure provides the AC test load. Figure 14. AC test load MPC8309 PowerQUICC II Pro Integrated Communications Processor Family Hardware Specifications, Rev. 2