

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Freescale Semiconductor

Datasheet: Technical Data

Document Number: MPC8313EEC

Rev. 4, 11/2011

MPC8313E PowerQUICC II Pro Processor Hardware Specifications

This document provides an overview of the MPC8313E PowerQUICCTM II Pro processor features, including a block diagram showing the major functional components. The MPC8313E is a cost-effective, low-power, highly integrated host processor that addresses the requirements of several printing and imaging, consumer, and industrial applications, including main CPUs and I/O processors in printing systems, networking switches and line cards, wireless LANs (WLANs), network access servers (NAS), VPN routers, intelligent NIC, and industrial controllers. The MPC8313E extends the PowerQUICCTM family, adding higher CPU performance, additional functionality, and faster interfaces while addressing the requirements related to time-to-market, price, power consumption, and package size.

NOTE

The information in this document is accurate for revisions 1.0, 2.x, and later. See Section 23.1, "Part Numbers Fully Addressed by this Document."

Contents

1.	Overview	. 2
2.	Electrical Characteristics	. 6
3.	Power Characteristics	11
4.	Clock Input Timing	12
5.	RESET Initialization	13
6.	DDR and DDR2 SDRAM	
7.	DUART	21
8.	Ethernet: Three-Speed Ethernet, MII Management .	21
9.	High-Speed Serial Interfaces (HSSI)	36
10.	USB	45
11.	Enhanced Local Bus	47
12.	JTAG	51
13.	I^2C	54
14.	PCI	56
15.	Timers	58
16.	GPIO	59
17.	IPIC	
18.	SPI	61
19.	Package and Pin Listings	63
20.	Clocking	77
21.	Thermal	82
22.	System Design Information	87
23.	Ordering Information	93
24.	Revision History	95

1 Overview

The MPC8313E incorporates the e300c3 core, which includes 16 Kbytes of L1 instruction and data caches and on-chip memory management units (MMUs). The MPC8313E has interfaces to dual enhanced three-speed 10/100/1000 Mbps Ethernet controllers, a DDR1/DDR2 SDRAM memory controller, an enhanced local bus controller, a 32-bit PCI controller, a dedicated security engine, a USB 2.0 dual-role controller and an on-chip high-speed PHY, a programmable interrupt controller, dual I²C controllers, a 4-channel DMA controller, and a general-purpose I/O port. This figure shows a block diagram of the MPC8313E.

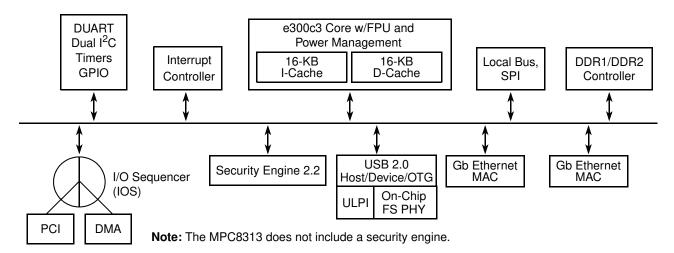


Figure 1. MPC8313E Block Diagram

The MPC8313E security engine (SEC 2.2) allows CPU-intensive cryptographic operations to be offloaded from the main CPU core. The security-processing accelerator provides hardware acceleration for the DES, 3DES, AES, SHA-1, and MD-5 algorithms.

1.1 MPC8313E Features

The following features are supported in the MPC8313E:

- Embedded PowerPCTM e300 processor core built on Power ArchitectureTM technology; operates at up to 333 MHz.
- High-performance, low-power, and cost-effective host processor
- DDR1/DDR2 memory controller—one 16-/32-bit interface at up to 333 MHz supporting both DDR1 and DDR2
- 16-Kbyte instruction cache and 16-Kbyte data cache, a floating point unit, and two integer units
- Peripheral interfaces such as 32-bit PCI interface with up to 66-MHz operation, 16-bit enhanced local bus interface with up to 66-MHz operation, and USB 2.0 (high speed) with an on-chip PHY.
- Security engine provides acceleration for control and data plane security protocols
- Power management controller for low-power consumption
- High degree of software compatibility with previous-generation PowerQUICC processor-based designs for backward compatibility and easier software migration

MPC8313E PowerQUICC II Pro Processor Hardware Specifications, Rev. 4

1.2 Serial Interfaces

The following interfaces are supported in the MPC8313E: dual UART, dual I²C, and an SPI interface.

1.3 Security Engine

The security engine is optimized to handle all the algorithms associated with IPSec, IEEE Std 802.11i®, and iSCSI. The security engine contains one crypto-channel, a controller, and a set of crypto execution units (EUs). The execution units are as follows:

- Data encryption standard execution unit (DEU), supporting DES and 3DES
- Advanced encryption standard unit (AESU), supporting AES
- Message digest execution unit (MDEU), supporting MD5, SHA1, SHA-224, SHA-256, and HMAC with any algorithm
- One crypto-channel supporting multi-command descriptor chains

1.4 DDR Memory Controller

The MPC8313E DDR1/DDR2 memory controller includes the following features:

- Single 16- or 32-bit interface supporting both DDR1 and DDR2 SDRAM
- Support for up to 333 MHz
- Support for two physical banks (chip selects), each bank independently addressable
- 64-Mbit to 2-Gbit (for DDR1) and to 4-Gbit (for DDR2) devices with x8/x16/x32 data ports (no direct x4 support)
- Support for one 16-bit device or two 8-bit devices on a 16-bit bus, or one 32-bit device or two 16-bit devices on a 32-bit bus
- Support for up to 16 simultaneous open pages
- Supports auto refresh
- On-the-fly power management using CKE
- 1.8-/2.5-V SSTL2 compatible I/O

1.5 PCI Controller

The MPC8313E PCI controller includes the following features:

- PCI specification revision 2.3 compatible
- Single 32-bit data PCI interface operates at up to 66 MHz
- PCI 3.3-V compatible (not 5-V compatible)
- Support for host and agent modes
- On-chip arbitration, supporting three external masters on PCI
- Selectable hardware-enforced coherency

1.6 USB Dual-Role Controller

The MPC8313E USB controller includes the following features:

- Supports USB on-the-go mode, which includes both device and host functionality, when using an external ULPI (UTMI + low-pin interface) PHY
- Compatible with Universal Serial Bus Specification, Rev. 2.0
- Supports operation as a stand-alone USB device
 - Supports one upstream facing port
 - Supports three programmable USB endpoints
- Supports operation as a stand-alone USB host controller
 - Supports USB root hub with one downstream-facing port
 - Enhanced host controller interface (EHCI) compatible
- Supports high-speed (480 Mbps), full-speed (12 Mbps), and low-speed (1.5 Mbps) operation. Low-speed operation is supported only in host mode.
- Supports UTMI + low pin interface (ULPI) or on-chip USB 2.0 full-speed/high-speed PHY

1.7 Dual Enhanced Three-Speed Ethernet Controllers (eTSECs)

The MPC8313E eTSECs include the following features:

- Two RGMII/SGMII/MII/RMII/RTBI interfaces
- Two controllers designed to comply with IEEE Std 802.3®, 802.3u®, 802.3x®, 802.3z®, 802.3au®, and 802.3ab®
- Support for Wake-on-Magic PacketTM, a method to bring the device from standby to full operating mode
- MII management interface for external PHY control and status
- Three-speed support (10/100/1000 Mbps)
- On-chip high-speed serial interface to external SGMII PHY interface
- Support for IEEE Std 1588TM
- Support for two full-duplex FIFO interface modes
- Multiple PHY interface configuration
- TCP/IP acceleration and QoS features available
- IP v4 and IP v6 header recognition on receive
- IP v4 header checksum verification and generation
- TCP and UDP checksum verification and generation
- Per-packet configurable acceleration
- Recognition of VLAN, stacked (queue in queue) VLAN, IEEE Std 802.2®, PPPoE session, MPLS stacks, and ESP/AH IP-security headers
- Transmission from up to eight physical queues.
- Reception to up to eight physical queues

- Full and half-duplex Ethernet support (1000 Mbps supports only full-duplex):
 - IEEE 802.3 full-duplex flow control (automatic PAUSE frame generation or software-programmed PAUSE frame generation and recognition)
 - Programmable maximum frame length supports jumbo frames (up to 9.6 Kbytes) and IEEE 802.1 virtual local area network (VLAN) tags and priority
 - VLAN insertion and deletion
 - Per-frame VLAN control word or default VLAN for each eTSEC
 - Extracted VLAN control word passed to software separately
 - Retransmission following a collision
 - CRC generation and verification of inbound/outbound packets
 - Programmable Ethernet preamble insertion and extraction of up to 7 bytes
- MAC address recognition:
 - Exact match on primary and virtual 48-bit unicast addresses
 - VRRP and HSRP support for seamless router fail-over
 - Up to 16 exact-match MAC addresses supported
 - Broadcast address (accept/reject)
 - Hash table match on up to 512 multicast addresses
 - Promiscuous mode
- Buffer descriptors backward compatible with MPC8260 and MPC860T 10/100 Ethernet programming models
- RMON statistics support
- 10-Kbyte internal transmit and 2-Kbyte receive FIFOs
- MII management interface for control and status

1.8 Programmable Interrupt Controller (PIC)

The programmable interrupt controller (PIC) implements the necessary functions to provide a flexible solution for general-purpose interrupt control. The PIC programming model supports 5 external and 34 internal discrete interrupt sources. Interrupts can also be redirected to an external interrupt controller.

1.9 Power Management Controller (PMC)

The MPC8313E power management controller includes the following features:

- Provides power management when the device is used in both host and agent modes
- Supports PCI power management 1.2 D0, D1, D2, D3hot, and D3cold states
- On-chip split power supply controlled through external power switch for minimum standby power
- Support for PME generation in PCI agent mode, PME detection in PCI host mode
- Supports wake-up from Ethernet (Magic Packet), USB, GPIO, and PCI (PME input as host)

1.10 Serial Peripheral Interface (SPI)

The serial peripheral interface (SPI) allows the MPC8313E to exchange data between other PowerQUICC family chips, Ethernet PHYs for configuration, and peripheral devices such as EEPROMs, real-time clocks, A/D converters, and ISDN devices.

The SPI is a full-duplex, synchronous, character-oriented channel that supports a four-wire interface (receive, transmit, clock, and slave select). The SPI block consists of transmitter and receiver sections, an independent baud-rate generator, and a control unit.

1.11 DMA Controller, Dual I²C, DUART, Local Bus Controller, and Timers

The MPC8313E provides an integrated four-channel DMA controller with the following features:

- Allows chaining (both extended and direct) through local memory-mapped chain descriptors (accessible by local masters)
- Supports misaligned transfers

There are two I²C controllers. These synchronous, multi-master buses can be connected to additional devices for expansion and system development.

The DUART supports full-duplex operation and is compatible with the PC16450 and PC16550 programming models. The 16-byte FIFOs are supported for both the transmitter and the receiver.

The MPC8313E local bus controller (LBC) port allows connections with a wide variety of external DSPs and ASICs. Three separate state machines share the same external pins and can be programmed separately to access different types of devices. The general-purpose chip select machine (GPCM) controls accesses to asynchronous devices using a simple handshake protocol. The three user programmable machines (UPMs) can be programmed to interface to synchronous devices or custom ASIC interfaces. Each chip select can be configured so that the associated chip interface can be controlled by the GPCM or UPM controller. The FCM provides a glueless interface to parallel-bus NAND Flash E2PROM devices. The FCM contains three basic configuration register groups—BRn, ORn, and FMR. Both may exist in the same system. The local bus can operate at up to 66 MHz.

The MPC8313E system timers include the following features: periodic interrupt timer, real time clock, software watchdog timer, and two general-purpose timer blocks.

2 Electrical Characteristics

This section provides the AC and DC electrical specifications and thermal characteristics for the MPC8313E. The MPC8313E is currently targeted to these specifications. Some of these specifications are independent of the I/O cell, but are included for a more complete reference. These are not purely I/O buffer design specifications.

2.1 Overall DC Electrical Characteristics

This section covers the ratings, conditions, and other characteristics.

2.1.1 Absolute Maximum Ratings

This table provides the absolute maximum ratings.

Table 1. Absolute Maximum Ratings¹

	Characteristic	Symbol	Max Value	Unit	Note
Core supply volt	age	V _{DD}	-0.3 to 1.26	V	_
PLL supply volta	age	AV _{DD}	-0.3 to 1.26	V	_
Core power sup	ply for SerDes transceivers	XCOREV _{DD}	-0.3 to 1.26	V	_
Pad power supp	ly for SerDes transceivers	XPADV _{DD}	-0.3 to 1.26	V	_
DDR and DDR2	DRAM I/O voltage	GV _{DD}	-0.3 to 2.75 -0.3 to 1.98	V	_
PCI, local bus, I and JTAG I/O vo	DUART, system control and power management, I ² C, oltage	NV _{DD} /LV _{DD}	-0.3 to 3.6	V	_
eTSEC, USB		LV _{DDA} /LV _{DDB}	-0.3 to 3.6	V	_
Input voltage	DDR DRAM signals	MV _{IN}	-0.3 to (GV _{DD} + 0.3)	V	2, 5
	DDR DRAM reference	MV _{REF}	-0.3 to (GV _{DD} + 0.3)	V	2, 5
	Enhanced three-speed Ethernet signals	LV _{IN}	-0.3 to (LV _{DDA} + 0.3) or -0.3 to (LV _{DDB} + 0.3)	V	4, 5
	Local bus, DUART, SYS_CLK_IN, system control, and power management, I ² C, and JTAG signals	NV _{IN}	-0.3 to (NV _{DD} + 0.3)	V	3, 5
	PCI	NV _{IN}	-0.3 to (NV _{DD} + 0.3)	V	6
Storage tempera	ature range	T _{STG}	-55 to 150	°C	_

Notes:

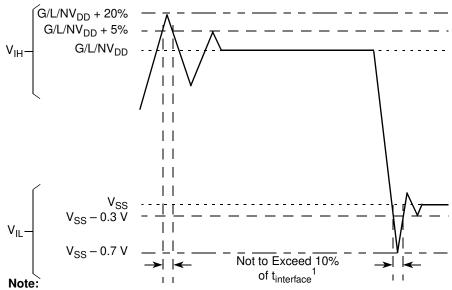
- 1. Functional and tested operating conditions are given in Table 2. Absolute maximum ratings are stress ratings only, and functional operation at the maximums is not guaranteed. Stresses beyond those listed may affect device reliability or cause permanent damage to the device.
- 2. Caution: MV_{IN} must not exceed GV_{DD} by more than 0.3 V. This limit may be exceeded for a maximum of 20 ms during power-on reset and power-down sequences.
- 3. Caution: NV_{IN} must not exceed NV_{DD} by more than 0.3 V. This limit may be exceeded for a maximum of 20 ms during power-on reset and power-down sequences.
- 4. **Caution:** LV_{IN} must not exceed LV_{DDA}/LV_{DDB} by more than 0.3 V. This limit may be exceeded for a maximum of 20 ms during power-on reset and power-down sequences.

2.1.2 Power Supply Voltage Specification

This table provides the recommended operating conditions for the MPC8313E. Note that the values in this table are the recommended and tested operating conditions. If a particular block is given a voltage falling within the range in the Recommended Value column, the MPC8313E is capable of delivering the amount of current listed in the Current Requirement column; this is the maximum current possible. Proper device operation outside of these conditions is not guaranteed.

Table 2. Recommended Operating Conditions

Characteristic	Symbol	Recommended Value ¹	Unit	Current Requirement
Core supply voltage	V _{DD}	1.0 V ± 50 mV	٧	469 mA
Internal core logic constant power	V _{DDC}	1.0 V ± 50 mV	٧	377 mA
SerDes internal digital power	XCOREV _{DD}	1.0	٧	170 mA
SerDes internal digital ground	XCOREV _{SS}	0.0	٧	_
SerDes I/O digital power	XPADV _{DD}	1.0	٧	10 mA
SerDes I/O digital ground	XPADV _{SS}	0.0	٧	_
SerDes analog power for PLL	SDAV _{DD}	1.0 V ± 50 mV	٧	10 mA
SerDes analog ground for PLL	SDAV _{SS}	0.0	٧	_
Dedicated 3.3 V analog power for USB PLL	USB_PLL_PWR3	3.3 V ± 300 mV	V	2–3 mA
Dedicated 1.0 V analog power for USB PLL	USB_PLL_PWR1	1.0 V ± 50 mV	٧	2–3 mA
Dedicated analog ground for USB PLL	USB_PLL_GND	0.0	٧	_
Dedicated USB power for USB bias circuit	USB_VDDA_BIAS	3.3 V ± 300 mV	V	4–5 mA
Dedicated USB ground for USB bias circuit	USB_VSSA_BIAS	0.0	٧	_
Dedicated power for USB transceiver	USB_VDDA	3.3 V ± 300 mV	٧	75 mA
Dedicated ground for USB transceiver	USB_VSSA	0.0	٧	_
Analog power for e300 core APLL	AV _{DD1} ⁶	1.0 V ± 50 mV	٧	2–3 mA
Analog power for system APLL	AV _{DD2} ⁶	1.0 V ± 50 mV	٧	2–3 mA
DDR1 DRAM I/O voltage (333 MHz, 32-bit operation)	GV _{DD}	2.5 V ± 125 mV	٧	131 mA
DDR2 DRAM I/O voltage (333 MHz, 32-bit operation)	GV _{DD}	1.8 V ± 80 mV	٧	140 mA
Differential reference voltage for DDR controller	MV _{REF}	$\begin{array}{c} \text{1/2 DDR supply} \\ \text{(0.49} \times \text{GV}_{\text{DD}} \text{ to} \\ \text{0.51} \times \text{GV}_{\text{DD}}) \end{array}$	V	_
Standard I/O voltage	NV _{DD}	3.3 V ± 300 mV ²	٧	74 mA
eTSEC2 I/O supply	LV _{DDA}	2.5 V ± 125 mV/ 3.3 V ± 300 mV	V	22 mA
eTSEC1/USB DR I/O supply	LV _{DDB}	2.5 V ± 125 mV/ 3.3 V ± 300 mV	V	44 mA
Supply for eLBC IOs	LV _{DD}	3.3 V ± 300 mV	V	16 mA
Analog and digital ground	V _{SS}	0.0	V	_
Junction temperature range	T _A /T _J ³	0 to 105	°C	


Table 2. Recommended Operating Conditions (continued)

Characteristic	Symbol	Recommended Value ¹	Unit	Current Requirement
----------------	--------	--------------------------------	------	------------------------

Note:

- 1. GV_{DD} , NV_{DD} , AV_{DD} , and V_{DD} must track each other and must vary in the same direction—either in the positive or negative direction.
- 2. Some GPIO pins may operate from a 2.5-V supply when configured for other functions.
- 3. Min temperature is specified with T_A; Max temperature is specified with T_A
- 4. All Power rails must be connected and power applied to the MPC8313 even if the IP interfaces are not used.
- 5. All I/O pins should be interfaced with peripherals operating at same voltage level.
- 6. This voltage is the input to the filter discussed in Section 22.2, "PLL Power Supply Filtering" and not necessarily the voltage at the AVDD pin, which may be reduced from VDD by the filter.

This figure shows the undershoot and overshoot voltages at the interfaces of the MPC8313E.

 Note that t_{interface} refers to the clock period associated with the bus clock interface.

Figure 2. Overshoot/Undershoot Voltage for $GV_{DD}/NV_{DD}/LV_{DD}$

2.1.3 Output Driver Characteristics

This table provides information on the characteristics of the output driver strengths.

Table 3. Output Drive Capability

Driver Type	Output Impedance (Ω)	Supply Voltage
Local bus interface utilities signals	42	NV _{DD} = 3.3 V
PCI signals	25	
DDR signal	18	GV _{DD} = 2.5 V

Driver Type	Output Impedance (Ω)	Supply Voltage
DDR2 signal	18	GV _{DD} = 1.8 V
DUART, system control, I ² C, JTAG, SPI	42	NV _{DD} = 3.3 V
GPIO signals	42	$NV_{DD} = 3.3 V$

42

42

 LV_{DDA} , $LV_{DDB} = 2.5/3.3 V$

 $LV_{DDB} = 2.5/3.3 V$

Table 3. Output Drive Capability (continued)

2.2 Power Sequencing

eTSEC signals

USB signals

The MPC8313E does not require the core supply voltage (V_{DD} and V_{DDC}) and I/O supply voltages (GV_{DD} , LV_{DD} , and NV_{DD}) to be applied in any particular order. Note that during power ramp-up, before the power supplies are stable and if the I/O voltages are supplied before the core voltage, there might be a period of time that all input and output pins are actively driven and cause contention and excessive current. In order to avoid actively driving the I/O pins and to eliminate excessive current draw, apply the core voltage (V_{DD} and V_{DDC}) before the I/O voltage (GV_{DD} , LV_{DD} , and NV_{DD}) and assert $\overline{PORESET}$ before the power supplies fully ramp up. In the case where the core voltage is applied first, the core voltage supply must rise to 90% of its nominal value before the I/O supplies reach 0.7 V; see Figure 3. Once both the power supplies (I/O voltage and core voltage) are stable, wait for a minimum of 32 clock cycles before negating $\overline{PORESET}$.

Note that there is no specific power down sequence requirement for the MPC8313E. I/O voltage supplies (GV_{DD}, LV_{DD}, and NV_{DD}) do not have any ordering requirements with respect to one another.

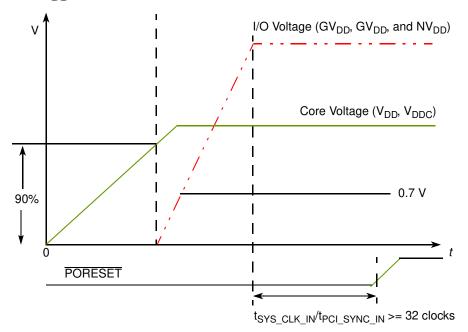


Figure 3. Power-Up Sequencing Example

Power Characteristics 3

The estimated typical power dissipation, not including I/O supply power, for this family of MPC8313E devices is shown in this table. Table 5 shows the estimated typical I/O power dissipation.

Table 4. MPC8313E Power Dissipation¹

Core Frequency (MHz)	CSB Frequency (MHz)	Typical ²	Maximum for Rev. 1.0 Silicon ³	Maximum for Rev. 2.x or Later Silicon ³	Unit
333	167	820	1020	1200	mW
400	133	820	1020	1200	mW

Note:

- 1. The values do not include I/O supply power or AV_{DD}, but do include core, USB PLL, and a portion of SerDes digital power (not including $XCOREV_{DD}$, $XPADV_{DD}$, or $SDAV_{DD}$, which all have dedicated power supplies for the SerDes PHY).
- Typical power is based on a voltage of V_{DD} = 1.05 V and an artificial smoker test running at room temperature.
 Maximum power is based on a voltage of V_{DD} = 1.05 V, a junction temperature of T_J = 105°C, and an artificial smoker test.

This table describes a typical scenario where blocks with the stated percentage of utilization and impedances consume the amount of power described.

Table 5. MPC8313E Typical I/O Power Dissipation

Interface	Parameter	GV _{DD} (1.8 V)	GV _{DD} (2.5 V)	NV _{DD} (3.3 V)	LV _{DDA} / LV _{DDB} (3.3 V)	LV _{DDA} / LV _{DDB} (2.5 V)	LV _{DD} (3.3 V)	Unit	Comments
DDR 1, 60% utilization, 50% read/write	333 MHz, 32 bits	_	0.355	_	_	_	_	W	_
$\begin{array}{l} R_s = 22~\Omega \\ R_t = 50~\Omega \\ \text{single pair of clock} \\ \text{capacitive load: data} = 8~\text{pF,} \\ \text{control address} = 8~\text{pF,} \\ \text{clock} = 8~\text{pF} \end{array}$	266 MHz, 32 bits	_	0.323	_			_	W	_
DDR 2, 60% utilization, 50% read/write	333 MHz, 32 bits	0.266	_	_	-	_	_	W	_
$R_s = 22 \Omega$ $R_t = 75 \Omega$ single pair of clock capacitive load: data = 8 pF, control address = 8 pF, clock = 8 pF	266 MHz, 32 bits	0.246	_	_	_	_	_	W	_
PCI I/O load = 50 pF	33 MHz	_	_	0.120	_	_	_	W	_
	66 MHz	_	_	0.249	_	_	_	W	_
Local bus I/O load = 20 pF	66 MHz	_	_	_	_	_	0.056	W	_
	50 MHz	_	_	_	_	_	0.040	W	_
TSEC I/O load = 20 pF	MII, 25 MHz	_	_	_	0.008	_	_	W	Multiple by number of
	RGMII, 125 MHz	_	_	_	0.078	0.044	_	W	interface used

Table 5. MPC8313E Typical I/O Power Dissipation (continued)

Interface	Parameter	GV _{DD} (1.8 V)	GV _{DD} (2.5 V)	NV _{DD} (3.3 V)	LV _{DDA} / LV _{DDB} (3.3 V)	LV _{DDA} / LV _{DDB} (2.5 V)	LV _{DD} (3.3 V)	Unit	Comments
USBDR controller load = 20 pF	60 MHz	_	_	_	0.078	_		W	_
Other I/O	_	_	_	0.015	_	_		W	_

This table shows the estimated core power dissipation of the MPC8313E while transitioning into the D3 warm low-power state.

Table 6. MPC8313E Low-Power Modes Power Dissipation¹

333-MHz Core, 167-MHz CSB ²	Rev. 1.0 ³	Rev. 2.x or Later ³	Unit
D3 warm	400	425	mW

Note:

- 1. All interfaces are enabled. For further power savings, disable the clocks to unused blocks.
- The interfaces are run at the following frequencies: DDR: 333 MHz, eLBC 83 MHz, PCI 33 MHz, eTSEC1 and TSEC2: 167 MHz, SEC: 167 MHz, USB: 167 MHz. See the SCCR register for more information.
- 3. This is maximum power in D3 Warm based on a voltage of 1.05 V and a junction temperature of 105° C.

4 Clock Input Timing

This section provides the clock input DC and AC electrical characteristics for the MPC8313E.

4.1 DC Electrical Characteristics

This table provides the system clock input (SYS_CLK_IN/PCI_SYNC_IN) DC timing specifications for the MPC8313E.

Table 7. SYS CLK IN DC Electrical Characteristics

Parameter	Condition	Symbol	Min	Max	Unit
Input high voltage	_	V _{IH}	2.4	NV _{DD} + 0.3	V
Input low voltage	_	V _{IL}	-0.3	0.4	V
SYS_CLK_IN input current	$0 \text{ V } \leq V_{IN} \leq NV_{DD}$	I _{IN}	_	±10	μΑ
PCI_SYNC_IN input current	$\begin{array}{c} 0~V \leq V_{IN} \leq 0.5~V\\ or\\ NV_{DD} - 0.5~V \leq V_{IN} \leq NV_{DD} \end{array}$	I _{IN}	_	±10	μА
PCI_SYNC_IN input current	$0.5 \text{ V} \le V_{IN} \le NV_{DD} - 0.5 \text{ V}$	I _{IN}	_	±50	μΑ

4.2 AC Electrical Characteristics

The primary clock source for the MPC8313E can be one of two inputs, SYS_CLK_IN or PCI_CLK, depending on whether the device is configured in PCI host or PCI agent mode. This table provides the system clock input (SYS_CLK_IN/PCI_CLK) AC timing specifications for the MPC8313E.

Table 8. SYS_CLK_IN AC Timing Specifications

Parameter/Condition	Symbol	Min	Тур	Max	Unit	Note
SYS_CLK_IN/PCI_CLK frequency	f _{SYS_CLK_IN}	24	_	66.67	MHz	1
SYS_CLK_IN/PCI_CLK cycle time	t _{SYS_CLK_IN}	15	_	_	ns	_
SYS_CLK_IN rise and fall time	t _{KH} , t _{KL}	0.6	0.8	4	ns	2
PCI_CLK rise and fall time	t _{PCH} , t _{PCL}	0.6	0.8	1.2	ns	2
SYS_CLK_IN/PCI_CLK duty cycle	t _{KHK} /t _{SYS_CLK_IN}	40	_	60	%	3
SYS_CLK_IN/PCI_CLK jitter	_	_	_	±150	ps	4, 5

Notes:

- 1. Caution: The system, core, security block must not exceed their respective maximum or minimum operating frequencies.
- 2. Rise and fall times for SYS CLK IN/PCI CLK are measured at 0.4 and 2.4 V.
- 3. Timing is guaranteed by design and characterization.
- 4. This represents the total input jitter—short term and long term—and is guaranteed by design.
- 5. The SYS_CLK_IN/PCI_CLK driver's closed loop jitter bandwidth should be <500 kHz at -20 dB. The bandwidth must be set low to allow cascade-connected PLL-based devices to track SYS_CLK_IN drivers with the specified jitter.

5 RESET Initialization

This section describes the DC and AC electrical specifications for the reset initialization timing and electrical requirements of the MPC8313E.

5.1 RESET DC Electrical Characteristics

This table provides the DC electrical characteristics for the RESET pins.

Table 9. RESET Pins DC Electrical Characteristics

Characteristic	Symbol	Condition	Min	Max	Unit
Input high voltage	V _{IH}	_	2.1	NV _{DD} + 0.3	V
Input low voltage	V_{IL}	_	-0.3	0.8	V
Input current	I _{IN}	$0~V \leq V_{IN} \leq NV_{DD}$	_	±5	μА
Output high voltage	V _{OH}	$I_{OH} = -8.0 \text{ mA}$	2.4	_	V
Output low voltage	V_{OL}	$I_{OL} = 8.0 \text{ mA}$	_	0.5	V
Output low voltage	V _{OL}	I _{OL} = 3.2 mA	_	0.4	V

5.2 RESET AC Electrical Characteristics

This table provides the reset initialization AC timing specifications.

Table 10. RESET Initialization Timing Specifications

Parameter/Condition	Min	Max	Unit	Note
Required assertion time of HRESET or SRESET (input) to activate reset flow	32	_	t _{PCI_SYNC_IN}	1
Required assertion time of PORESET with stable clock and power applied to SYS_CLK_IN when the device is in PCI host mode	32	_	t _{SYS_CLK_IN}	2
Required assertion time of PORESET with stable clock and power applied to PCI_SYNC_IN when the device is in PCI agent mode	32	_	t _{PCI_SYNC_IN}	1
HRESET assertion (output)	512	_	t _{PCI_SYNC_IN}	1
Input setup time for POR configuration signals (CFG_RESET_SOURCE[0:3] and CFG_CLK_IN_DIV) with respect to negation of PORESET when the device is in PCI host mode	4	_	tsys_clk_in	2
Input setup time for POR configuration signals (CFG_RESET_SOURCE[0:2] and CFG_CLKIN_DIV) with respect to negation of PORESET when the device is in PCI agent mode	4	_	t _{PCI_SYNC_IN}	1
Input hold time for POR configuration signals with respect to negation of HRESET	0	_	ns	_
Time for the device to turn off POR configuration signal drivers with respect to the assertion of HRESET	_	4	ns	3
Time for the device to turn on POR configuration signal drivers with respect to the negation of HRESET	1	_	t _{PCI_SYNC_IN}	1, 3

Notes:

- 1. t_{PCI_SYNC_IN} is the clock period of the input clock applied to PCI_SYNC_IN. When the device is In PCI host mode the primary clock is applied to the SYS_CLK_IN input, and PCI_SYNC_IN period depends on the value of CFG_CLKIN_DIV.
- 2. t_{SYS_CLK_IN} is the clock period of the input clock applied to SYS_CLK_IN. It is only valid when the device is in PCI host mode.
- 3. POR configuration signals consists of CFG RESET SOURCE[0:2] and CFG CLKIN DIV.

This table provides the PLL lock times.

Table 11. PLL Lock Times

Parameter/Condition	Min	Max	Unit	Note
PLL lock times	_	100	μS	_

6 DDR and DDR2 SDRAM

This section describes the DC and AC electrical specifications for the DDR SDRAM interface. Note that DDR SDRAM is $GV_{DD}(typ) = 2.5 \text{ V}$ and DDR2 SDRAM is $GV_{DD}(typ) = 1.8 \text{ V}$.

6.1 DDR and DDR2 SDRAM DC Electrical Characteristics

This table provides the recommended operating conditions for the DDR2 SDRAM component(s) when $GV_{DD}(typ) = 1.8 \text{ V}$.

Table 12. DDR2 SDRAM DC Electrical Characteristics for GV_{DD}(typ) = 1.8 V

Parameter/Condition	Symbol	Min	Max	Unit	Note
I/O supply voltage	GV _{DD}	1.7	1.9	V	1
I/O reference voltage	MV _{REF}	0.49 × GV _{DD}	0.51 × GV _{DD}	V	2
I/O termination voltage	V _{TT}	MV _{REF} - 0.04	MV _{REF} + 0.04	V	3
Input high voltage	V _{IH}	MV _{REF} + 0.125	GV _{DD} + 0.3	V	_
Input low voltage	V _{IL}	-0.3	MV _{REF} – 0.125	V	_
Output leakage current	I _{OZ}	-9.9	9.9	μΑ	4
Output high current (V _{OUT} = 1.420 V)	I _{OH}	-13.4	_	mA	_
Output low current (V _{OUT} = 0.280 V)	I _{OL}	13.4	_	mA	_

Notes:

- 1. GV_{DD} is expected to be within 50 mV of the DRAM GV_{DD} at all times.
- 2. MV_{REF} is expected to be equal to 0.5 × GV_{DD}, and to track GV_{DD} DC variations as measured at the receiver. Peak-to-peak noise on MV_{REF} may not exceed ±2% of the DC value.
- 3. V_{TT} is not applied directly to the device. It is the supply to which far end signal termination is made and is expected to be equal to MV_{RFF}. This rail should track variations in the DC level of MV_{RFF}.
- 4. Output leakage is measured with all outputs disabled, 0 V \leq V_{OUT} \leq GV_{DD}.

This table provides the DDR2 capacitance when $GV_{DD}(typ) = 1.8 \text{ V}$.

Table 13. DDR2 SDRAM Capacitance for GV_{DD}(typ) = 1.8 V

Parameter/Condition	Symbol	Min	Max	Unit	Note
Input/output capacitance: DQ, DQS, DQS	C _{IO}	6	8	pF	1
Delta input/output capacitance: DQ, DQS, DQS	C _{DIO}	_	0.5	pF	1

Note:

1. This parameter is sampled. $GV_{DD} = 1.8 \text{ V} \pm 0.090 \text{ V}$, f = 1 MHz, $T_A = 25^{\circ}\text{C}$, $V_{OUT} = GV_{DD}/2$, V_{OUT} (peak-to-peak) = 0.2 V.

This table provides the recommended operating conditions for the DDR SDRAM component(s) when $GV_{DD}(typ) = 2.5 \text{ V}$.

Table 14. DDR SDRAM DC Electrical Characteristics for $GV_{DD}(typ) = 2.5 \text{ V}$

Parameter/Condition	Symbol	Min	Max	Unit	Note
I/O supply voltage	GV _{DD}	2.3	2.7	V	1
I/O reference voltage	MV _{REF}	$0.49 \times \text{GV}_{\text{DD}}$	0.51 × GV _{DD}	V	2
I/O termination voltage	V _{TT}	MV _{REF} - 0.04	MV _{REF} + 0.04	V	3
Input high voltage	V _{IH}	MV _{REF} + 0.15	GV _{DD} + 0.3	V	_
Input low voltage	V _{IL}	-0.3	MV _{REF} – 0.15	V	_

MPC8313E PowerQUICC II Pro Processor Hardware Specifications, Rev. 4

Table 14. DDR SDRAM DC Electrical Characteristics for GV_{DD}(typ) = 2.5 V (continued)

Parameter/Condition	Symbol	Min	Max	Unit	Note
Output leakage current	l _{OZ}	-9.9	-9.9	μΑ	4
Output high current (V _{OUT} = 1.95 V)	I _{OH}	-16.2	_	mA	_
Output low current (V _{OUT} = 0.35 V)	I _{OL}	16.2	_	mA	_

Note:

- 1. GV_{DD} is expected to be within 50 mV of the DRAM GV_{DD} at all times.
- 2. MV_{REF} is expected to be equal to $0.5 \times GV_{DD}$, and to track GV_{DD} DC variations as measured at the receiver. Peak-to-peak noise on MV_{REF} may not exceed $\pm 2\%$ of the DC value.
- 3. V_{TT} is not applied directly to the device. It is the supply to which far end signal termination is made and is expected to be equal to MV_{REF}. This rail should track variations in the DC level of MV_{REF}.
- 4. Output leakage is measured with all outputs disabled, 0 V \leq V_{OUT} \leq GV_{DD}.

This table provides the DDR capacitance when $GV_{DD}(typ) = 2.5 \text{ V}$.

Table 15. DDR SDRAM Capacitance for GV_{DD}(typ) = 2.5 V

Parameter/Condition	Symbol	Min	Max	Unit	Note
Input/output capacitance: DQ, DQS	C _{IO}	6	8	pF	1
Delta input/output capacitance: DQ, DQS	C _{DIO}	_	0.5	pF	1

Note:

1. This parameter is sampled. $GV_{DD} = 2.5 \text{ V} \pm 0.125 \text{ V}$, f = 1 MHz, $T_A = 25^{\circ}\text{C}$, $V_{OUT} = GV_{DD}/2$, V_{OUT} (peak-to-peak) = 0.2 V.

This table provides the current draw characteristics for MV_{REF}.

Table 16. Current Draw Characteristics for MV_{REF}

Parameter/Condition	Symbol	Min	Max	Unit	Note
Current draw for MV _{REF}	I _{MVREF}	_	500	μА	1

Note:

6.2 DDR and DDR2 SDRAM AC Electrical Characteristics

This section provides the AC electrical characteristics for the DDR SDRAM interface.

6.2.1 DDR and DDR2 SDRAM Input AC Timing Specifications

This table provides the input AC timing specifications for the DDR2 SDRAM when $GV_{DD}(typ) = 1.8 \text{ V}$.

Table 17. DDR2 SDRAM Input AC Timing Specifications for 1.8-V Interface

At recommended operating conditions with GV_{DD} of 1.8 \pm 5%.

Parameter	Symbol	Min	Max	Unit	Note
AC input low voltage	V _{IL}	_	MV _{REF} – 0.25	V	_
AC input high voltage	V _{IH}	MV _{REF} + 0.25	_	V	_

MPC8313E PowerQUICC II Pro Processor Hardware Specifications, Rev. 4

^{1.} The voltage regulator for MV $_{\mbox{\scriptsize REF}}$ must be able to supply up to 500 $\mu\mbox{\scriptsize A}$ current.

This table provides the input AC timing specifications for the DDR SDRAM when $GV_{DD}(typ) = 2.5 \text{ V}$.

Table 18. DDR SDRAM Input AC Timing Specifications for 2.5-V Interface

At recommended operating conditions with GV_{DD} of 2.5 \pm 5%.

Parameter	Symbol	Min	Max	Unit	Note
AC input low voltage	V _{IL}	_	MV _{REF} - 0.31	V	_
AC input high voltage	V _{IH}	MV _{REF} + 0.31	_	V	_

This table provides the input AC timing specifications for the DDR2 SDRAM interface.

Table 19. DDR and DDR2 SDRAM Input AC Timing Specifications

At recommended operating conditions. with GV_{DD} of 2.5 \pm 5%.

Parameter	Symbol	Min	Max	Unit	Note
Controller skew for MDQS—MDQ	^t CISKEW	_	_	ps	1, 2
333 MHz	_	-750	750	_	_
266 MHz	_	-750	750	_	_

Notes:

- 1. t_{CISKEW} represents the total amount of skew consumed by the controller between MDQS[*n*] and any corresponding bit that is captured with MDQS[*n*]. This should be subtracted from the total timing budget.
- 2. The amount of skew that can be tolerated from MDQS to a corresponding MDQ signal is called t_{DISKEW}. This can be determined by the following equation: t_{DISKEW} = ± (T/4 abs(t_{CISKEW})) where T is the clock period and abs(t_{CISKEW}) is the absolute value of t_{CISKEW}.

This figure illustrates the DDR input timing diagram showing the t_{DISKEW} timing parameter.

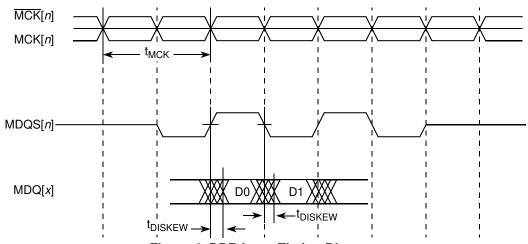


Figure 4. DDR Input Timing Diagram

6.2.2 DDR and DDR2 SDRAM Output AC Timing Specifications

Table 20. DDR and DDR2 SDRAM Output AC Timing Specifications for Rev. 1.0 Silicon

Parameter	Symbol ¹	Min	Max	Unit	Note
MCK[n] cycle time, MCK[n]/MCK[n] crossing	t _{MCK}	6	10	ns	2
ADDR/CMD output setup with respect to MCK 333 MHz 266 MHz	t _{DDKHAS}	2.1 2.5	_	ns	3
ADDR/CMD output hold with respect to MCK 333 MHz 266 MHz	t _{DDKHAX}	2.4 3.15	_	ns	3
MCS[n] output setup with respect to MCK 333 MHz 266 MHz	t _{DDKHCS}	2.4 3.15	_	ns	3
MCS[n] output hold with respect to MCK 333 MHz 266 MHz	t _{DDKHCX}	2.4 3.15	_	ns	3
MCK to MDQS Skew	t _{DDKHMH}	-0.6	0.6	ns	4
MDQ//MDM output setup with respect to MDQS 333 MHz 266 MHz	t _{DDKHDS,} t _{DDKLDS}	800 900	_	ps	5
MDQ//MDM output hold with respect to MDQS 333 MHz 266 MHz	^t DDKHDX, ^t DDKLDX	900 1100	=	ps	5
MDQS preamble start	t _{DDKHMP}	$-0.5 \times t_{MCK} - 0.6$	$-0.5 \times t_{MCK} + 0.6$	ns	6
MDQS epilogue end	t _{DDKHME}	-0.6	0.6	ns	6

Notes:

- 1. The symbols used for timing specifications follow the pattern of t_{(first two letters of functional block)(signal)(state)} for inputs and t_(first two letters of functional block)(reference)(state)(signal)(state)</sub> for outputs. Output hold time can be read as DDR timing (DD) from the rising or falling edge of the reference clock (KH or KL) until the output went invalid (AX or DX). For example, t_{DDKHAS} symbolizes DDR timing (DD) for the time t_{MCK} memory clock reference (K) goes from the high (H) state until outputs (A) are setup (S) or output valid time. Also, t_{DDKLDX} symbolizes DDR timing (DD) for the time t_{MCK} memory clock reference (K) goes low (L) until data outputs (D) are invalid (X) or data output hold time.
- 2. All MCK/MCK referenced measurements are made from the crossing of the two signals ±0.1 V.
- 3. ADDR/CMD includes all DDR SDRAM output signals except MCK/MCK, MCS, and MDQ//MDM/MDQS.
- 4. Note that t_{DDKHMH} follows the symbol conventions described in note 1. For example, t_{DDKHMH} describes the DDR timing (DD) from the rising edge of the MCK[n] clock (KH) until the MDQS signal is valid (MH). t_{DDKHMH} can be modified through control of the DQSS override bits in the TIMING_CFG_2 register. This is typically set to the same delay as the clock adjust in the CLK_CNTL register. The timing parameters listed in the table assume that these 2 parameters have been set to the same adjustment value. See the MPC8313E PowerQUICC II Pro Integrated Processor Family Reference Manual, for a description and understanding of the timing modifications enabled by use of these bits.
- 5. Determined by maximum possible skew between a data strobe (MDQS) and any corresponding bit of data (MDQ), ECC (MECC), or data mask (MDM). The data strobe should be centered inside of the data eye at the pins of the microprocessor.
- 6. All outputs are referenced to the rising edge of MCK[n] at the pins of the microprocessor. Note that t_{DDKHMP} follows the symbol conventions described in note 1.

Table 21. DDR and DDR2 SDRAM Output AC Timing Specifications for Silicon Rev 2.x or Later

Parameter	Symbol ¹	Min	Max	Unit	Note
MCK[n] cycle time, MCK[n]/MCK[n] crossing	t _{MCK}	6	10	ns	2
ADDR/CMD output setup with respect to MCK 333 MHz 266 MHz	t _{DDKHAS}	2.1 2.5	_	ns	3
ADDR/CMD output hold with respect to MCK 333 MHz 266 MHz	t _{DDKHAX}	2.0 2.7	_	ns	3
MCS[n] output setup with respect to MCK 333 MHz 266 MHz	t _{DDKHCS}	2.1 3.15	_	ns	3
MCS[n] output hold with respect to MCK 333 MHz 266 MHz	t _{DDKHCX}	2.0 2.7	_	ns	3
MCK to MDQS Skew	t _{DDKHMH}	-0.6	0.6	ns	4
MDQ//MDM output setup with respect to MDQS 333 MHz 266 MHz	t _{DDKHDS,} t _{DDKLDS}	800 900		ps	5
MDQ//MDM output hold with respect to MDQS 333 MHz 266 MHz	^t DDKHDX, ^t DDKLDX	750 1000	=	ps	5
MDQS preamble start	t _{DDKHMP}	$-0.5 \times t_{MCK} - 0.6$	$-0.5 \times t_{MCK} + 0.6$	ns	6
MDQS epilogue end	t _{DDKHME}	-0.6	0.6	ns	6

Notes:

- 1. The symbols used for timing specifications follow the pattern of t_{(first two letters of functional block)(signal)(state)} for inputs and t_(first two letters of functional block)(reference)(state)(signal)(state)</sub> for outputs. Output hold time can be read as DDR timing (DD) from the rising or falling edge of the reference clock (KH or KL) until the output went invalid (AX or DX). For example, t_{DDKHAS} symbolizes DDR timing (DD) for the time t_{MCK} memory clock reference (K) goes from the high (H) state until outputs (A) are setup (S) or output valid time. Also, t_{DDKLDX} symbolizes DDR timing (DD) for the time t_{MCK} memory clock reference (K) goes low (L) until data outputs (D) are invalid (X) or data output hold time.
- 2. All MCK/MCK referenced measurements are made from the crossing of the two signals ±0.1 V.
- 3. ADDR/CMD includes all DDR SDRAM output signals except MCK/MCK, MCS, and MDQ//MDM/MDQS.
- 4. Note that t_{DDKHMH} follows the symbol conventions described in note 1. For example, t_{DDKHMH} describes the DDR timing (DD) from the rising edge of the MCK[n] clock (KH) until the MDQS signal is valid (MH). t_{DDKHMH} can be modified through control of the DQSS override bits in the TIMING_CFG_2 register. This is typically set to the same delay as the clock adjust in the CLK_CNTL register. The timing parameters listed in the table assume that these 2 parameters have been set to the same adjustment value. See the MPC8313E PowerQUICC II Pro Integrated Processor Family Reference Manual, for a description and understanding of the timing modifications enabled by use of these bits.
- Determined by maximum possible skew between a data strobe (MDQS) and any corresponding bit of data (MDQ), ECC (MECC), or data mask (MDM). The data strobe should be centered inside of the data eye at the pins of the microprocessor.
- 6. All outputs are referenced to the rising edge of MCK[n] at the pins of the microprocessor. Note that t_{DDKHMP} follows the symbol conventions described in note 1.

NOTE

For the ADDR/CMD setup and hold specifications in Table 21, it is assumed that the clock control register is set to adjust the memory clocks by 1/2 applied cycle.

This figure shows the DDR SDRAM output timing for the MCK to MDQS skew measurement (t_{DDKHMH}) .

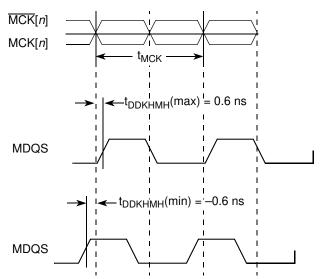


Figure 5. Timing Diagram for t_{DDKHMH}

This figure shows the DDR and DDR2 SDRAM output timing diagram.

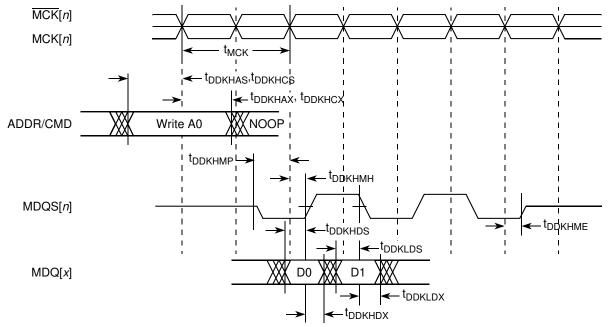


Figure 6. DDR and DDR2 SDRAM Output Timing Diagram

This figure provides the AC test load for the DDR bus.

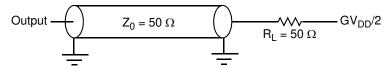


Figure 7. DDR AC Test Load

7 DUART

Input current (0 V \leq V_{IN} \leq NV_{DD})

This section describes the DC and AC electrical specifications for the DUART interface.

7.1 DUART DC Electrical Characteristics

This table provides the DC electrical characteristics for the DUART interface.

Parameter Symbol Min Max Unit $\rm V_{IH}$ High-level input voltage 2.0 $NV_{DD} + 0.3$ V Low-level input voltage NV_{DD} V_{IL} -0.30.8 ٧ ٧ High-level output voltage, $I_{OH} = -100 \mu A$ V_{OH} $NV_{DD} - 0.2$ Low-level output voltage, I_{OL} = 100 μA 0.2 ٧ V_{OL}

 I_{IN}

±5

μΑ

Table 22. DUART DC Electrical Characteristics

7.2 DUART AC Electrical Specifications

This table provides the AC timing parameters for the DUART interface.

Table 23. DUART AC Timing Specifications

Parameter	Value	Unit	Note
Minimum baud rate	256	baud	_
Maximum baud rate	> 1,000,000	baud	1
Oversample rate	16	_	2

Notes

- 1. Actual attainable baud rate is limited by the latency of interrupt processing.
- 2. The middle of a start bit is detected as the 8th sampled 0 after the 1-to-0 transition of the start bit. Subsequent bit values are sampled each 16th sample.

8 Ethernet: Three-Speed Ethernet, MII Management

This section provides the AC and DC electrical characteristics for three-speed, 10/100/1000, and MII management.

8.1 Enhanced Three-Speed Ethernet Controller (eTSEC) (10/100/1000 Mbps)—MII/RMII/RGMII/SGMII/RTBI Electrical Characteristics

The electrical characteristics specified here apply to all the media independent interface (MII), reduced gigabit media independent interface (RGMII), serial gigabit media independent interface (SGMII), and reduced ten-bit interface (RTBI) signals except management data input/output (MDIO) and management data clock (MDC). The RGMII and RTBI interfaces are defined for 2.5 V, while the MII interface can be operated at 3.3 V. The RMII and SGMII interfaces can be operated at either 3.3 or 2.5 V. The RGMII and RTBI interfaces follow the Hewlett-Packard reduced pin-count interface for *Gigabit Ethernet Physical Layer Device Specification Version 1.2a* (9/22/2000). The electrical characteristics for MDIO and MDC are specified in Section 8.5, "Ethernet Management Interface Electrical Characteristics."

8.1.1 TSEC DC Electrical Characteristics

All RGMII, RMII, and RTBI drivers and receivers comply with the DC parametric attributes specified in Table 24 and Table 25. The RGMII and RTBI signals are based on a 2.5-V CMOS interface voltage as defined by JEDEC EIA/JESD8-5.

NOTE

eTSEC should be interfaced with peripheral operating at same voltage level.

Parameter Symbol Conditions Min Max Unit ٧ Supply voltage 3.3 V LV_{DDA}/LV_{DDB} 2.97 3.63 $I_{OH} = -4.0 \text{ mA}$ Output high voltage V_{OH} LV_{DDA} or $LV_{DDB} = Min$ 2.40 $LV_{DDA} + 0.3$ V $LV_{DDB} + 0.3$ Output low voltage LV_{DDA} or $LV_{DDB} = Min$ 0.50 ٧ V_{OL} $I_{OL} = 4.0 \text{ mA}$ V_{SS} ٧ Input high voltage 2.0 V_{IH} $LV_{DDA} + 0.3$ $LV_{DDB} + 0.3$ Input low voltage V_{IL} -0.30.90 V $V_{IN}^{1} = LV_{DDA}$ or LV_{DDB} Input high current I_{IH} 40 μΑ $V_{IN}^{1} = VSS$ Input low current -600 μΑ

Table 24. MII DC Electrical Characteristics

Note:

Table 25. RGMII/RTBI DC Electrical Characteristics

Parameters	Symbol	Conditions	Min	Max	Unit
Supply voltage 2.5 V	LV _{DDA} /LV _{DDB}	_	2.37	2.63	V

MPC8313E PowerQUICC II Pro Processor Hardware Specifications, Rev. 4

^{1.} The symbol V_{IN}, in this case, represents the LV_{IN} symbol referenced in Table 1 and Table 2.

Table 25. RGMII/RTBI DC Electrical Characteristics (continued)
--

Parameters	Symbol	Conditions		Min	Max	Unit
Output high voltage	V _{OH}	I _{OH} = -1.0 mA	LV_{DDA} or $LV_{DDB} = Min$	2.00	LV _{DDA} + 0.3 or LV _{DDB} + 0.3	V
Output low voltage	V _{OL}	I _{OL} = 1.0 mA	LV _{DDA} or LV _{DDB} = Min	V _{SS} - 0.3	0.40	V
Input high voltage	V _{IH}	_	LV_{DDA} or $LV_{DDB} = Min$	1.7	LV _{DDA} + 0.3 or LV _{DDB} + 0.3	V
Input low voltage	V _{IL}	_	LV_{DDA} or $LV_{DDB} = Min$	-0.3	0.70	V
Input high current	I _{IH}	$V_{IN}^{1} = LV_{DDA}$ or LV_{DDB}		_	10	μΑ
Input low current	I _{IL}	\	$V_{\rm IN}^{1} = V_{\rm SS}$	-15	_	μΑ

Note:

8.2 MII, RGMII, and RTBI AC Timing Specifications

The AC timing specifications for MII, RMII, RGMII, and RTBI are presented in this section.

8.2.1 MII AC Timing Specifications

This section describes the MII transmit and receive AC timing specifications.

8.2.1.1 MII Transmit AC Timing Specifications

This table provides the MII transmit AC timing specifications.

Table 26. MII Transmit AC Timing Specifications

At recommended operating conditions with $LV_{DDA}/LV_{DDB}/NV_{DD}$ of 3.3 V \pm 0.3 V.

Parameter/Condition	Symbol ¹	Min	Тур	Max	Unit
TX_CLK clock period 10 Mbps	t _{MTX}	_	400	_	ns
TX_CLK clock period 100 Mbps	t _{MTX}	_	40	_	ns
TX_CLK duty cycle	t _{MTXH} /t _{MTX}	35	_	65	%
TX_CLK to MII data TXD[3:0], TX_ER, TX_EN delay	t _{MTKHDX}	1	5	15	ns
TX_CLK data clock rise V _{IL} (min) to V _{IH} (max)	t _{MTXR}	1.0	_	4.0	ns
TX_CLK data clock fall V _{IH} (max) to V _{IL} (min)	t _{MTXF}	1.0	_	4.0	ns

Note:

MPC8313E PowerQUICC II Pro Processor Hardware Specifications, Rev. 4

^{1.} Note that the symbol V_{IN} , in this case, represents the LV_{IN} symbol referenced in Table 1 and Table 2.

^{1.} The symbols used for timing specifications follow the pattern of t_{(first two letters of functional block)(signal)(state)} for inputs and t_(first two letters of functional block)(reference)(state)(signal)(state)</sub> for outputs. For example, t_{MTKHDX} symbolizes MII transmit timing (MT) for the time t_{MTX} clock reference (K) going high (H) until data outputs (D) are invalid (X). Note that, in general, the clock reference symbol representation is based on two to three letters representing the clock of a particular functional. For example, the subscript of t_{MTX} represents the MII(M) transmit (TX) clock. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).

This figure shows the MII transmit AC timing diagram.

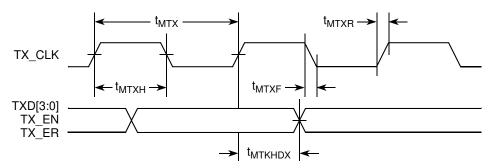


Figure 8. MII Transmit AC Timing Diagram

8.2.1.2 MII Receive AC Timing Specifications

This table provides the MII receive AC timing specifications.

Table 27. MII Receive AC Timing Specifications

At recommended operating conditions with LV $_{\rm DDA}/{\rm LV}_{\rm DDB}/{\rm NV}_{\rm DD}$ of 3.3 V \pm 0.3 V.

Parameter/Condition	Symbol ¹	Min	Тур	Max	Unit
RX_CLK clock period 10 Mbps	t _{MRX}	_	400	_	ns
RX_CLK clock period 100 Mbps	t _{MRX}	_	40	_	ns
RX_CLK duty cycle	t _{MRXH} /t _{MRX}	35	_	65	%
RXD[3:0], RX_DV, RX_ER setup time to RX_CLK	t _{MRDVKH}	10.0	_	_	ns
RXD[3:0], RX_DV, RX_ER hold time to RX_CLK	t _{MRDXKH}	10.0	_	_	ns
RX_CLK clock rise V _{IL} (min) to V _{IH} (max)	t _{MRXR}	1.0	_	4.0	ns
RX_CLK clock fall time V _{IH} (max) to V _{IL} (min)	t _{MRXF}	1.0	_	4.0	ns

Note:

- 1. The symbols used for timing specifications follow the pattern of t_{(first two letters of functional block)(reference)(state)} for inputs and t_(first two letters of functional block) (reference)(state)(signal)(state)</sub> for outputs. For example, t_{MRDVKH} symbolizes MII receive timing (MR) with respect to the time data input signals (D) reach the valid state (V) relative to the t_{MRX} clock reference (K) going to the high (H) state or setup time. Also, t_{MRDXKL} symbolizes MII receive timing (GR) with respect to the time data input signals (D) went invalid (X) relative to the t_{MRX} clock reference (K) going to the low (L) state or hold time. Note that, in general, the clock reference symbol representation is based on three letters representing the clock of a particular functional. For example, the subscript of t_{MRX} represents the MII (M) receive (RX) clock. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).
- 2. The frequency of RX CLK should not exceed the TX CLK by more than 300 ppm

This figure provides the AC test load for TSEC.

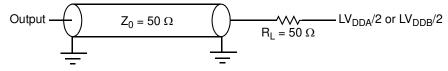


Figure 9. TSEC AC Test Load

MPC8313E PowerQUICC II Pro Processor Hardware Specifications, Rev. 4

This figure shows the MII receive AC timing diagram.

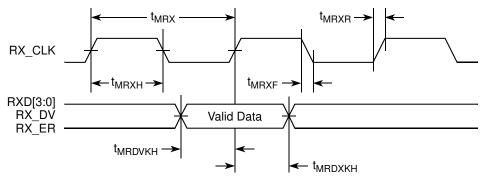


Figure 10. MII Receive AC Timing Diagram RMII AC Timing Specifications

8.2.1.3 RMII Transmit AC Timing Specifications

This table provides the RMII transmit AC timing specifications.

Table 28. RMII Transmit AC Timing Specifications

At recommended operating conditions with NV_{DD} of 3.3 V \pm 0.3 V.

Parameter/Condition	Symbol ¹	Min	Тур	Max	Unit
REF_CLK clock	t _{RMX}	_	20	_	ns
REF_CLK duty cycle	t _{RMXH/} t _{RMX}	35	_	65	%
REF_CLK to RMII data TXD[1:0], TX_EN delay	^t RMTKHDX	2	_	10	ns
REF_CLK data clock rise V _{IL} (min) to V _{IH} (max)	t _{RMXR}	1.0	_	4.0	ns
REF_CLK data clock fall V _{IH} (max) to V _{IL} (min)	t _{RMXF}	1.0	_	4.0	ns

Note:

This figure shows the RMII transmit AC timing diagram.

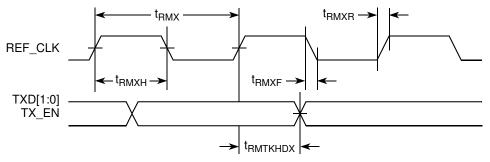


Figure 11. RMII Transmit AC Timing Diagram

^{1.} The symbols used for timing specifications follow the pattern of t_{(first three letters of functional block)(signal)(state)(reference)(state)} for inputs and t_(first two letters of functional block)(reference)(state)(signal)(state)</sub> for outputs. For example, t_{RMTKHDX} symbolizes RMII transmit timing (RMT) for the time t_{RMX} clock reference (K) going high (H) until data outputs (D) are invalid (X). Note that, in general, the clock reference symbol representation is based on two to three letters representing the clock of a particular functional. For example, the subscript of t_{RMX} represents the RMII(RM) reference (X) clock. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).