imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

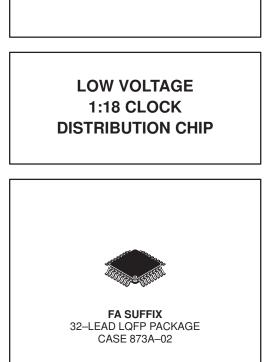
With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Low Voltage 1:18 Clock Distribution Chip

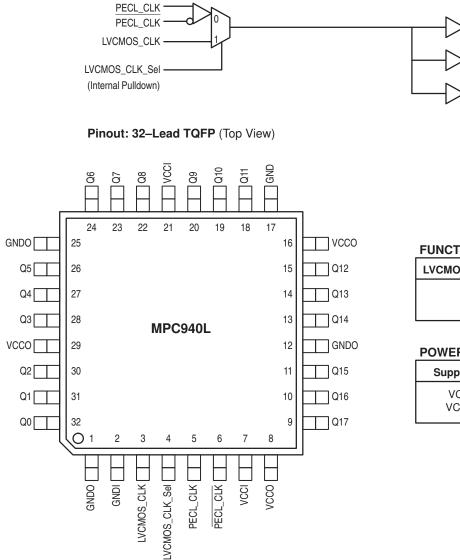

The MPC940L is a 1:18 low voltage clock distribution chip with 2.5V or 3.3V LVCMOS output capabilities. The device features the capability to select either a differential LVPECL or an LVCMOS compatible input. The 18 outputs are 2.5V or 3.3V LVCMOS compatible and feature the drive strength to drive 50 Ω series or parallel terminated transmission lines. With output–to–output skews of 150ps, the MPC940L is ideal as a clock distribution chip for the most demanding of synchronous systems. The 2.5V outputs also make the device ideal for supplying clocks for a high performance microprocessor based design. For a similar device at a lower price/performance point the reader is referred to the MPC9109.

- LVPECL or LVCMOS Clock Input
- 2.5V LVCMOS Outputs for Pentium II Microprocessor Support
- 150ps Maximum Output-to-Output Skew
- Maximum Output Frequency of 250MHz
- 32-Lead LQFP Packaging
- Dual or Single Supply Device:
 - Dual V_{CC} Supply Voltage, 3.3V Core and 2.5V Output
 - Single 3.3V V_{CC} Supply Voltage for 3.3V Outputs
 - Single 2.5V V_{CC} Supply Voltage for 2.5V I/O

With a low output impedance ($\approx 20\Omega$), in both the HIGH and LOW logic states, the output buffers of the MPC940L are ideal for driving series terminated transmission lines. With a 20Ω output impedance the 940L has the capability of driving two series terminated lines from each output. This gives the device an effective fanout of 1:36. If a lower output impedance is desired please see the MPC942 data sheet.

The differential LVPECL inputs of the MPC940L allow the device to interface directly with a LVPECL fanout buffer like the MC100EP111 to build very wide clock fanout trees or to couple to a high frequency clock source. The LVCMOS input provides a more standard interface for applications requiring only a single clock distribution chip at relatively low frequencies. In addition, the two clock sources can be used to provide for a test clock interface as well as the primary system clock. A logic HIGH on the LVCMOS_CLK_Sel pin will select the LVCMOS level clock input. All inputs of the MPC940L have internal pullup/pulldown resistor so they can be left open if unused.

The MPC940L is a single or dual supply device. The device power supply offers a high degree of flexibility. The device can operate with a 3.3V core and 3.3V output, a 3.3V core and 2.5V outputs as well as a 2.5V core and 2.5V outputs. The 32–lead LQFP package was chosen to optimize performance, board space and cost of the device. The 32–lead LQFP has a 7x7mm body size with a conservative 0.8mm pin spacing.


MPC940L

© Motorola, Inc. 2001

01/01

For More Information On This Product, Go to: www.freescale.com) **motorola**

LOGIC DIAGRAM

FUNCTION TABLE

LVCMOS_CLK_Sel	Input
0	PECL_CLK
1	LVCMOS_CLK

Q0

· Q1–Q16

Q17

POWER SUPPLY VOLTAGES

Supply Pin	Voltage Level
VCCI VCCO	2.5V or 3.3V \pm 5% 2.5V or 3.3V \pm 5%

PIN CONFIGURATIONS

Pin	I/O	Туре	Function
PECL_CLK PECL_CLK	Input	LVPECL	Reference Clock Input
LVCMOS_CLK	Input	LVCMOS	Alternative Reference Clock Input
LVCMOS_CLK_SEL	Input	LVCMOS	Selects Clock Source
Q0–Q17	Output	LVCMOS	Clock Outputs
VCCO		Supply	Output Positive Power Supply
VCCI		Supply	Core Positive Power Supply
GNDO		Supply	Output Negative Power Supply
GNDI		Supply	Core Negative Power Supply

ABSOLUTE MAXIMUM RATINGS*

Symbol	Parameter	Min	Мах	Unit
V _{CC}	Supply Voltage	-0.3	3.6	V
VI	Input Voltage	-0.3	V _{DD} + 0.3	V
IIN	Input Current		±20	mA
T _{Stor}	Storage Temperature Range	-40	125	°C

Absolute maximum continuous ratings are those values beyond which damage to the device may occur. Exposure to these conditions or conditions beyond those indicated may adversely affect device reliability. Functional operation under absolute-maximum-rated conditions is not implied.

DC CHARACTERISTICS ($T_A = 0^\circ$ to 70°C	, V _{CCI} = 3.3V ±5%; V _{CCO} = 3.3V ±5%)
---	---

Symbol	Characteristic		Min	Тур	Max	Unit	Condition
VIH	Input HIGH Voltage	CMOS_CLK	2.4		V _{CCI}	V	
VIL	Input LOW Voltage	CMOS_CLK			0.8	V	
VPP	Peak-to-Peak Input Voltage	PECL_CLK	500		1000	mV	
V _{CMR}	Common Mode Range	PECL_CLK	V _{CC} -1.4		V _{CC} -0.6	V	
V _{OH}	Output HIGH Voltage		2.4			V	I _{OH} = -20mA
V _{OL}	Output LOW Voltage				0.5	V	I _{OH} = 20mA
I _{IN}	Input Current				±200	μΑ	
C _{IN}	Input Capacitance			4.0		pF	
C _{pd}	Power Dissipation Capacitance	;		10		рF	per output
ZOUT	Output Impedance		18	23	28	Ω	
ICC	Maximum Quiescent Supply Cu	urrent		0.5	1.0	mA	

AC CHARACTERISTICS (T_A = 0° to 70°C, V_{CCI} = 3.3V ±5%; V_{CCO} = 3.3V ±5%)

Symbol	Characteristic	Min	Тур	Мах	Unit	Condition
F _{max}	Maximum Input Frequency			250	MHz	
^t PLH	$\begin{array}{llllllllllllllllllllllllllllllllllll$		2.7 2.5	3.4 3.0	ns	Note 1.
^t PLH	Propagation Delay PECL_CLK > 150MH: CMOS_CLK > 150MH:		2.9 2.4	3.7 3.2	ns	
^t sk(o)	Output-to-Output Skew PECL_CLL CMOS_CLL			150 150	ps	Note 1.
^t sk(pp)	Part-to-Part Skew PECL_CLK < 150MH: CMOS_CLK < 150MH:			1.4 1.2	ns	Notes 1., 2.
^t sk(pp)	Part-to-Part Skew PECL_CLK > 150MH: CMOS_CLK > 150MH:			1.7 1.4	ns	Notes 1., 2.
^t sk(pp)	Part-to-Part Skew PECL_CL CMOS_CL			850 750	ps	Notes 1., 3.
DC	$\begin{array}{llllllllllllllllllllllllllllllllllll$	z 45 z 40	50 50	55 60	% %	Input DC = 50% Input DC = 50%
t _r , t _f	Output Rise/Fall Time	0.3		1.1	ns	0.5 – 2.4 V

1. Tested using standard input levels, Production tested @ 150MHz.

Across temperature and voltage ranges, Includes output skew.
For a specific temperature and voltage, Includes output skew.

DC CHARACTERISTICS (T_A = 0° to 70°C, V_{CCI} = 3.3V \pm 5%; V_{CCO} = 2.5V \pm 5%)

Symbol	Characteristic		Min	Тур	Max	Unit	Condition
VIH	Input HIGH Voltage	CMOS_CLK	2.4		VCCI	V	
VIL	Input LOW Voltage	CMOS_CLK			0.8	V	
V _{PP}	Peak-to-Peak Input Voltage	PECL_CLK	500		1000	mV	
V _{CMR}	Common Mode Range	PECL_CLK	V _{CC} -1.4		V _{CC} -0.6	V	
VOH	Output HIGH Voltage		1.8			V	I _{OH} = -20mA
V _{OL}	Output LOW Voltage				0.5	V	I _{OH} = 20mA
I _{IN}	Input Current				±200	μΑ	
C _{IN}	Input Capacitance			4.0		pF	
C _{pd}	Power Dissipation Capacitance	9		10		pF	per output
Z _{OUT}	Output Impedance			23		Ω	
ICC	Maximum Quiescent Supply C	urrent		0.5	1.0	mA	

AC CHARACTERISTICS (T_A = 0° to 70°C, V_{CCI} = 3.3V \pm 5%; V_{CCO} = 2.5V \pm 5%)

Symbol	Characteristic	Min	Тур	Max	Unit	Condition
F _{max}	Maximum Input Frequency			250	MHz	
^t PLH	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$		2.8 2.5	3.5 3.0	ns	Note 1.
^t PLH	Propagation Delay PECL_CLK > 150MH CMOS_CLK > 150MH		2.9 2.5	3.8 3.3	ns	
^t sk(o)	Output-to-Output Skew PECL_CL CMOS_CL			150 150	ps	Note 1.
t _{sk(pp)}	Part-to-Part Skew PECL_CLK < 150MH CMOS_CLK < 150MH			1.5 1.3	ns	Notes 1., 2.
t _{sk(pp)}	Part-to-Part Skew PECL_CLK > 150MH CMOS_CLK > 150MH			1.8 1.5	ns	Notes 1., 2.
^t sk(pp)	Part-to-Part Skew PECL_CL CMOS_CL			850 750	ps	Notes 1., 3.
DC	$ \begin{array}{ l l l l l l l l l l l l l l l l l l l$	lz 45 lz 40	50 50	55 60	% %	Input DC = 50% Input DC = 50%
t _r , t _f	Output Rise/Fall Time	0.3		1.2	ns	0.5 – 1.8 V

Tested using standard input levels, Production tested @ 150MHz.
Across temperature and voltage ranges, Includes output skew.

3. For a specific temperature and voltage, Includes output skew.

MPC940L

DC CHARACTERISTICS (T_A = 0° to 70°C, V_{CCI} = 2.5V ±5%; V_{CCO} = 2.5V ±5%)

Symbol	Characteristic		Min	Тур	Max	Unit	Condition
VIH	Input HIGH Voltage	CMOS_CLK	2.0		VCCI	V	
VIL	Input LOW Voltage	CMOS_CLK			0.8	V	
V _{PP}	Peak-to-Peak Input Voltage	PECL_CLK	500		1000	mV	
V _{CMR}	Common Mode Range	PECL_CLK	V _{CC} -1.0		V _{CC} -0.6	V	
V _{OH}	Output HIGH Voltage		1.8			V	I _{OH} = -12mA
V _{OL}	Output LOW Voltage				0.5	V	I _{OH} = 12mA
I _{IN}	Input Current				±200	μΑ	
CIN	Input Capacitance			4.0		pF	
C _{pd}	Power Dissipation Capacitance	Э		10		pF	per output
Z _{OUT}	Output Impedance		18	23	28	Ω	
ICC	Maximum Quiescent Supply C	urrent		0.5	1.0	mA	

AC CHARACTERISTICS (T_A = 0° to 70°C, V_{CCI} = 2.5V \pm 5%; V_{CCO} = 2.5V \pm 5%)

Symbol	Characteristic	Min	Тур	Max	Unit	Condition
F _{max}	Maximum Input Frequency			200	MHz	
^t PLH	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$		4.0 3.1	5.2 4.0	ns	Note 1.
^t PLH	Propagation Delay PECL_CLK > 150MH CMOS_CLK > 150MH		3.8 3.1	5.0 4.0	ns	
^t sk(o)	Output-to-Output Skew PECL_CL CMOS_CL			200 200	ps	Note 1.
t _{sk(pp)}	Part-to-Part Skew PECL_CLK < 150MH CMOS_CLK < 150MH			2.6 1.7	ns	Notes 1., 2.
t _{sk(pp)}	Part-to-Part Skew PECL_CLK > 150MH CMOS_CLK > 150MH			2.2 1.7	ns	Notes 1., 2.
^t sk(pp)	Part-to-Part Skew PECL_CL CMOS_CL			1.2 1.0	ns	Notes 1., 3.
DC	$ \begin{array}{ l l l l l l l l l l l l l l l l l l l$	lz 45 lz 40	50 50	55 60	% %	Input DC = 50% Input DC = 50%
t _r , t _f	Output Rise/Fall Time	0.3		1.2	ns	0.5 – 1.8 V

Tested using standard input levels, Production tested @ 150MHz.
Across temperature and voltage ranges, Includes output skew.

3. For a specific temperature and voltage, Includes output skew.

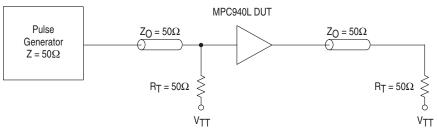


Figure 1. LVCMOS_CLK MPC940L AC test reference for V_{CC} = 3.3V and V_{CC} = 2.5V

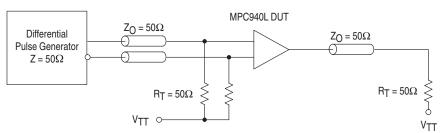
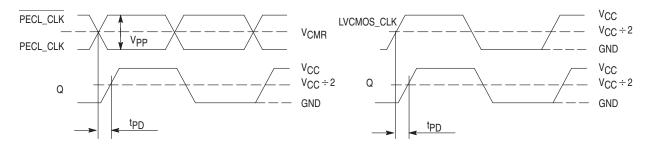
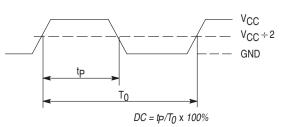
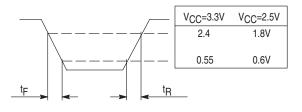




Figure 2. PECL_CLK MPC940L AC test reference for V_{CC} = 3.3V and V_{CC} = 2.5V



The time from the PLL controlled edge to the non controlled edge, divided by the time between PLL controlled edges, expressed as a percentage

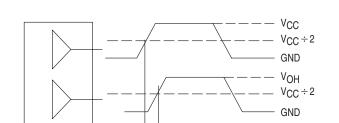
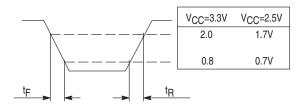



Figure 4. LVCMOS Propagation delay (tpp) test reference

The pin-to-pin skew is defined as the worst case difference in propagation delay between any two similar delay path within a single device

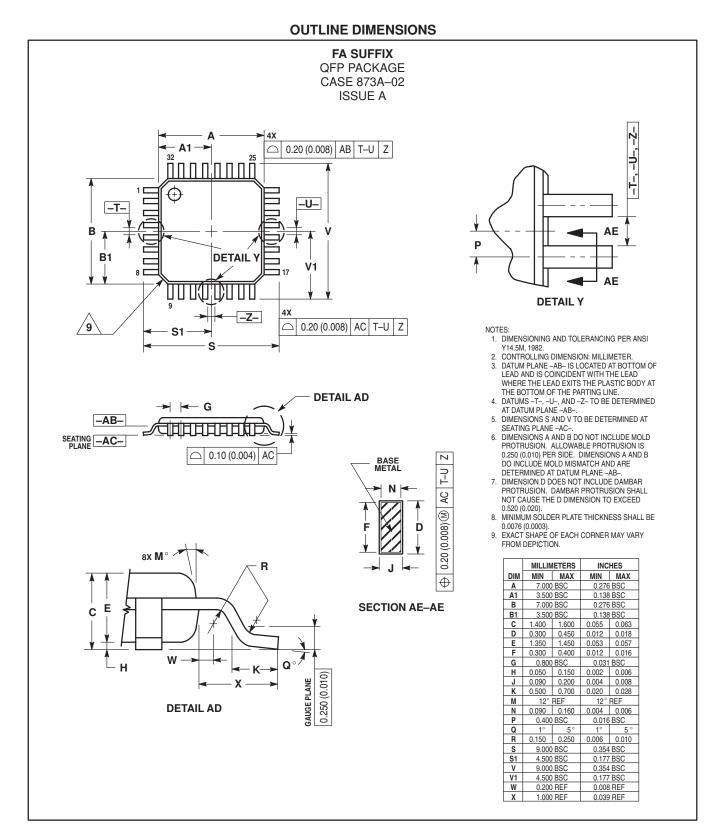

tSK(O)

Figure 6. Output-to-output Skew tSK(O)

Figure 8. Input Transition Time Test Reference

MPC940L

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other application where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and (a) are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

How to reach us:

USA/EUROPE/Locations Not Listed: Motorola Literature Distribution; P.O. Box 5405, Denver, Colorado 80217. 1–303–675–2140 or 1–800–441–2447

Technical Information Center: 1-800-521-6274

HOME PAGE: http://www.motorola.com/semiconductors/

JAPAN: Motorola Japan Ltd.; SPS, Technical Information Center, 3–20–1, Minami–Azabu. Minato–ku, Tokyo 106–8573 Japan. 81–3–3440–3569

ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; Silicon Harbour Centre, 2, Dai King Street, Tai Po Industrial Estate, Tai Po, N.T., Hong Kong. 852–26668334

Eor More Information On This Product, Go to: www.freescale.com