# imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!



# Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China





Freescale Semiconductor **Technical Data** 

Document Number: MPC8323EEC Rev. 4, 09/2010

# **MPC8323E PowerQUICC II Pro Integrated Communications Processor Family Hardware Specifications**

This document provides an overview of the MPC8323E PowerQUICC II Pro processor features. The MPC8323E is a cost-effective, highly integrated communications processor that addresses the requirements of several networking applications, including ADSL SOHO and residential gateways, modem/routers, industrial control, and test and measurement applications. The MPC8323E extends current PowerQUICC offerings, adding higher CPU performance, additional functionality, and faster interfaces, while addressing the requirements related to time-to-market, price, power consumption, and board real estate. This document describes the MPC8323E, and unless otherwise noted, the information also applies to the MPC8323, MPC8321E, and MPC8321.

To locate published errata or updates for this document, refer to the MPC8323E product summary page on our website listed on the back cover of this document or contact your local Freescale sales office.

#### Contents

| 1.  | Overview                                   |
|-----|--------------------------------------------|
| 2.  | Electrical Characteristics                 |
| 3.  | Power Characteristics                      |
| 4.  | Clock Input Timing 10                      |
| 5.  | RESET Initialization 11                    |
| 6.  | DDR1 and DDR2 SDRAM 13                     |
| 7.  | DUART 19                                   |
| 8.  | Ethernet and MII Management 19             |
| 9.  | Local Bus 26                               |
| 10. | JTAG                                       |
| 11. | $I^{2}C$                                   |
| 12. | PCI                                        |
| 13. | Timers                                     |
| 14. | GPIO                                       |
| 15. | IPIC                                       |
| 16. | SPI 40                                     |
| 17. | TDM/SI 41                                  |
| 18. | UTOPIA 43                                  |
| 19. | HDLC, BISYNC, Transparent, and Synchronous |
|     | UART45                                     |
| 20. | USB 48                                     |
| 21. | Package and Pin Listings 49                |
| 22. | Clocking 64                                |
| 23. | Thermal 71                                 |
| 24. | System Design Information                  |
| 25. | Ordering Information 79                    |
| 26. | Document Revision History 80               |

2



© 2010 Freescale Semiconductor, Inc. All rights reserved.



# 1 Overview

The MPC8323E incorporates the e300c2 (MPC603e-based) core built on Power Architecture® technology, which includes 16 Kbytes of L1 instruction and data caches, dual integer units, and on-chip memory management units (MMUs). The e300c2 core does not contain a floating point unit (FPU). The MPC8323E also includes a 32-bit PCI controller, four DMA channels, a security engine, and a 32-bit DDR1/DDR2 memory controller.

A new communications complex based on QUICC Engine technology forms the heart of the networking capability of the MPC8323E. The QUICC Engine block contains several peripheral controllers and a 32-bit RISC controller. Protocol support is provided by the main workhorses of the device—the unified communication controllers (UCCs). Note that the MPC8321 and MPC8321E do not support UTOPIA. A block diagram of the MPC8323E is shown in Figure 1.

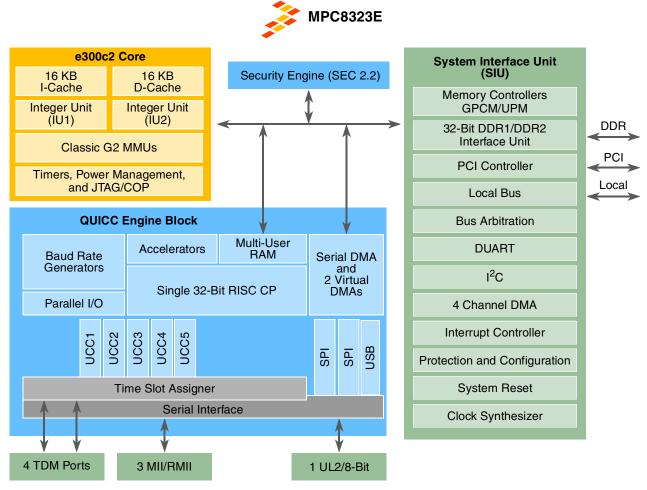



Figure 1. MPC8323E Block Diagram

Each of the five UCCs can support a variety of communication protocols: 10/100 Mbps Ethernet, serial ATM, HDLC, UART, and BISYNC—and, in the MPC8323E and MPC8323, multi-PHY ATM and ATM support for up to OC-3 speeds.

### NOTE

The QUICC Engine block can also support a UTOPIA level 2 capable of supporting 31 multi-PHY (MPC8323E- and MPC8323-specific).

The MPC8323E security engine (SEC 2.2) allows CPU-intensive cryptographic operations to be offloaded from the main CPU core. The security-processing accelerator provides hardware acceleration for the DES, 3DES, AES, SHA-1, and MD-5 algorithms.

In summary, the MPC8323E family provides users with a highly integrated, fully programmable communications processor. This helps ensure that a low-cost system solution can be quickly developed and offers flexibility to accommodate new standards and evolving system requirements.

### 1.1 MPC8323E Features

Major features of the MPC8323E are as follows:

- High-performance, low-power, and cost-effective single-chip data-plane/control-plane solution for ATM or IP/Ethernet packet processing (or both).
- MPC8323E QUICC Engine block offers a future-proof solution for next generation designs by supporting programmable protocol termination and network interface termination to meet evolving protocol standards.
- Single platform architecture supports the convergence of IP packet networks and ATM networks.
- DDR1/DDR2 memory controller—one 32-bit interface at up to 266 MHz supporting both DDR1 and DDR2.
- An e300c2 core built on Power Architecture technology with 16-Kbyte instruction and data caches, and dual integer units.
- Peripheral interfaces such as 32-bit PCI (2.2) interface up to 66-MHz operation, 16-bit local bus interface up to 66-MHz operation, and USB 2.0 (full-/low-speed).
- Security engine provides acceleration for control and data plane security protocols.
- High degree of software compatibility with previous-generation PowerQUICC processor-based designs for backward compatibility and easier software migration.

### 1.1.1 Protocols

The protocols are as follows:

- ATM SAR up to 155 Mbps (OC-3) full duplex, with ATM traffic shaping (ATF TM4.1)
- Support for ATM AAL1 structured and unstructured circuit emulation service (CES 2.0)
- Support for IMA and ATM transmission convergence sub-layer
- ATM OAM handling features compatible with ITU-T I.610
- IP termination support for IPv4 and IPv6 packets including TOS, TTL, and header checksum processing
- Extensive support for ATM statistics and Ethernet RMON/MIB statistics
- Support for 64 channels of HDLC/transparent



### 1.1.2 Serial Interfaces

The MPC8323E serial interfaces are as follows:

- Support for one UL2 interface with 31 multi-PHY addresses (MPC8323E and MPC8323 only)
- Support for up to three 10/100 Mbps Ethernet interfaces using MII or RMII
- Support for up to four T1/E1/J1/E3 or DS-3 serial interfaces (TDM)
- Support for dual UART and SPI interfaces and a single I<sup>2</sup>C interface

# 1.2 QUICC Engine Block

The QUICC Engine block is a versatile communications complex that integrates several communications peripheral controllers. It provides on-chip system design for a variety of applications, particularly in communications and networking systems. The QUICC Engine block has the following features:

- One 32-bit RISC controller for flexible support of the communications peripherals
- Serial DMA channel for receive and transmit on all serial channels
- Five universal communication controllers (UCCs) supporting the following protocols and interfaces (not all of them simultaneously):
  - 10/100 Mbps Ethernet/IEEE 802.3® standard
  - IP support for IPv4 and IPv6 packets including TOS, TTL, and header checksum processing
  - ATM protocol through UTOPIA interface (note that the MPC8321 and MPC8321E do not support the UTOPIA interface)
  - HDLC /transparent up to 70-Mbps full-duplex
  - HDLC bus up to 10 Mbps
  - Asynchronous HDLC
  - UART
  - BISYNC up to 2 Mbps
  - QUICC multi-channel controller (QMC) for 64 TDM channels
- One UTOPIA interface (UPC1) supporting 31 multi-PHYs (MPC8323E- and MPC8323-specific)
- Two serial peripheral interfaces (SPI). SPI2 is dedicated to Ethernet PHY management.
- Four TDM interfaces
- Thirteen independent baud rate generators and 19 input clock pins for supplying clocks to UCC serial channels
- Four independent 16-bit timers that can be interconnected as two 32-bit timers

The UCCs are similar to the PowerQUICC II peripherals: SCC (BISYNC, UART, and HDLC bus) and FCC (fast Ethernet, HDLC, transparent, and ATM).





## **1.3 Security Engine**

The security engine is optimized to handle all the algorithms associated with IPSec, IEEE 802.11i<sup>TM</sup> standard, and iSCSI. The security engine contains one crypto-channel, a controller, and a set of crypto execution units (EUs). The execution units are:

- Data encryption standard execution unit (DEU), supporting DES and 3DES
- Advanced encryption standard unit (AESU), supporting AES
- Message digest execution unit (MDEU), supporting MD5, SHA1, SHA-256, and HMAC with any algorithm
- One crypto-channel supporting multi-command descriptor chains

# 1.4 DDR Memory Controller

The MPC8323E DDR1/DDR2 memory controller includes the following features:

- Single 32-bit interface supporting both DDR1 and DDR2 SDRAM
- Support for up to 266-MHz data rate
- Support for two ×16 devices
- Support for up to 16 simultaneous open pages
- Supports auto refresh
- On-the-fly power management using CKE
- 1.8-/2.5-V SSTL2 compatible I/O
- Support for 1 chip select only
- FCRAM, ECC, hardware/software calibration, bit deskew, QIN stage, or atomic logic are not supported.

# 1.5 PCI Controller

The MPC8323E PCI controller includes the following features:

- PCI Specification Revision 2.3 compatible
- Single 32-bit data PCI interface operates up to 66 MHz
- PCI 3.3-V compatible (not 5-V compatible)
- Support for host and agent modes
- On-chip arbitration, supporting three external masters on PCI
- Selectable hardware-enforced coherency

# **1.6 Programmable Interrupt Controller (PIC)**

The programmable interrupt controller (PIC) implements the necessary functions to provide a flexible solution for general-purpose interrupt control. The PIC programming model is compatible with the MPC8260 interrupt controller, and it supports 8 external and 35 internal discrete interrupt sources. Interrupts can also be redirected to an external interrupt controller.



Electrical Characteristics

# 2 Electrical Characteristics

This section provides the AC and DC electrical specifications and thermal characteristics for the MPC8323E. The MPC8323E is currently targeted to these specifications. Some of these specifications are independent of the I/O cell, but are included for a more complete reference. These are not purely I/O buffer design specifications.

# 2.1 **Overall DC Electrical Characteristics**

This section covers the ratings, conditions, and other characteristics.

### 2.1.1 Absolute Maximum Ratings

Table 1 provides the absolute maximum ratings.

| Char                                                           | acteristic                                                                                            | Symbol                       | Max Value                        | Unit | Notes |  |
|----------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|------------------------------|----------------------------------|------|-------|--|
| Core supply voltage                                            | V <sub>DD</sub>                                                                                       | -0.3 to 1.26                 | V                                | —    |       |  |
| PLL supply voltage                                             |                                                                                                       | AV <sub>DDn</sub>            | -0.3 to 1.26                     | V    | —     |  |
| DDR1 and DDR2 DRAM I/O vo                                      | GV <sub>DD</sub>                                                                                      | -0.3 to 2.75<br>-0.3 to 1.98 | V                                | -    |       |  |
| PCI, local bus, DUART, system of SPI, MII, RMII, MII managemen | OV <sub>DD</sub>                                                                                      | -0.3 to 3.6                  | V                                | —    |       |  |
| Input voltage                                                  | DDR1/DDR2 DRAM signals                                                                                | MV <sub>IN</sub>             | –0.3 to (GV <sub>DD</sub> + 0.3) | V    | 2     |  |
|                                                                | DDR1/DDR2 DRAM reference                                                                              | MV <sub>REF</sub>            | –0.3 to (GV <sub>DD</sub> + 0.3) | V    | 2     |  |
|                                                                | Local bus, DUART, CLKIN, system control and power management, I <sup>2</sup> C, SPI, and JTAG signals | OV <sub>IN</sub>             | -0.3 to (OV <sub>DD</sub> + 0.3) | V    | 3     |  |
|                                                                | PCI                                                                                                   | OV <sub>IN</sub>             | -0.3 to (OV <sub>DD</sub> + 0.3) | V    | 5     |  |
| Storage temperature range                                      | T <sub>STG</sub>                                                                                      | -55 to 150                   | °C                               | —    |       |  |

### Table 1. Absolute Maximum Ratings<sup>1</sup>

Notes:

1. Functional and tested operating conditions are given in Table 2. Absolute maximum ratings are stress ratings only, and functional operation at the maximums is not guaranteed. Stresses beyond those listed may affect device reliability or cause permanent damage to the device.

 Caution: MV<sub>IN</sub> must not exceed GV<sub>DD</sub> by more than 0.3 V. This limit may be exceeded for a maximum of 100 ms during power-on reset and power-down sequences.

3. Caution: OV<sub>IN</sub> must not exceed OV<sub>DD</sub> by more than 0.3 V. This limit may be exceeded for a maximum of 100 ms during power-on reset and power-down sequences.





### 2.1.2 Power Supply Voltage Specification

Table 2 provides the recommended operating conditions for the MPC8323E. Note that these values are the recommended and tested operating conditions. Proper device operation outside of these conditions is not guaranteed.

| Characteristic                                                                                 | Symbol                         | Recommended<br>Value            | Unit | Notes |
|------------------------------------------------------------------------------------------------|--------------------------------|---------------------------------|------|-------|
| Core supply voltage                                                                            | V <sub>DD</sub>                | 1.0 V ± 50 mV                   | V    | 1     |
| PLL supply voltage                                                                             | AV <sub>DD</sub>               | 1.0 V ± 50 mV                   | V    | 1     |
| DDR1 and DDR2 DRAM I/O voltage                                                                 | GV <sub>DD</sub>               | 2.5 V ± 125 mV<br>1.8 V ± 90 mV | V    | 1     |
| PCI, local bus, DUART, system control and power management, $I^2C$ , SPI, and JTAG I/O voltage | OV <sub>DD</sub>               | 3.3 V ± 300 mV                  | V    | 1     |
| Junction temperature                                                                           | T <sub>A</sub> /T <sub>J</sub> | 0 to 105                        | °C   | 2     |

### Table 2. Recommended Operating Conditions<sup>3</sup>

Note:

1. GV<sub>DD</sub>, OV<sub>DD</sub>, AV<sub>DD</sub>, and V<sub>DD</sub> must track each other and must vary in the same direction—either in the positive or negative direction.

2. Minimum temperature is specified with T<sub>A</sub>; maximum temperature is specified with T<sub>J</sub>.

3. All IO pins should be interfaced with peripherals operating at same voltage level.

4. This voltage is the input to the filter discussed in Section 24.2, "PLL Power Supply Filtering" and not necessarily the voltage at the AVDD pin, which may be reduced due to voltage drop across the filter.

Figure 2 shows the undershoot and overshoot voltages at the interfaces of the MPC8323E

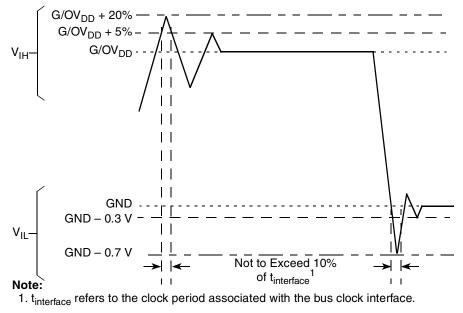



Figure 2. Overshoot/Undershoot Voltage for GV<sub>DD</sub>/OV<sub>DD</sub>



Electrical Characteristics

### 2.1.3 Output Driver Characteristics

Table 3 provides information on the characteristics of the output driver strengths. The values are preliminary estimates.

| Driver Type                           | Output Impedance<br>(Ω) | Supply<br>Voltage        |
|---------------------------------------|-------------------------|--------------------------|
| Local bus interface utilities signals | 42                      | OV <sub>DD</sub> = 3.3 V |
| PCI signals                           | 25                      |                          |
| DDR1 signal                           | 18                      | GV <sub>DD</sub> = 2.5 V |
| DDR2 signal                           | 18                      | GV <sub>DD</sub> = 1.8 V |
| DUART, system control, I2C, SPI, JTAG | 42                      | OV <sub>DD</sub> = 3.3 V |
| GPIO signals                          | 42                      | OV <sub>DD</sub> = 3.3 V |

Table 3. Output Drive Capability

### 2.1.4 Input Capacitance Specification

Table 4 describes the input capacitance for the CLKIN pin in the MPC8323E.

**Table 4. Input Capacitance Specification** 

| Parameter/Condition                         | Symbol              | Min | Max | Unit | Notes |
|---------------------------------------------|---------------------|-----|-----|------|-------|
| Input capacitance for all pins except CLKIN | CI                  | 6   | 8   | pF   | —     |
| Input capacitance for CLKIN                 | C <sub>ICLKIN</sub> | 10  | _   | pF   | 1     |

Note:

1. The external clock generator should be able to drive 10 pF.

# 2.2 Power Sequencing

The device does not require the core supply voltage  $(V_{DD})$  and IO supply voltages  $(GV_{DD})$  and  $OV_{DD})$  to be applied in any particular order. Note that during power ramp-up, before the power supplies are stable and if the I/O voltages are supplied before the core voltage, there might be a period of time that all input and output pins are actively driven and cause contention and excessive current. In order to avoid actively driving the I/O pins and to eliminate excessive current draw, apply the core voltage  $(V_{DD})$  before the I/O voltage  $(GV_{DD})$  and  $OV_{DD}$  and assert PORESET before the power supplies fully ramp up. In the case where the core voltage is applied first, the core voltage supply must rise to 90% of its nominal value before the I/O supplies reach 0.7 V; see Figure 3. Once both the power supplies (I/O voltage and core voltage) are stable, wait for a minimum of 32 clock cycles before negating PORESET.

Note that there is no specific power down sequence requirement for the device. I/O voltage supplies  $(GV_{DD})$  and  $OV_{DD}$  do not have any ordering requirements with respect to one another.





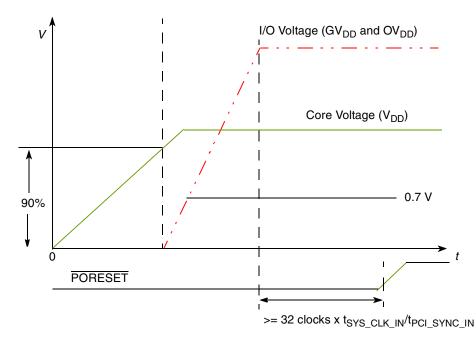



Figure 3. MPC8323E Power-Up Sequencing Example

# **3** Power Characteristics

The estimated typical power dissipation for this family of MPC8323E devices is shown in Table 5.

| Table 5. | MPC8323E | Power | Dissipation |
|----------|----------|-------|-------------|
|----------|----------|-------|-------------|

| CSB<br>Frequency (MHz) | QUICC Engine<br>Frequency (MHz) | Core<br>Frequency (MHz) | Typical | Maximum | Unit | Notes   |
|------------------------|---------------------------------|-------------------------|---------|---------|------|---------|
| 133                    | 200                             | 266                     | 0.74    | 1.48    | W    | 1, 2, 3 |
| 133                    | 200                             | 333                     | 0.78    | 1.62    | W    | 1, 2, 3 |

#### Notes:

1. The values do not include I/O supply power (OV<sub>DD</sub> and  $GV_{DD}$ ) or AV<sub>DD</sub>. For I/O power values, see Table 6.

2. Typical power is based on a nominal voltage of  $V_{DD}$  = 1.0 V, ambient temperature, and the core running a Dhrystone

benchmark application. The measurements were taken on the MPC8323MDS evaluation board using WC process silicon.

3. Maximum power is based on a voltage of  $V_{DD}$  = 1.07 V, WC process, a junction  $T_J$  = 110°C, and an artificial smoke test.

Table 6 shows the estimated typical I/O power dissipation for the device.

Table 6. Estimated Typical I/O Power Dissipation

| Interface                                                                                         | Parameter                   | GV <sub>DD</sub> (1.8 V) | GV <sub>DD</sub> (2.5 V) | OV <sub>DD</sub> (3.3 V) | Unit | Comments |
|---------------------------------------------------------------------------------------------------|-----------------------------|--------------------------|--------------------------|--------------------------|------|----------|
| DDR I/O<br>65% utilization<br>2.5 V<br>$R_s = 20 \Omega$<br>$R_t = 50 \Omega$<br>1 pair of clocks | 266 MHz, $1 \times 32$ bits | 0.212                    | 0.367                    | _                        | W    |          |



**Clock Input Timing** 

| Local bus I/O<br>load = 25 pF<br>1 pair of clocks | 66 MHz, 32 bits      |   | _ | 0.12  | W | _                             |
|---------------------------------------------------|----------------------|---|---|-------|---|-------------------------------|
| PCI I/O load = 30 pF                              | 66 MHz, 32 bits      | — | — | 0.057 | W | —                             |
| QUICC Engine block and                            | UTOPIA 8-bit 31 PHYs | — | — | 0.041 | W | Multiply by                   |
| other I/Os                                        | TDM serial           | — | — | 0.001 | W | number of<br>interfaces used. |
|                                                   | TDM nibble           | — | — | 0.004 | W |                               |
|                                                   | HDLC/TRAN serial     | — | — | 0.003 | W |                               |
|                                                   | HDLC/TRAN nibble     | — | — | 0.025 | W |                               |
|                                                   | DUART                | — | — | 0.017 | W |                               |
|                                                   | MIIs                 | — | — | 0.009 | W |                               |
|                                                   | RMII                 | — | — | 0.009 | W |                               |
|                                                   | Ethernet management  | — | — | 0.002 | W |                               |
|                                                   | USB                  | _ | _ | 0.001 | W |                               |
|                                                   | SPI                  | — | — | 0.001 | W |                               |
|                                                   | Timer output         | — | — | 0.002 | W |                               |

Table 6. Estimated Typical I/O Power Dissipation (continued)

### NOTE

 $AV_{DD}n$  (1.0 V) is estimated to consume 0.05 W (under normal operating conditions and ambient temperature).

# 4 Clock Input Timing

This section provides the clock input DC and AC electrical characteristics for the MPC8323E.

### NOTE

The rise/fall time on QUICC Engine input pins should not exceed 5 ns. This should be enforced especially on clock signals. Rise time refers to signal transitions from 10% to 90% of VCC; fall time refers to transitions from 90% to 10% of VCC.

# 4.1 DC Electrical Characteristics

Table 7 provides the clock input (CLKIN/PCI\_SYNC\_IN) DC timing specifications for the MPC8323E.

| Parameter            | Condition | Symbol          | Min  | Мах                    | Unit |
|----------------------|-----------|-----------------|------|------------------------|------|
| Input high voltage — |           | V <sub>IH</sub> | 2.7  | OV <sub>DD</sub> + 0.3 | V    |
| Input low voltage    | _         | V <sub>IL</sub> | -0.3 | 0.4                    | V    |

### Table 7. CLKIN DC Electrical Characteristics



| CLKIN input current                               | $0 V \le V_{IN} \le OV_{DD}$             | I <sub>IN</sub> | — | ±5  | μA |
|---------------------------------------------------|------------------------------------------|-----------------|---|-----|----|
| $eq:poly_log_log_log_log_log_log_log_log_log_log$ |                                          | I <sub>IN</sub> | _ | ±5  | μA |
| PCI_SYNC_IN input current                         | $0.5~V \leq V_{IN} \leq OV_{DD} - 0.5~V$ | I <sub>IN</sub> | — | ±50 | μA |

| Table 7. | CLKIN DC Ele | ctrical Characterist | ics (continued) |
|----------|--------------|----------------------|-----------------|
|----------|--------------|----------------------|-----------------|

### 4.2 AC Electrical Characteristics

The primary clock source for the MPC8323E can be one of two inputs, CLKIN or PCI\_CLK, depending on whether the device is configured in PCI host or PCI agent mode. Table 8 provides the clock input (CLKIN/PCI\_CLK) AC timing specifications for the MPC8323E.

| Parameter/Condition        | Symbol                               | Min | Typical | Мах   | Unit | Notes |
|----------------------------|--------------------------------------|-----|---------|-------|------|-------|
| CLKIN/PCI_CLK frequency    | f <sub>CLKIN</sub>                   | 25  | —       | 66.67 | MHz  | 1     |
| CLKIN/PCI_CLK cycle time   | t <sub>CLKIN</sub>                   | 15  | —       | _     | ns   | _     |
| CLKIN rise and fall time   | t <sub>KH</sub> , t <sub>KL</sub>    | 0.6 | 0.8     | 4     | ns   | 2     |
| PCI_CLK rise and fall time | t <sub>PCH</sub> , t <sub>PCL</sub>  | 0.6 | 0.8     | 1.2   | ns   | 2     |
| CLKIN/PCI_CLK duty cycle   | t <sub>KHK</sub> /t <sub>CLKIN</sub> | 40  | _       | 60    | %    | 3     |
| CLKIN/PCI_CLK jitter       | —                                    | —   | —       | ±150  | ps   | 4, 5  |

**Table 8. CLKIN AC Timing Specifications** 

Notes:

1. **Caution:** The system, core, security, and QUICC Engine block must not exceed their respective maximum or minimum operating frequencies.

2. Rise and fall times for CLKIN/PCI\_CLK are measured at 0.4 and 2.7 V.

3. Timing is guaranteed by design and characterization.

4. This represents the total input jitter—short term and long term—and is guaranteed by design.

5. The CLKIN/PCI\_CLK driver's closed loop jitter bandwidth should be < 500 kHz at -20 dB. The bandwidth must be set low to allow cascade-connected PLL-based devices to track CLKIN drivers with the specified jitter.

# 5 **RESET Initialization**

This section describes the AC electrical specifications for the reset initialization timing requirements of the MPC8323E. Table 9 provides the reset initialization AC timing specifications for the reset component(s).

| Table 9. RESET | <b>Initialization</b> | Timing | <b>Specifications</b> |
|----------------|-----------------------|--------|-----------------------|
|----------------|-----------------------|--------|-----------------------|

| Parameter/Condition                                                                                                                   | Min | Max | Unit                     | Notes |
|---------------------------------------------------------------------------------------------------------------------------------------|-----|-----|--------------------------|-------|
| Required assertion time of $\overrightarrow{\text{HRESET}}$ or $\overrightarrow{\text{SRESET}}$ (input) to activate reset flow        | 32  | _   | t <sub>PCI_SYNC_IN</sub> | 1     |
| Required assertion time of $\overrightarrow{\text{PORESET}}$ with stable clock applied to CLKIN when the MPC8323E is in PCI host mode | 32  | _   | <sup>t</sup> CLKIN       | 2     |
| Required assertion time of PORESET with stable clock applied to PCI_SYNC_IN when the MPC8323E is in PCI agent mode                    | 32  | —   | t <sub>PCI_SYNC_IN</sub> | 1     |



| Parameter/Condition                                                                                                                                                       | Min | Max | Unit                     | Notes |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|--------------------------|-------|
| HRESET/SRESET assertion (output)                                                                                                                                          | 512 | _   | t <sub>PCI_SYNC_IN</sub> | 1     |
| HRESET negation to SRESET negation (output)                                                                                                                               | 16  | _   | t <sub>PCI_SYNC_IN</sub> | 1     |
| Input setup time for POR configuration signals<br>(CFG_RESET_SOURCE[0:2] and CFG_CLKIN_DIV) with respect to<br>negation of PORESET when the MPC8323E is in PCI host mode  | 4   | —   | <sup>t</sup> CLKIN       | 2     |
| Input setup time for POR configuration signals<br>(CFG_RESET_SOURCE[0:2] and CFG_CLKIN_DIV) with respect to<br>negation of PORESET when the MPC8323E is in PCI agent mode | 4   | _   | <sup>t</sup> PCI_SYNC_IN | 1     |
| Input hold time for POR config signals with respect to negation of HRESET                                                                                                 | 0   | —   | ns                       |       |
| Time for the MPC8323E to turn off POR configuration signals with respect to the assertion of $\overrightarrow{\text{HRESET}}$                                             | —   | 4   | ns                       | 3     |
| Time for the MPC8323E to turn on POR configuration signals with respect to the negation of $\overrightarrow{\text{HRESET}}$                                               | 1   | —   | t <sub>PCI_SYNC_IN</sub> | 1, 3  |

### Table 9. RESET Initialization Timing Specifications (continued)

### Notes:

1. t<sub>PCI\_SYNC\_IN</sub> is the clock period of the input clock applied to PCI\_SYNC\_IN. When the MPC8323E is In PCI host mode the primary clock is applied to the CLKIN input, and PCI\_SYNC\_IN period depends on the value of CFG\_CLKIN\_DIV. See the *MPC8323E PowerQUICC II Pro Integrated Communications Processor Reference Manual* for more details.

 t<sub>CLKIN</sub> is the clock period of the input clock applied to CLKIN. It is only valid when the MPC8323E is in PCI host mode. See the MPC8323E PowerQUICC II Pro Integrated Communications Processor Reference Manual for more details.

3. POR configuration signals consists of CFG\_RESET\_SOURCE[0:2] and CFG\_CLKIN\_DIV.

### Table 10 provides the PLL lock times.

### Table 10. PLL Lock Times

| Parameter/Condition | Min | Мах | Unit | Notes |
|---------------------|-----|-----|------|-------|
| PLL lock times      |     | 100 | μs   | —     |

### 5.1 Reset Signals DC Electrical Characteristics

Table 11 provides the DC electrical characteristics for the MPC8323E reset signals mentioned in Table 9.

 Table 11. Reset Signals DC Electrical Characteristics

| Characteristic      | Symbol          | Condition                 | Min  | Мах                    | Unit | Notes |
|---------------------|-----------------|---------------------------|------|------------------------|------|-------|
| Output high voltage | V <sub>OH</sub> | I <sub>OH</sub> = -6.0 mA | 2.4  | _                      | V    | 1     |
| Output low voltage  | V <sub>OL</sub> | I <sub>OL</sub> = 6.0 mA  | —    | 0.5                    | V    | 1     |
| Output low voltage  | V <sub>OL</sub> | I <sub>OL</sub> = 3.2 mA  | —    | 0.4                    | V    | 1     |
| Input high voltage  | V <sub>IH</sub> | _                         | 2.0  | OV <sub>DD</sub> + 0.3 | V    | 1     |
| Input low voltage   | VIL             | _                         | -0.3 | 0.8                    | V    | —     |



DDR1 and DDR2 SDRAM

Table 11. Reset Signals DC Electrical Characteristics (continued)

| Characteristic | Symbol          | Condition                      | Min | Мах | Unit | Notes |
|----------------|-----------------|--------------------------------|-----|-----|------|-------|
| Input current  | I <sub>IN</sub> | $0~V \leq V_{IN} \leq OV_{DD}$ |     | ±5  | μA   |       |

Note:

1. This specification applies when operating from 3.3 V supply.

# 6 DDR1 and DDR2 SDRAM

This section describes the DC and AC electrical specifications for the DDR1 and DDR2 SDRAM interface of the MPC8323E. Note that DDR1 SDRAM is  $Dn_GV_{DD}(typ) = 2.5$  V and DDR2 SDRAM is  $Dn_GV_{DD}(typ) = 1.8$  V. The AC electrical specifications are the same for DDR1 and DDR2 SDRAM.

## 6.1 DDR1 and DDR2 SDRAM DC Electrical Characteristics

Table 12 provides the recommended operating conditions for the DDR2 SDRAM component(s) of the MPC8323E when  $Dn_GV_{DD}(typ) = 1.8 \text{ V}$ .

| Parameter/Condition                             | Symbol                | Min                                  | Мах                                   | Unit | Notes |
|-------------------------------------------------|-----------------------|--------------------------------------|---------------------------------------|------|-------|
| I/O supply voltage                              | Dn_GV <sub>DD</sub>   | 1.71                                 | 1.89                                  | V    | 1     |
| I/O reference voltage                           | MVREFn <sub>REF</sub> | $0.49 	imes Dn_GV_{DD}$              | $0.51 	imes Dn_GV_{DD}$               | V    | 2     |
| I/O termination voltage                         | V <sub>TT</sub>       | MVREF <i>n</i> <sub>REF</sub> – 0.04 | MVREF <i>n</i> <sub>REF</sub> + 0.04  | V    | 3     |
| Input high voltage                              | V <sub>IH</sub>       | MVREFn <sub>REF</sub> + 0.125        | D <i>n</i> _GV <sub>DD</sub> + 0.3    | V    | _     |
| Input low voltage                               | V <sub>IL</sub>       | -0.3                                 | MVREF <i>n</i> <sub>REF</sub> – 0.125 | V    |       |
| Output leakage current                          | I <sub>OZ</sub>       | -9.9                                 | 9.9                                   | μA   | 4     |
| Output high current (V <sub>OUT</sub> = 1.35 V) | I <sub>OH</sub>       | -13.4                                | —                                     | mA   |       |
| Output low current (V <sub>OUT</sub> = 0.280 V) | I <sub>OL</sub>       | 13.4                                 |                                       | mA   |       |

Table 12. DDR2 SDRAM DC Electrical Characteristics for Dn\_GV<sub>DD</sub>(typ) = 1.8 V

#### Notes:

1.  $Dn_GV_{DD}$  is expected to be within 50 mV of the DRAM  $Dn_GV_{DD}$  at all times.

- 2. MVREF *n*<sub>REF</sub> is expected to be equal to 0.5 × D*n*\_GV<sub>DD</sub>, and to track D*n*\_GV<sub>DD</sub> DC variations as measured at the receiver. Peak-to-peak noise on MVREF *n*<sub>REF</sub> may not exceed ±2% of the DC value.
- 3. V<sub>TT</sub> is not applied directly to the device. It is the supply to which far end signal termination is made and is expected to be equal to MVREF*n*<sub>REF</sub>. This rail should track variations in the DC level of MVREF*n*<sub>REF</sub>.

4. Output leakage is measured with all outputs disabled, 0 V  $\leq$  V<sub>OUT</sub>  $\leq$  Dn\_GV<sub>DD</sub>.

Table 13 provides the DDR2 capacitance when  $Dn_GV_{DD}(typ) = 1.8$  V.

### Table 13. DDR2 SDRAM Capacitance for $Dn_GV_{DD}(typ) = 1.8 V$

| Parameter/Condition               | Symbol          | Min | Мах | Unit | Notes |
|-----------------------------------|-----------------|-----|-----|------|-------|
| Input/output capacitance: DQ, DQS | C <sub>IO</sub> | 6   | 8   | pF   | 1     |



DDR1 and DDR2 SDRAM

### Table 13. DDR2 SDRAM Capacitance for Dn\_GV<sub>DD</sub>(typ) = 1.8 V

| Dena inpurvoupur capacitance. DQ, DQS C <sub>DIO</sub> — 0.5 pr | Delta input/output capacitance: DQ, DQS | C <sub>DIO</sub> | — | 0.5 | pF | 1 |
|-----------------------------------------------------------------|-----------------------------------------|------------------|---|-----|----|---|

#### Note:

1. This parameter is sampled.  $Dn_GV_{DD} = 1.8 \text{ V} \pm 0.090 \text{ V}$ , f = 1 MHz, T<sub>A</sub> = 25 °C, V<sub>OUT</sub> =  $Dn_GV_{DD} \div 2$ ,

V<sub>OUT</sub> (peak-to-peak) = 0.2 V.

Table 14 provides the recommended operating conditions for the DDR1 SDRAM component(s) of the MPC8323E when  $Dn_GV_{DD}(typ) = 2.5 V.$ 

Parameter/Condition Symbol Min Max Unit Notes V I/O supply voltage 2.375 2.625 Dn\_GV<sub>DD</sub> 1 I/O reference voltage MVREF n<sub>REF</sub>  $0.49 \times Dn_GV_{DD}$  $0.51 \times Dn_GV_{DD}$ V 2 I/O termination voltage MVREF n<sub>REF</sub> - 0.04 MVREFn<sub>REF</sub> + 0.04 ٧ 3 VTT Input high voltage VIH MVREFn<sub>REF</sub> + 0.15  $Dn_GV_{DD} + 0.3$ ٧ ٧ Input low voltage VIL -0.3 MVREFn<sub>REF</sub> – 0.15 Output leakage current -9.9 loz -9.9 μΑ 4 Output high current (V<sub>OUT</sub> = 1.95 V) -16.2 mΑ I<sub>OH</sub> Output low current (V<sub>OUT</sub> = 0.35 V) 16.2 mΑ I<sub>OL</sub>

Table 14. DDR1 SDRAM DC Electrical Characteristics for Dn\_GV<sub>DD</sub>(typ) = 2.5 V

#### Notes:

1. Dn\_GV<sub>DD</sub> is expected to be within 50 mV of the DRAM Dn\_GV<sub>DD</sub> at all times.

2. MVREF  $n_{\text{BEF}}$  is expected to be equal to  $0.5 \times Dn_{\text{C}} V_{\text{DD}}$ , and to track  $Dn_{\text{C}} V_{\text{DD}}$  DC variations as measured at the receiver. Peak-to-peak noise on MVREF nREF may not exceed ±2% of the DC value.

3. V<sub>TT</sub> is not applied directly to the device. It is the supply to which far end signal termination is made and is expected to be equal to MVREFn<sub>REF</sub>. This rail should track variations in the DC level of MVREFn<sub>REF</sub>.

4. Output leakage is measured with all outputs disabled,  $0 V \le V_{OUT} \le Dn_{GV_{DD}}$ .

Table 15 provides the DDR1 capacitance  $Dn_GV_{DD}(typ) = 2.5$  V.

#### Table 15. DDR1 SDRAM Capacitance for Dn\_GV<sub>DD</sub>(typ) = 2.5 V Interface

| Parameter/Condition                     | Symbol           | Min | Max | Unit | Notes |
|-----------------------------------------|------------------|-----|-----|------|-------|
| Input/output capacitance: DQ,DQS        | C <sub>IO</sub>  | 6   | 8   | pF   | 1     |
| Delta input/output capacitance: DQ, DQS | C <sub>DIO</sub> |     | 0.5 | pF   | 1     |

Note:

1. This parameter is sampled.  $Dn_GV_{DD} = 2.5 V \pm 0.125 V$ , f = 1 MHz,  $T_A = 25^{\circ} C$ ,  $V_{OUT} = Dn_GV_{DD} \div 2$ , V<sub>OUT</sub> (peak-to-peak) = 0.2 V.



## 6.2 DDR1 and DDR2 SDRAM AC Electrical Characteristics

This section provides the AC electrical characteristics for the DDR1 and DDR2 SDRAM interface.

### 6.2.1 DDR1 and DDR2 SDRAM Input AC Timing Specifications

Table 16 provides the input AC timing specifications for the DDR2 SDRAM ( $Dn_GV_{DD}(typ) = 1.8 \text{ V}$ ).

### Table 16. DDR2 SDRAM Input AC Timing Specifications for 1.8-V Interface

At recommended operating conditions with  $Dn_GV_{DD}$  of 1.8 ± 5%.

| Parameter             | Symbol          | Min                                  | Мах                          | Unit | Notes |
|-----------------------|-----------------|--------------------------------------|------------------------------|------|-------|
| AC input low voltage  | V <sub>IL</sub> | —                                    | MVREFn <sub>REF</sub> – 0.25 | V    | —     |
| AC input high voltage | V <sub>IH</sub> | MVREF <i>n</i> <sub>REF</sub> + 0.25 | _                            | V    | —     |

Table 17 provides the input AC timing specifications for the DDR1 SDRAM ( $Dn_GV_{DD}(typ) = 2.5 V$ ).

Table 17. DDR1 SDRAM Input AC Timing Specifications for 2.5 V Interface

At recommended operating conditions with  $Dn_GV_{DD}$  of 2.5 ± 5%.

| Parameter             | Symbol          | Min                                  | Мах                          | Unit | Notes |
|-----------------------|-----------------|--------------------------------------|------------------------------|------|-------|
| AC input low voltage  | V <sub>IL</sub> | —                                    | MVREFn <sub>REF</sub> – 0.31 | V    | _     |
| AC input high voltage | V <sub>IH</sub> | MVREF <i>n</i> <sub>REF</sub> + 0.31 | —                            | V    | —     |

Table 18 provides the input AC timing specifications for the DDR1 and DDR2 SDRAM interface.

### Table 18. DDR1 and DDR2 SDRAM Input AC Timing Specifications

At recommended operating conditions with  $Dn_GV_{DD}$  of (1.8 or 2.5 V) ± 5%.

| Parameter                        | Symbol              | Min   | Мах  | Unit | Notes |
|----------------------------------|---------------------|-------|------|------|-------|
| Controller skew for MDQS—MDQ/MDM | t <sub>CISKEW</sub> |       |      | ps   | 1, 2  |
| 266 MHz                          |                     | -750  | 750  |      |       |
| 200 MHz                          |                     | -1250 | 1250 |      |       |

#### Notes:

1. t<sub>CISKEW</sub> represents the total amount of skew consumed by the controller between MDQS[n] and any corresponding bit that is captured with MDQS[n]. This should be subtracted from the total timing budget.

 The amount of skew that can be tolerated from MDQS to a corresponding MDQ signal is called t<sub>DISKEW</sub>. This can be determined by the following equation: t<sub>DISKEW</sub> = ±(T/4 – abs(t<sub>CISKEW</sub>)) where T is the clock period and abs(t<sub>CISKEW</sub>) is the absolute value of t<sub>CISKEW</sub>.



#### DDR1 and DDR2 SDRAM

Figure 4 shows the input timing diagram for the DDR controller.

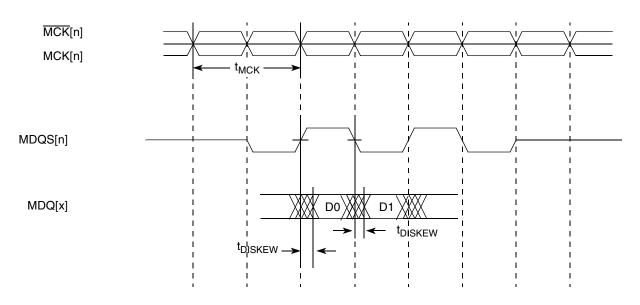



Figure 4. DDR Input Timing Diagram

### 6.2.2 DDR1 and DDR2 SDRAM Output AC Timing Specifications

Table 19 provides the output AC timing specifications for the DDR1 and DDR2 SDRAM interfaces.

### Table 19. DDR1 and DDR2 SDRAM Output AC Timing Specifications

At recommended operating conditions with  $Dn_GV_{DD}$  of (1.8 or 2.5 V)  $\pm$  5%.

| Parameter                                 | Symbol <sup>1</sup> | Min  | Max | Unit | Notes |
|-------------------------------------------|---------------------|------|-----|------|-------|
| MCK cycle time, (MCK/MCK crossing)        | t <sub>MCK</sub>    | 7.5  | 10  | ns   | 2     |
| ADDR/CMD output setup with respect to MCK | t <sub>DDKHAS</sub> |      |     | ns   | 3     |
| 266 MHz                                   |                     | 2.5  | _   |      |       |
| 200 MHz                                   |                     | 3.5  | _   |      |       |
| ADDR/CMD output hold with respect to MCK  | t <sub>DDKHAX</sub> |      |     | ns   | 3     |
| 266 MHz                                   |                     | 2.5  | _   |      |       |
| 200 MHz                                   |                     | 3.5  | —   |      |       |
| MCS output setup with respect to MCK      | t <sub>DDKHCS</sub> |      |     | ns   | 3     |
| 266 MHz                                   |                     | 2.5  | _   |      |       |
| 200 MHz                                   |                     | 3.5  | _   |      |       |
| MCS output hold with respect to MCK       | t <sub>DDKHCX</sub> |      |     | ns   | 3     |
| 266 MHz                                   |                     | 2.5  | _   |      |       |
| 200 MHz                                   |                     | 3.5  | —   |      |       |
| MCK to MDQS Skew                          | t <sub>DDKHMH</sub> | -0.6 | 0.6 | ns   | 4     |



#### Table 19. DDR1 and DDR2 SDRAM Output AC Timing Specifications (continued)

At recommended operating conditions with  $Dn_GV_{DD}$  of (1.8 or 2.5 V) ± 5%.

| Parameter                                 | Symbol <sup>1</sup>                         | Min                             | Мах                         | Unit | Notes |
|-------------------------------------------|---------------------------------------------|---------------------------------|-----------------------------|------|-------|
| MDQ/MDM output setup with respect to MDQS | <sup>t</sup> DDKHDS,<br>t <sub>DDKLDS</sub> |                                 |                             | ns   | 5     |
| 266 MHz                                   |                                             | 0.9                             | —                           |      |       |
| 200 MHz                                   |                                             | 1.0                             | —                           |      |       |
| MDQ/MDM output hold with respect to MDQS  | t <sub>DDKHDX,</sub><br>t <sub>DDKLDX</sub> |                                 |                             | ps   | 5     |
| 266 MHz                                   |                                             | 1100                            | —                           |      |       |
| 200 MHz                                   |                                             | 1200                            | —                           |      |       |
| MDQS preamble start                       | t <sub>DDKHMP</sub>                         | $-0.5\times t_{\text{MCK}}-0.6$ | $-0.5 \times t_{MCK} + 0.6$ | ns   | 6     |
| MDQS epilogue end                         | t <sub>DDKHME</sub>                         | -0.6                            | 0.6                         | ns   | 6     |

#### Notes:

The symbols used for timing specifications follow the pattern of t<sub>(first two letters of functional block)(signal)(state)(reference)(state) for inputs and t<sub>(first two letters of functional block)(reference)(state)(signal)(state)</sub> for outputs. Output hold time can be read as DDR timing (DD) from the rising or falling edge of the reference clock (KH or KL) until the output went invalid (AX or DX). For example, t<sub>DDKHAS</sub> symbolizes DDR timing (DD) for the time t<sub>MCK</sub> memory clock reference (K) goes from the high (H) state until outputs (A) are setup (S) or output valid time. Also, t<sub>DDKLDX</sub> symbolizes DDR timing (DD) for the time t<sub>MCK</sub> memory clock reference (K) goes low (L) until data outputs (D) are invalid (X) or data output hold time.
</sub>

2. All MCK/ $\overline{\text{MCK}}$  referenced measurements are made from the crossing of the two signals ±0.1 V.

3. ADDR/CMD includes all DDR SDRAM output signals except MCK/MCK, MCS, and MDQ/MDM/MDQS. For the ADDR/CMD setup and hold specifications, it is assumed that the Clock Control register is set to adjust the memory clocks by 1/2 applied cycle.

4. Note that t<sub>DDKHMH</sub> follows the symbol conventions described in note 1. For example, t<sub>DDKHMH</sub> describes the DDR timing (DD) from the rising edge of the MCK(n) clock (KH) until the MDQS signal is valid (MH). t<sub>DDKHMH</sub> can be modified through control of the DQSS override bits in the TIMING\_CFG\_2 register. This is typically set to the same delay as the clock adjust in the CLK\_CNTL register. The timing parameters listed in the table assume that these 2 parameters have been set to the same adjustment value. See the MPC8323E PowerQUICC II Pro Integrated Communications Processor Reference Manual for a description and understanding of the timing modifications enabled by use of these bits.

5. Determined by maximum possible skew between a data strobe (MDQS) and any corresponding bit of data (MDQ), or data mask (MDM). The data strobe should be centered inside of the data eye at the pins of the microprocessor.

6. All outputs are referenced to the rising edge of MCK(n) at the pins of the microprocessor. Note that t<sub>DDKHMP</sub> follows the symbol conventions described in note 1.



#### DDR1 and DDR2 SDRAM

Figure 5 shows the DDR SDRAM output timing for the MCK to MDQS skew measurement (t<sub>DDKHMH</sub>).

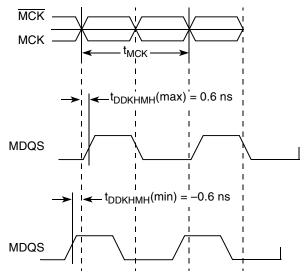



Figure 5. Timing Diagram for t<sub>DDKHMH</sub>

Figure 6 shows the DDR1 and DDR2 SDRAM output timing diagram.

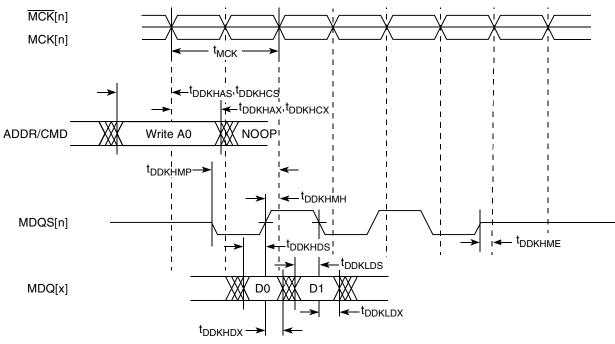



Figure 6. DDR1 and DDR2 SDRAM Output Timing Diagram



# 7 DUART

This section describes the DC and AC electrical specifications for the DUART interface of the MPC8323E.

## 7.1 DUART DC Electrical Characteristics

Table 20 provides the DC electrical characteristics for the DUART interface of the MPC8323E.

### Table 20. DUART DC Electrical Characteristics

| Parameter                                                                        | Symbol          | Min                    | Мах                    | Unit |
|----------------------------------------------------------------------------------|-----------------|------------------------|------------------------|------|
| High-level input voltage                                                         | V <sub>IH</sub> | 2                      | OV <sub>DD</sub> + 0.3 | V    |
| Low-level input voltage OV <sub>DD</sub>                                         | V <sub>IL</sub> | -0.3                   | 0.8                    | V    |
| High-level output voltage, $I_{OH} = -100 \ \mu A$                               | V <sub>OH</sub> | OV <sub>DD</sub> – 0.2 | —                      | V    |
| Low-level output voltage, $I_{OL} = 100 \ \mu A$                                 | V <sub>OL</sub> | —                      | 0.2                    | V    |
| Input current (0 V $\leq$ V <sub>IN</sub> $\leq$ OV <sub>DD</sub> ) <sup>1</sup> | I <sub>IN</sub> | _                      | ±5                     | μA   |

Note:

1. Note that the symbol  $V_{IN}$ , in this case, represents the  $OV_{IN}$  symbol referenced in Table 1 and Table 2.

# 7.2 DUART AC Electrical Specifications

Table 21 provides the AC timing parameters for the DUART interface of the MPC8323E.

| Parameter         | Value       | Unit | Notes |
|-------------------|-------------|------|-------|
| Minimum baud rate | 256         | baud |       |
| Maximum baud rate | > 1,000,000 | baud | 1     |
| Oversample rate   | 16          | _    | 2     |

Notes:

1. Actual attainable baud rate is limited by the latency of interrupt processing.

2. The middle of a start bit is detected as the 8<sup>th</sup> sampled 0 after the 1-to-0 transition of the start bit. Subsequent bit values are sampled each 16<sup>th</sup> sample.

# 8 Ethernet and MII Management

This section provides the AC and DC electrical characteristics for Ethernet and MII management.

### 8.1 Ethernet Controller (10/100 Mbps)—MII/RMII Electrical Characteristics

The electrical characteristics specified here apply to all MII (media independent interface) and RMII (reduced media independent interface), except MDIO (management data input/output) and MDC



**Ethernet and MII Management** 

(management data clock). The MII and RMII are defined for 3.3 V. The electrical characteristics for MDIO and MDC are specified in Section 8.3, "Ethernet Management Interface Electrical Characteristics."

### 8.1.1 DC Electrical Characteristics

All MII and RMII drivers and receivers comply with the DC parametric attributes specified in Table 22.

| Parameter            | Symbol           | Conditions                |                        | Min  | Мах                    | Unit |
|----------------------|------------------|---------------------------|------------------------|------|------------------------|------|
| Supply voltage 3.3 V | OV <sub>DD</sub> | —                         |                        | 2.97 | 3.63                   | V    |
| Output high voltage  | V <sub>OH</sub>  | I <sub>OH</sub> = -4.0 mA | OV <sub>DD</sub> = Min | 2.40 | OV <sub>DD</sub> + 0.3 | V    |
| Output low voltage   | V <sub>OL</sub>  | I <sub>OL</sub> = 4.0 mA  | OV <sub>DD</sub> = Min | GND  | 0.50                   | V    |
| Input high voltage   | V <sub>IH</sub>  | —                         | —                      | 2.0  | OV <sub>DD</sub> + 0.3 | V    |
| Input low voltage    | V <sub>IL</sub>  | —                         | —                      | -0.3 | 0.90                   | V    |
| Input current        | I <sub>IN</sub>  | 0 V ≤ V <sub>IN</sub>     | $V \le ON^{DD}$        | —    | ±5                     | μA   |

Table 22. MII and RMII DC Electrical Characteristics

# 8.2 MII and RMII AC Timing Specifications

The AC timing specifications for MII and RMII are presented in this section.

### 8.2.1 MII AC Timing Specifications

This section describes the MII transmit and receive AC timing specifications.

### 8.2.1.1 MII Transmit AC Timing Specifications

Table 23 provides the MII transmit AC timing specifications.

### Table 23. MII Transmit AC Timing Specifications

At recommended operating conditions with  $\text{OV}_{\text{DD}}$  of 3.3 V  $\pm$  10%.

| Parameter/Condition                             | Symbol <sup>1</sup>                 | Min | Typical | Max | Unit |
|-------------------------------------------------|-------------------------------------|-----|---------|-----|------|
| TX_CLK clock period 10 Mbps                     | t <sub>MTX</sub>                    | _   | 400     | _   | ns   |
| TX_CLK clock period 100 Mbps                    | t <sub>MTX</sub>                    | _   | 40      | _   | ns   |
| TX_CLK duty cycle                               | t <sub>MTXH</sub> /t <sub>MTX</sub> | 35  | —       | 65  | %    |
| TX_CLK to MII data TXD[3:0], TX_ER, TX_EN delay | t <sub>MTKHDX</sub>                 | 1   | 5       | 15  | ns   |
| TX_CLK data clock rise time                     | t <sub>MTXR</sub>                   | 1.0 | —       | 4.0 | ns   |



#### Table 23. MII Transmit AC Timing Specifications (continued)

At recommended operating conditions with  $\text{OV}_{\text{DD}}$  of 3.3 V  $\pm$  10%.

| Parameter/Condition         | Symbol <sup>1</sup> | Min | Typical | Мах | Unit |
|-----------------------------|---------------------|-----|---------|-----|------|
| TX_CLK data clock fall time | t <sub>MTXF</sub>   | 1.0 |         | 4.0 | ns   |

#### Note:

1. The symbols used for timing specifications follow the pattern of t<sub>(first two letters of functional block)(signal)(state)(reference)(state) for inputs and t<sub>(first two letters of functional block)(reference)(state)(signal)(state)</sub> for outputs. For example, t<sub>MTKHDX</sub> symbolizes MII transmit timing (MT) for the time t<sub>MTX</sub> clock reference (K) going high (H) until data outputs (D) are invalid (X). Note that, in general, the clock reference symbol representation is based on two to three letters representing the clock of a particular functional. For example, the subscript of t<sub>MTX</sub> represents the MII(M) transmit (TX) clock. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).</sub>

### Figure 7 shows the MII transmit AC timing diagram.

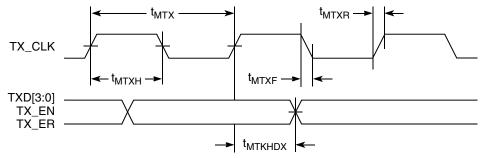



Figure 7. MII Transmit AC Timing Diagram

### 8.2.1.2 MII Receive AC Timing Specifications

Table 24 provides the MII receive AC timing specifications.

#### Table 24. MII Receive AC Timing Specifications

At recommended operating conditions with  $OV_{DD}$  of 3.3 V ± 10%.

| Parameter/Condition                         | Symbol <sup>1</sup>                 | Min  | Typical | Мах | Unit |
|---------------------------------------------|-------------------------------------|------|---------|-----|------|
| RX_CLK clock period 10 Mbps                 | t <sub>MRX</sub>                    | —    | 400     | —   | ns   |
| RX_CLK clock period 100 Mbps                | t <sub>MRX</sub>                    | _    | 40      | _   | ns   |
| RX_CLK duty cycle                           | t <sub>MRXH</sub> /t <sub>MRX</sub> | 35   | _       | 65  | %    |
| RXD[3:0], RX_DV, RX_ER setup time to RX_CLK | t <sub>MRDVKH</sub>                 | 10.0 | _       | _   | ns   |
| RXD[3:0], RX_DV, RX_ER hold time to RX_CLK  | t <sub>MRDXKH</sub>                 | 10.0 | _       | _   | ns   |
| RX_CLK clock rise time                      | t <sub>MRXR</sub>                   | 1.0  |         | 4.0 | ns   |



#### **Ethernet and MII Management**

#### Table 24. MII Receive AC Timing Specifications (continued)

At recommended operating conditions with  $\text{OV}_{\text{DD}}$  of 3.3 V  $\pm$  10%.

| Parameter/Condition    | Symbol <sup>1</sup> | Min | Typical | Мах | Unit |
|------------------------|---------------------|-----|---------|-----|------|
| RX_CLK clock fall time | t <sub>MRXF</sub>   | 1.0 | _       | 4.0 | ns   |

Note:

1. The symbols used for timing specifications follow the pattern of t<sub>(first two letters of functional block)(signal)(state)(reference)(state) for inputs and t<sub>(first two letters of functional block)(reference)(state)(signal)(state)</sub> for outputs. For example, t<sub>MRDVKH</sub> symbolizes MII receive timing (MR) with respect to the time data input signals (D) reach the valid state (V) relative to the t<sub>MRX</sub> clock reference (K) going to the high (H) state or setup time. Also, t<sub>MRDXKL</sub> symbolizes MII receive timing (GR) with respect to the time data input signals (D) went invalid (X) relative to the t<sub>MRX</sub> clock reference (K) going to the low (L) state or hold time. Note that, in general, the clock reference symbol representation is based on three letters representing the clock of a particular functional. For example, the subscript of t<sub>MRX</sub> represents the MII (M) receive (RX) clock. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).</sub>

Figure 8 provides the AC test load.

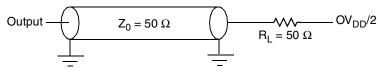



Figure 8. AC Test Load

Figure 9 shows the MII receive AC timing diagram.

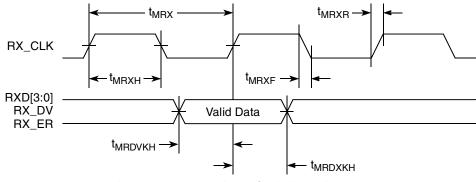



Figure 9. MII Receive AC Timing Diagram

### 8.2.2 RMII AC Timing Specifications

This section describes the RMII transmit and receive AC timing specifications.



### 8.2.2.1 RMII Transmit AC Timing Specifications

Table 23 provides the RMII transmit AC timing specifications.

#### Table 25. RMII Transmit AC Timing Specifications

At recommended operating conditions with  $OV_{DD}$  of 3.3 V ± 10%.

| Parameter/Condition                                                    | Symbol <sup>1</sup>                 | Min | Typical | Мах | Unit |
|------------------------------------------------------------------------|-------------------------------------|-----|---------|-----|------|
| REF_CLK clock                                                          | t <sub>RMX</sub>                    | _   | 20      | _   | ns   |
| REF_CLK duty cycle                                                     | t <sub>RMXH</sub> /t <sub>RMX</sub> | 35  | _       | 65  | %    |
| REF_CLK to RMII data TXD[1:0], TX_EN delay                             | <sup>t</sup> RMTKHDX                | 2   | _       | 10  | ns   |
| REF_CLK data clock rise V <sub>IL</sub> (min) to V <sub>IH</sub> (max) | t <sub>RMXR</sub>                   | 1.0 | _       | 4.0 | ns   |
| REF_CLK data clock fall $V_{IH}(max)$ to $V_{IL}(min)$                 | t <sub>RMXF</sub>                   | 1.0 | _       | 4.0 | ns   |

Note:

The symbols used for timing specifications follow the pattern of t<sub>(first three letters of functional block)(signal)(state)(reference)(state)</sub> for inputs and t<sub>(first two letters of functional block)(reference)(state)(signal)(state)</sub> for outputs. For example, t<sub>RMTKHDX</sub> symbolizes RMII transmit timing (RMT) for the time t<sub>RMX</sub> clock reference (K) going high (H) until data outputs (D) are invalid (X). Note that, in general, the clock reference symbol representation is based on two to three letters representing the clock of a particular functional. For example, the subscript of t<sub>RMX</sub> represents the RMII(RM) reference (X) clock. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).

### Figure 10 shows the RMII transmit AC timing diagram.

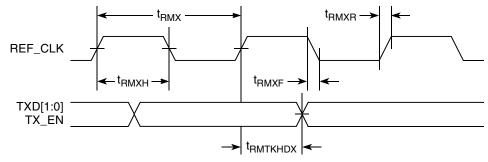



Figure 10. RMII Transmit AC Timing Diagram

### 8.2.2.2 RMII Receive AC Timing Specifications

Table 24 provides the RMII receive AC timing specifications.

### **Table 26. RMII Receive AC Timing Specifications**

At recommended operating conditions with  $OV_{DD}$  of 3.3 V ± 10%.

| Parameter/Condition                                               | Symbol <sup>1</sup>                 | Min | Typical | Мах | Unit |
|-------------------------------------------------------------------|-------------------------------------|-----|---------|-----|------|
| REF_CLK clock period                                              | t <sub>RMX</sub>                    | _   | 20      | _   | ns   |
| REF_CLK duty cycle                                                | t <sub>RMXH</sub> /t <sub>RMX</sub> | 35  | _       | 65  | %    |
| RXD[1:0], CRS_DV, RX_ER setup time to REF_CLK                     | t <sub>RMRDVKH</sub>                | 4.0 | _       | _   | ns   |
| RXD[1:0], CRS_DV, RX_ER hold time to REF_CLK                      | t <sub>RMRDXKH</sub>                | 2.0 | _       | _   | ns   |
| REF_CLK clock rise V <sub>IL</sub> (min) to V <sub>IH</sub> (max) | t <sub>RMXR</sub>                   | 1.0 | _       | 4.0 | ns   |



#### **Ethernet and MII Management**

Table 26. RMII Receive AC Timing Specifications (continued)

At recommended operating conditions with  $\text{OV}_{\text{DD}}$  of 3.3 V  $\pm$  10%.

| Parameter/Condition                                    | Symbol <sup>1</sup> | Min | Typical | Мах | Unit |
|--------------------------------------------------------|---------------------|-----|---------|-----|------|
| REF_CLK clock fall time $V_{IH}(max)$ to $V_{IL}(min)$ | t <sub>RMXF</sub>   | 1.0 |         | 4.0 | ns   |

#### Note:

1. The symbols used for timing specifications follow the pattern of t<sub>(first three letters of functional block)(signal)(state)(reference)(state)(signal)(state) for outputs. For example, t<sub>RMRDVKH</sub> symbolizes RMII receive timing (RMR) with respect to the time data input signals (D) reach the valid state (V) relative to the t<sub>RMX</sub> clock reference (K) going to the high (H) state or setup time. Also, t<sub>RMRDXKL</sub> symbolizes RMII receive timing (RMR) with respect to the tinvalid (X) relative to the t<sub>RMX</sub> clock reference (K) going to the low (L) state or hold time. Note that, in general, the clock reference symbol representation is based on three letters representing the clock of a particular functional. For example, the subscript of t<sub>RMX</sub> represents the RMII (RM) reference (X) clock. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).</sub>

### Figure 11 provides the AC test load.

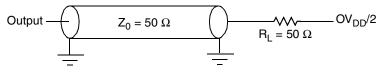



Figure 11. AC Test Load

Figure 12 shows the RMII receive AC timing diagram.

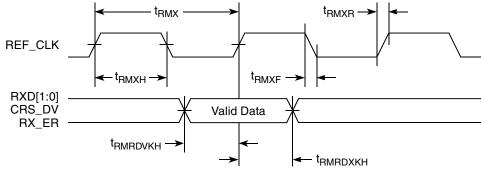



Figure 12. RMII Receive AC Timing Diagram

### 8.3 Ethernet Management Interface Electrical Characteristics

The electrical characteristics specified here apply to MII management interface signals MDIO (management data input/output) and MDC (management data clock). The electrical characteristics for MII, and RMII are specified in Section 8.1, "Ethernet Controller (10/100 Mbps)—MII/RMII Electrical Characteristics."



### 8.3.1 MII Management DC Electrical Characteristics

MDC and MDIO are defined to operate at a supply voltage of 3.3 V. The DC electrical characteristics for MDIO and MDC are provided in Table 27.

| Parameter              | Symbol           | Conditions                   |                        | Min  | Мах                    | Unit |      |   |
|------------------------|------------------|------------------------------|------------------------|------|------------------------|------|------|---|
| Supply voltage (3.3 V) | OV <sub>DD</sub> | —                            |                        | _    |                        | 2.97 | 3.63 | V |
| Output high voltage    | V <sub>OH</sub>  | I <sub>OH</sub> = -1.0 mA    | OV <sub>DD</sub> = Min | 2.10 | OV <sub>DD</sub> + 0.3 | V    |      |   |
| Output low voltage     | V <sub>OL</sub>  | I <sub>OL</sub> = 1.0 mA     | OV <sub>DD</sub> = Min | GND  | 0.50                   | V    |      |   |
| Input high voltage     | V <sub>IH</sub>  |                              |                        | 2.00 | —                      | V    |      |   |
| Input low voltage      | V <sub>IL</sub>  | —                            |                        | —    |                        | —    | 0.80 | V |
| Input current          | I <sub>IN</sub>  | $0 V \le V_{IN} \le OV_{DD}$ |                        | —    | ±5                     | μA   |      |   |

 Table 27. MII Management DC Electrical Characteristics When Powered at 3.3 V

### 8.3.2 MII Management AC Electrical Specifications

Table 28 provides the MII management AC timing specifications.

#### Table 28. MII Management AC Timing Specifications

At recommended operating conditions with  $\text{OV}_{\text{DD}}$  is 3.3 V  $\pm$  10%.

| Parameter/Condition        | Symbol <sup>1</sup> | Min | Typical | Мах | Unit | Notes |
|----------------------------|---------------------|-----|---------|-----|------|-------|
| MDC frequency              | f <sub>MDC</sub>    | —   | 2.5     | _   | MHz  | _     |
| MDC period                 | t <sub>MDC</sub>    | —   | 400     |     | ns   | _     |
| MDC clock pulse width high | t <sub>MDCH</sub>   | 32  | —       |     | ns   | _     |
| MDC to MDIO delay          | t <sub>MDKHDX</sub> | 10  | —       | 70  | ns   | _     |
| MDIO to MDC setup time     | t <sub>MDDVKH</sub> | 5   | —       | -   | ns   | _     |
| MDIO to MDC hold time      | t <sub>MDDXKH</sub> | 0   | —       | -   | ns   | _     |
| MDC rise time              | t <sub>MDCR</sub>   | —   | _       | 10  | ns   | _     |
| MDC fall time              | t <sub>MDHF</sub>   |     |         | 10  | ns   | _     |

Note:

The symbols used for timing specifications follow the pattern of t<sub>(first two letters of functional block)(signal)(state)(reference)(state) for inputs and t<sub>(first two letters of functional block)(reference)(state)(signal)(state)</sub> for outputs. For example, t<sub>MDKHDX</sub> symbolizes management data timing (MD) for the time t<sub>MDC</sub> from clock reference (K) high (H) until data outputs (D) are invalid (X) or data hold time. Also, t<sub>MDDVKH</sub> symbolizes management data timing (MD) with respect to the time data input signals (D) reach the valid state (V) relative to the t<sub>MDC</sub> clock reference (K) going to the high (H) state or setup time. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).
</sub>