

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

DATASHEET

The MPC942 is a 1:18 low voltage clock distribution chip with 2.5V or 3.3V LVCMOS output capabilities. The device is offered in two versions; the MPC942C has an LVCMOS input clock while the MPC942P has a LVPECL input clock. The 18 outputs are 2.5V or 3.3V LVCMOS compatible and feature the drive strength to drive 50Ω series or parallel terminated transmission lines. With output-to-output skews of 200ps, the MPC942 is ideal as a clock distribution chip for the most demanding of synchronous systems. The 2.5V outputs also make the device ideal for supplying clocks for a high performance Pentium Π^{TM} microprocessor based design.

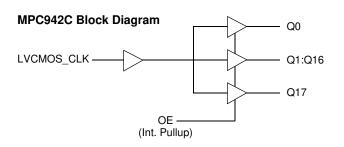
- LVCMOS/LVTTL Clock Input
- · 2.5V LVCMOS Outputs for Pentium II Microprocessor Support
- 150ps Maximum Targeted Output-to-Output Skew
- Maximum Output Frequency of 250MHz @ 3.3 V_{CC}
- · 32-Lead TQFP Packaging
- Single 3.3V or 2.5V Supply
- For Functional replacement use 83940DYLF

With a low output impedance (\approx 12 Ω), in both the HIGH and LOW logic states, the output buffers of the MPC942 are ideal for driving series terminated transmission lines. With an output impedance of 12 Ω the MPC942 can drive two series terminated transmission lines from each output. This capability gives the MPC942 an effective fanout of 1:36. The MPC942 provides enough copies of low skew clocks for most high performance synchronous systems.

MPC942C

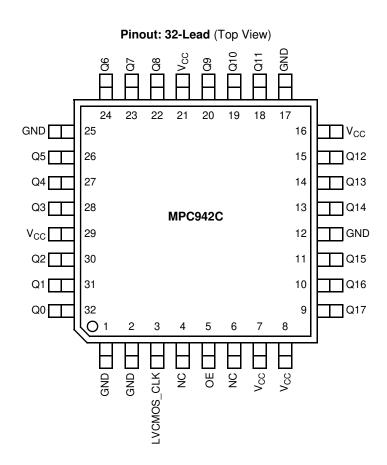
LOW VOLTAGE 1:18 CLOCK DISTRIBUTION CHIP

AC SUFFIX 32-LEAD TQFP PACKAGE Pb-FREE PACKAGE CASE 873A-03


The LVCMOS/LVTTL input of the MPC942C provides a more standard LVCMOS interface. The OE pins will place the outputs into a high impedance state. The OE pin has an internal pullup resistor.

The MPC942 is a single supply device. The V_{CC} power pins require either 2.5V or 3.3V. The 32-lead TQFP package was chosen to optimize performance, board space and cost of the device. The 32-lead TQFP has a 7x7mm body size with a conservative 0.8mm pin spacing.

Pentium II is a trademark of Intel Corporation.



LOGIC DIAGRAM

FUNCTION TABLE

OE	Output
0	HIGH IMPEDANCE
1	OUTPUTS ENABLED

Table 1. Absolute Maximum Ratings

Symbol	Parameter	Min	Max	Unit
V _{CC}	Supply Voltage	-0.3	3.6	V
V _I	Input Voltage	-0.3	V _{CC} + 0.3	V
I _{IN}	Input Current		±20	mA
T _{Stor}	Storage Temperature Range	-40	125	°C

Table 2. DC Characteristics (T_A = 0° to 70° C, V_{CCI} = 2.5V $\pm 5\%$, V_{CCO} = 2.5V $\pm 5\%$)

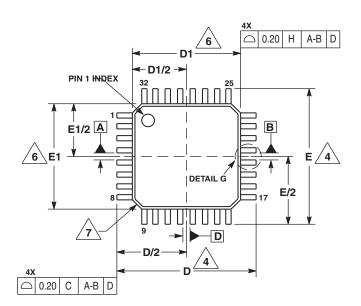
Symbol	Characteristic	Min	Тур	Max	Unit	Condition
V _{IH}	Input HIGH Voltage	2.0		V _{CCI}	V	
V _{IL}	Input LOW Voltage			0.8	V	
V _{OH}	Output HIGH Voltage	2.0			V	$I_{OH} = -16 \text{ mA}$
V _{OL}	Output LOW Voltage			0.5	V	I _{OL} = 16 mA
I _{IN}	Input Current			±200	μА	
C _{IN}	Input Capacitance		4.0		pF	
C _{PD}	Power Dissipation Capacitance		14		pF	Per Output
Z _{OUT}	Output Impedance		12		Ω	
Icc	Maximum Quiescent Supply Current		0.5		mA	

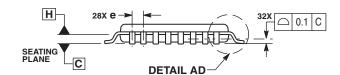
Table 3. AC Characteristics (T_A = 0° to 70° C, V_{CCI} = 2.5V $\pm 5\%$, V_{CCO} = 2.5V $\pm 5\%$)

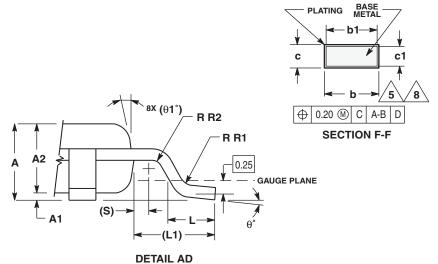
Symbol	Characteristic	Min	Тур	Max	Unit	Condition
F _{max}	Maximum Frequency			200	MHz	
t _{PLH}	Propagation Delay	1.5		2.8	ns	
t _{sk(o)}	Output-to-Output Skew			200	ps	
t _{sk(pr)}	Part-to-Part Skew			1.3	ns	Notes 1, 2
t _{sk(pr)}	Part-to-Part Skew			600	ps	Notes 1, 3
d _t	Duty Cycle	45		55	%	
t _r , t _f	Output Rise/Fall Time	0.2		1.0	ns	

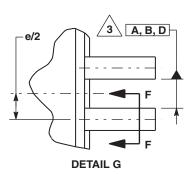
Table 4. DC Characteristics (T_A = 0° to 70°C, V_{CCI} = 3.3V ±5%, V_{CCO} = 3.3V ±5%)

Symbol	Characteristic	Min	Тур	Max	Unit	Condition
V _{IH}	Input HIGH Voltage	2.4		V _{CCI}	V	
V_{IL}	Input LOW Voltage			0.8	V	
V _{OH}	Output HIGH Voltage	2.4			V	$I_{OH} = -20 \text{ mA}$
V _{OL}	Output LOW Voltage			0.5	V	$I_{OL} = 20 \text{ mA}$
I _{IN}	Input Current			±200	μА	
C _{IN}	Input Capacitance		4.0		pF	
C _{PD}	Power Dissipation Capacitance		14		pF	Per Output
Z _{OUT}	Output Impedance		12		Ω	
I _{CC}	Maximum Quiescent Supply Current		0.5		mA	


Table 5. AC Characteristics (T_A = 0° to 70° C, V_{CCI} = 3.3V ±5%, V_{CCO} = 3.3V ±5%)


Symbol	I Characteristic Min Typ		Тур	Max	Unit	Condition	
F _{max}	Maximum Frequency			250	MHz		
t _{PLH}	Propagation Delay	1.3		2.3	ns	Note 1	
t _{sk(o)}	Output-to-Output Skew			200	ps		
t _{sk(pr)}	Part-to-Part Skew			1.0	ns	Notes 1, 2	
t _{sk(pr)}	Part-to-Part Skew			500	ps	Notes 1, 3	
d _t	Duty Cycle	45		55	%		
t _r , t _f	Output Rise/Fall Time	0.2		1.0	ns		


- 1. Tested using standard input levels, production tested @ 133 MHz.
- 2. Across temperature and voltage ranges, includes output skew.
- 3. For a specific temperature and voltage, includes output skew.



PACKAGE DIMENSIONS

NOTES:

1. DIMENSIONS ARE IN MILLIMETERS.
2. INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M, 1994.

3. DATUMS A, B, AND D TO BE DETERMINED AT DATUM PLANE H.

4. DIMENSIONS D AND E TO BE DETERMINED AT SEATING PLANE C.

5. DIMENSION b DOES NOT INCLUDE DAMBAR PROTRUSION, ALLOWABLE DAMBAR PROTRUSION, ALLOWABLE DAMBAR PROTRUSION OF THE MAXIMUM BE DAMBAR PROTRUSION OF THE HAD WIGHT TO EXCEED THE MAXIMUM B DIMENSION BY MORE THAN 0.08-mm. DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OR THE FOOT. MINIMUM SPACE BETWEEN PROTRUSION AND DAJACENT LEAD OR PROTRUSION: 0.07-mm.

6. DIMENSIONS DI AND E1 DO NOT INCLUDE MOLD PROTRUSION ALLOWABLE PROTRUSION IS 0.25-mm PER SIDE. DI AND E1 ARE MAXIMUM PLASTIC BODY SIZE DIMENSIONS INCLUDING MOLD MISMATCH.

2. EXACT SHAPE OF EACH CORNER IS OPTIONAL.

8. THESE DIMENSIONS APPLY TO THE FLAT SECTION OF THE LEAD BETWEEN 0.1-mm AND 0.25-mm FROM THE LEAD TIP.

	MILLIMETERS				
DIM	MIN	MAX			
Α	1.40	1.60			
A1	0.05	0.15			
A2	1.35	1.45			
b	0.30	0.45			
b1	0.30	0.40			
С	0.09 0.20				
c1	0.09 0.16				
D	9.00	BSC			
D1	7.00	BSC			
е	0.80	BSC			
Е	9.00	BSC			
E1	7.00	BSC			
L	0.50	0.70			
L1		REF			
q	0° 7°				
q1	12	REF			
R1	0.08	0.20			
R2	0.08				
S	0.20	REF			

CASE 873A-03 ISSUE B LQFP PLASTIC PACKAGE

Revision History Sheet

Rev	Table	Page	Description of Change	Date
2		1	NRND – Not Recommend for New Designs	1/8/13
2		1	Product Discontinuation Notice - PDN CQ-15-02	5/6/15
3		1	Obsolete per Product Discontinuation Notice - PDN CQ-15-02.	10/4/16

Corporate Headquarters 6024 Silver Creek Valley Road

San Jose, CA 95138 USA

www.IDT.com

Sales

1-800-345-7015 or 408-284-8200

Fax: 408-284-2775 www.IDT.com/go/sales **Tech Support**

www.IDT.com/go/support

DISCLAIMER Integrated Device Technology, Inc. (IDT) reserves the right to modify the products and/or specifications described herein at any time, without notice, at IDT's sole discretion. Performance specifications and operating parameters of the described products are determined in an independent state and are not guaranteed to perform the same way when installed in customer products. The information contained herein is provided without representation or warranty of any kind, whether express or implied, including, but not limited to, the suitability of IDT's products for any particular purpose, an implied warranty of merchantability, or non-infringement of the intellectual property rights of others. This document is presented only as a guide and does not convey any license under intellectual property rights of IDT or any third parties.

IDT's products are not intended for use in applications involving extreme environmental conditions or in life support systems or similar devices where the failure or malfunction of an IDT product can be reasonably expected to significantly affect the health or safety of users. Anyone using an IDT product in such a manner does so at their own risk, absent an express, written agreement by IDT.

Integrated Device Technology, IDT and the IDT logo are trademarks or registered trademarks of IDT and its subsidiaries in the United States and other countries. Other trademarks used herein are the property of IDT or their respective third party owners. For datasheet type definitions and a glossary of common terms, visit www.idt.com/go/glossary. Integrated Device Technology, Inc.. All rights reserved.