imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Freescale Semiconductor Technical Data

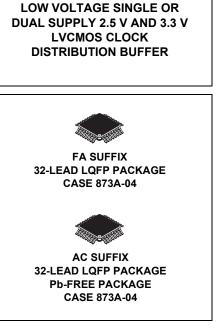
MPC9446 Rev. 3, 08/2005

2.5 V and 3.3 V LVCMOS Clock Fanout Buffer

The MPC9446 is a 2.5 V and 3.3 V compatible 1:10 clock distribution buffer designed for low-voltage mid-range to high-performance telecom, networking and computing applications. Both 3.3 V, 2.5 V and dual supply voltages are supported for mixed-voltage applications. The MPC9446 offers 10 low-skew outputs and 2 selectable inputs for clock redundancy. The outputs are configurable and support 1:1 and 1:2 output to input frequency ratios. The MPC9446 is specified for the extended temperature range of –40°C to 85°C.

Features

- Configurable 10 outputs LVCMOS clock distribution buffer
- Compatible to single, dual and mixed 3.3 V/2.5 V voltage supply
- · Wide range output clock frequency up to 250 MHz
- Designed for mid-range to high-performance telecom, networking and computer applications
- Supports applications requiring clock redundancy
- Maximum output skew of 200 ps (150 ps within one bank)
- · Selectable output configurations per output bank
- Tristable outputs
- 32-lead LQFP package
- 32-lead Pb-free package available
- Ambient operating temperature range of –40 to 85°C


Functional Description

The MPC9446 is a full static fanout buffer design supporting clock frequencies up to 250 MHz. The signals are generated and retimed on-chip to ensure minimal skew between the three output banks. Two independent LVCMOS compatible clock inputs are available. This feature supports redundant clock sources or the addition of a test clock into the system design. Each of the three output banks can be individually supplied by 2.5 V or 3.3 V supporting mixed voltage applications. The FSELx pins choose between division of the input reference frequency by one or two. The frequency divider can be set individually for each of the three output banks. The MPC9446 can be rese,t and the outputs are disabled by deasserting the MR/OE pin (logic high state). Asserting MR/OE will enable the outputs.

All inputs accept LVCMOS signals while the outputs provide LVCMOS compatible levels with the capability to drive terminated 50 Ω transmission lines. Please consult the MPC9456 specification for a 1:10 mixed voltage buffer with LVPECL compatible inputs. For series terminated transmission lines, each of the MPC9446 outputs can drive one or two traces giving the devices an effective fanout of 1:20. The device is packaged in a 7x7 mm² 32-lead LQFP package.

© Freescale Semiconductor, Inc., 2005. All rights reserved.

MPC9446

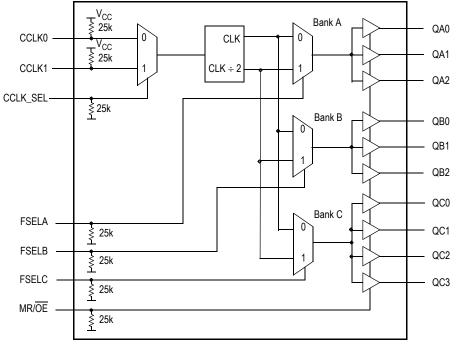


Figure 1. MPC9446 Logic Diagram

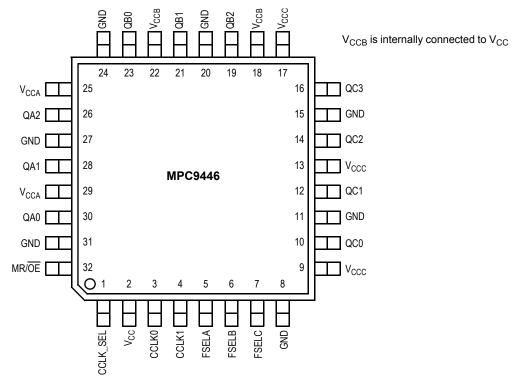


Figure 2. Pinout: 32-Lead Package Pinout (Top View)

Table 1. Pin Configuration

Pin	I/O	Туре	Function
CCLK0,1	Input	LVCMOS	LVCMOS clock inputs
FSELA, FSELB, FSELC	Input	LVCMOS	Output bank divide select input
MR/OE	Input	LVCMOS	Internal reset and output (high impedance) control
GND		Supply	Negative voltage supply (GND)
$V_{CCA}, V_{CCB}^{(1)}, V_{CCC}$		Supply	Positive voltage supply for output banks
V _{CC}		Supply	Positive voltage supply for core (VCC)
QA0 – QA2	Output	LVCMOS	Bank A outputs
QB0 – QB2	Output	LVCMOS	Bank B outputs
QC0 – QC3	Output	LVCMOS	Bank C outputs

1. V_{CCB} is internally connected to V_{CC}.

Table 2. Supported Single and Dual Supply Configurations

Supply Voltage Configuration	V _{CC} ⁽¹⁾	V _{CCA} ⁽²⁾	V _{CCB} ⁽³⁾	V _{CCC} ⁽⁴⁾	GND
3.3 V	3.3 V	3.3 V	3.3 V	3.3 V	0 V
Mixed Voltage Supply	3.3 V	3.3 V or 2.5 V	3.3 V	3.3 V or 2.5 V	0 V
2.5 V	2.5 V	2.5 V	2.5 V	2.5 V	0 V

V_{CC} is the positive power supply of the device core and input circuitry. V_{CC} voltage defines the input threshold and levels.
 V_{CCA} is the positive power supply of the bank A outputs. V_{CCA} voltage defines bank A output levels.
 V_{CCB} is the positive power supply of the bank B outputs. V_{CCB} voltage defines bank B output levels. V_{CCB} is internally connected to V_{CC}.
 V_{CCC} is the positive power supply of the bank C outputs. V_{CCC} voltage defines bank C output levels.

Table 3. Function Table (Controls)

Control	Default	0	1
CCLK_SEL	0	CCLK0	CCLK1
FSELA	0	$f_{QA0:2} = f_{REF}$	$f_{QA0:2} = f_{REF} \div 2$
FSELB	0	$f_{QB0:2} = f_{REF}$	$f_{QB0:2} = f_{REF} \div 2$
FSELC	0	$f_{QC0:3} = f_{REF}$	$f_{QC0:3} = f_{REF} \div 2$
MR/OE	0	Outputs enabled	Internal reset outputs disabled (tristate)

Table 4. Absolute Maximum Ratings⁽¹⁾

Symbol	Characteristics	Min	Мах	Unit	Condition
V _{CC}	Supply Voltage	-0.3	3.6	V	
V _{IN}	DC Input Voltage	-0.3	V _{CC} +0.3	V	
V _{OUT}	DC Output Voltage	-0.3	V _{CC} +0.3	V	
I _{IN}	DC Input Current		±20	mA	
I _{OUT}	DC Output Current		±50	mA	
Τ _S	Storage Temperature	-65	125	°C	

1. Absolute maximum continuous ratings are those maximum values beyond which damage to the device may occur. Exposure to these conditions or conditions beyond those indicated may adversely affect device reliability. Functional operation under absolute-maximum-rated conditions is not implied.

Table 5. General Specifications

Symbol	Characteristics	Min	Тур	Max	Unit	Condition
V _{TT}	Output Termination Voltage		V _{CC} ÷ 2		V	
MM	ESD Protection (Machine Model)	200			V	
HBM	ESD Protection (Human Body Model)	2000			V	
LU	Latch-Up Immunity	200			mA	
C _{PD}	Power Dissipation Capacitance		10		pF	Per output
C _{IN}	Input Capacitance		4.0		pF	

Table 6. DC Characteristics ($V_{CC} = V_{CCA} = V_{CCB} = V_{CCC} = 3.3 \text{ V} \pm 5\%$, $T_A = -40^{\circ}\text{C}$ to +85°C)

Symbol	Characteristics	Min	Тур	Max	Unit	Condition
V _{IH}	Input High Voltage	2.0		V _{CC} + 0.3	V	LVCMOS
V _{IL}	Input Low Voltage	-0.3		0.8	V	LVCMOS
I _{IN}	Input Current ⁽¹⁾			200	μA	V_{IN} = GND or V_{IN} = VCC
V _{OH}	Output High Voltage	2.4			V	I _{OH} = -24 mA ⁽²⁾
V _{OL}	Output Low Voltage			0.55 0.30	V V	I _{OL} = 24 mA ⁽²⁾ I _{OL} = 12 mA
Z _{OUT}	Output Impedance		14 – 17		Ω	
$I_{CCQ}^{(3)}$	Maximum Quiescent Supply Current			2.0	mA	All V _{CC} Pins

1. Input pull-up / pull-down resistors influence input current.

2. The MPC9446 is capable of driving 50 Ω transmission lines on the incident edge. Each output drives one 50 Ω parallel terminated transmission line to a termination voltage of V_{TT}. Alternatively, the device drives up to two 50 Ω series terminated transmission lines.

3. I_{CCQ} is the DC current consumption of the device with all outputs open and the input in its default state or open.

Table 7. AC Characteristics ($V_{CC} = V_{CCA} = V_{CCB} = V_{CCC} = 3.3 \text{ V} \pm 5\%$, $T_A = -40^{\circ}\text{C}$ to $+85^{\circ}\text{C}$)⁽¹⁾

Symbol	Characteristi	cs	Min	Тур	Max	Unit	Condition
f _{ref}	Input Frequency		0		250 ⁽²⁾	MHz	
f _{MAX}	Maximum Output Frequency	÷1 output ÷2 output	0 0		250 ⁽²⁾ 125	MHz MHz	FSELx = 0 FSELx = 1
t _{P, REF}	Reference Input Pulse Width		1.4			ns	
t _r , t _f	CCLK Input Rise/Fall Time				1.0 ⁽³⁾	ns	0.8 to 2.0 V
t _{PLH} t _{PHL}		CCLK0,1 to any Q CCLK0,1 to any Q	2.2 2.2	2.8 2.8	4.45 4.2	ns ns	
t _{PLZ, HZ}	Output Disable Time				10	ns	
t _{PZL, LZ}	Output Enable Time				10	ns	
t _{sk(O)}	Output-to-Output Skew Any output bank, sa Any output,	Within one bank ame output divider Any output divider			150 200 350	ps ps ps	
t _{sk(PP)}	Device-to-Device Skew				2.25	ns	
t _{SK(P)}	Output Pulse Skew ⁽⁴⁾				200	ps	
DC _Q	Output Duty Cycle	÷1 output ÷2 output	47 45	50 50	53 55	% %	DC _{REF} = 50% DC _{REF} = 25%–75%
t _r , t _f	Output Rise/Fall Time		0.1		1.0	ns	0.55 to 2.4 V

1. AC characteristics apply for parallel output termination of 50 Ω to V_TT.

2. The MPC9446 is functional up to an input and output clock frequency of 350 MHz and is characterized up to 250 MHz.

3. Violation of the 1.0 ns maximum input rise and fall time limit will affect the device propagation delay, device-to-device skew, reference input pulse width, output duty cycle and maximum frequency specifications.

4. Output pulse skew t_{SK(P)} is the absolute difference of the propagation delay times: | t_{PLH} - t_{PHL} |. Output duty cycle is frequency dependent: DC_Q = (0.5 ± t_{SK(P)} • f_{OUT}). For example at f_{OUT} = 125 MHz the output duty cycle limit is 50% ± 2.5%.

Table 8. DC Characteristics ($V_{CC} = V_{CCA} = V_{CCB} = V_{CCC} = 2.5 \text{ V} \pm 5\%$, $T_A = -40^{\circ}\text{C}$ to +85°C)

Symbol	Characteristics	Min	Тур	Мах	Unit	Condition
V _{IH}	Input High Voltage	1.7		V _{CC} + 0.3	V	LVCMOS
V _{IL}	Input Low Voltage	-0.3		0.7	V	LVCMOS
V _{OH}	Output High Voltage	1.8			V	I _{OH} = -15 mA ⁽¹⁾
V _{OL}	Output Low Voltage			0.6	V	I _{OL} = 15 mA
Z _{OUT}	Output Impedance		17 – 20 ⁽²⁾		Ω	
I _{IN}	Input Current ⁽²⁾			±200	μA	V_{IN} = GND or V_{IN} = V_{CC}
I _{CCQ} ⁽³⁾	Maximum Quiescent Supply Current			2.0	mA	All V _{CC} Pins

1. The MPC9446 is capable of driving 50 Ω transmission lines on the incident edge. Each output drives one 50 Ω parallel terminated transmission line to a termination voltage of V_{TT}. Alternatively, the device drives up to two 50 Ω series terminated transmission lines per output.

2. Input pull-up / pull-down resistors influence input current.

3. I_{CCQ} is the DC current consumption of the device with all outputs open and the input in its default state or open.

Table 9. AC Characteristics (V $_{\rm C}$	$_{\rm C}$ = V _{CCA} = V _{CC}	$_{\rm B} = V_{\rm CCC} = 2.5 \ V \pm 5\%,$	$\Gamma_{\rm A} = -40^{\circ} \text{C to } +85^{\circ} \text{C})^{(1)}$
---	---	---	---

Symbol	Characteristics		Min	Тур	Max	Unit	Condition
f _{ref}	Input Frequency		0		250 ⁽²⁾	MHz	
f _{MAX}	,	-1 output -2 output	0 0		250 ⁽²⁾ 125	MHz MHz	FSELx = 0 FSELx = 1
t _{P, REF}	Reference Input Pulse Width		1.4			ns	
t _r , t _f	CCLK Input Rise/Fall Time				1.0 ⁽³⁾	ns	0.7 to 1.7 V
t _{PLH} t _{PHL}	Propagation Delay CCLK0,1 CCLK0,1	-	2.6 2.6		5.6 5.5	ns ns	
t _{PLZ, HZ}	Output Disable Time				10	ns	
t _{PZL, LZ}	Output Enable Time				10	ns	
t _{sk(O)}	Output-to-Output Skew Within of Any output bank, same output Any output, Any output				150 200 350	ps ps ps	
t _{sk(PP)}	Device-to-Device Skew				3.0	ns	
t _{SK(P)}	Output Pulse Skew ⁽⁴⁾				200	ps	
DCQ	Output Duty Cycle ÷1 or ÷	-2 output	45	50	55	%	DC _{REF} = 50%
t _r , t _f	Output Rise/Fall Time		0.1		1.0	ns	0.6 to 1.8 V

1. AC characteristics apply for parallel output termination of 50 Ω to V_TT.

2. The MPC9446 is functional up to an input and output clock frequency of 350 MHz and is characterized up to 250 MHz.

3. Violation of the 1.0 ns maximum input rise and fall time limit will affect the device propagation delay, device-to-device skew, reference input pulse width, output duty cycle and maximum frequency specifications.

Output pulse skew t_{SK(P)} is the absolute difference of the propagation delay times: | t_{PLH} − t_{PHL} |. Output duty cycle is frequency dependent: DC_Q = (0.5 ± t_{SK(P)} • f_{OUT}). For example at f_{OUT} = 125 MHz the output duty cycle limit is 50% ± 2.5%.

Table 10. AC Characteristics ($V_{CC} = 3.3 \text{ V} + 5\%$, V_{CCA} , V_{CCB} , $V_{CCC} = 2.5 \text{ V} + 5\%$ or 3.3 V + 5%, $T_A = -40^{\circ}\text{C}$ to $+85^{\circ}\text{C}$)⁽¹⁾ (2)

Symbol	Characteristics	Min	Тур	Max	Unit	Condition
t _{sk(O)}	Output-to-Output Skew Within one bank			150	ps	
. ,	Any output bank, same output divider			250	ps	
	Any output, Any output divider			350	ps	
t _{sk(PP)}	Device-to-Device Skew			2.5	ns	
t _{PLH,HL}	Propagation Delay CCLK0,1 to any Q		See 3.3 V Table			
t _{SK(P)}	Output Pulse Skew ⁽³⁾			250	ps	
DC _Q	Output Duty Cycle ÷1 or ÷2 output	45	50	55	%	DC _{REF} = 50%

1. AC characteristics apply for parallel output termination of 50 Ω to V_TT.

2. For all other AC specifications, refer to 2.5 V or 3.3 V tables according to the supply voltage of the output bank.

Output pulse skew t_{SK(P)} is the absolute difference of the propagation delay times: | t_{PLH} - t_{PHL} |. Output duty cycle is frequency dependent: DC_Q = (0.5 ± t_{SK(P)} • f_{OUT}).

Driving Transmission Lines

The MPC9446 clock driver was designed to drive highspeed signals in a terminated transmission line environment. To provide the optimum flexibility to the user, the output drivers were designed to exhibit the lowest impedance possible. With an output impedance of less than 20 Ω , the drivers can drive either parallel or series terminated transmission lines. For more information on transmission lines the reader is referred to Freescale application note AN1091. In most high performance clock networks, point-to-point distribution of signals is the method of choice. In a point-to-point scheme, either series terminated or parallel terminated transmission lines can be used. The parallel technique terminates the signal at the end of the line with a 50 Ω resistance to V_{CC}÷2.

This technique draws a fairly high level of DC current, and thus, only a single terminated line can be driven by each output of the MPC9446 clock driver. For the series terminated case, however, there is no DC current draw; thus, the outputs can drive multiple series terminated lines. Figure 3 illustrates an output driving a single series terminated line versus two series terminated lines in parallel. When taken to its extreme, the fanout of the MPC9446 clock driver is effectively doubled due to its capability to drive multiple lines.

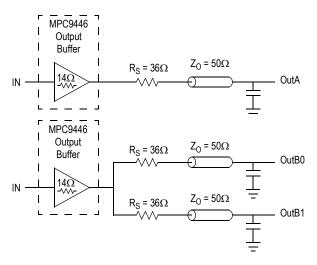


Figure 3. Single versus Dual Transmission Lines

The waveform plots in Figure 4 show the simulation results of an output driving a single line versus two lines. In both cases, the drive capability of the MPC9446 output buffer is more than sufficient to drive 50 Ω transmission lines on the incident edge. Note from the delay measurements in the simulations, a delta of only 43 ps exists between the two differently loaded outputs. This suggests that the dual line driving need not be used exclusively to maintain the tight output-to-output skew of the MPC9446. The output waveform in Figure 4 shows a step in the waveform. This step is caused by the impedance mismatch seen looking into the driver. The parallel combination of the 36 Ω series resistor plus the output impedance does not match the parallel combination of the line impedances. The voltage wave launched down the two lines will equal:

MPC9446

$$V_{L} = V_{S} (Z_{0} \div (R_{S} + R_{0} + Z_{0}))$$

$$Z_{0} = 50 \Omega || 50 \Omega$$

$$R_{S} = 36 \Omega || 36 \Omega$$

$$R_{0} = 14 \Omega$$

$$V_{L} = 3.0 (25 \div (18 + 14 + 25))$$

$$= 1.31 V$$

At the load end, the voltage will double, due to the near unity reflection coefficient, to 2.5 V. It will then increment towards the quiescent 3.0 V in steps separated by one round trip delay (in this case 4.0 ns).

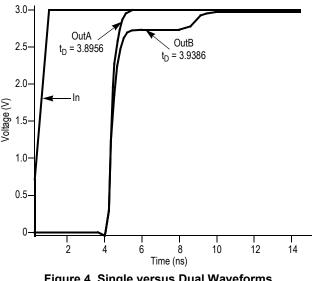


Figure 4. Single versus Dual Waveforms

Since this step is well above the threshold region, it will not cause any false clock triggering; however, designers may be uncomfortable with unwanted reflections on the line. To better match the impedances when driving multiple lines, the situation in Figure 5 should be used. In this case, the series terminating resistors are reduced such that when the parallel combination is added to the output buffer impedance, the line impedance is perfectly matched.

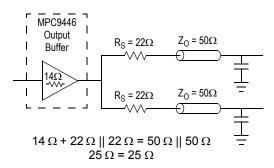
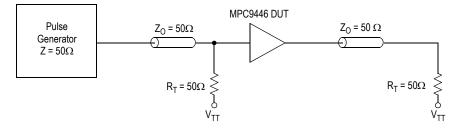



Figure 5. Optimized Dual Line Termination

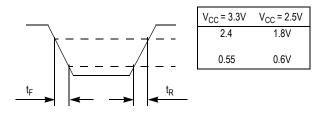
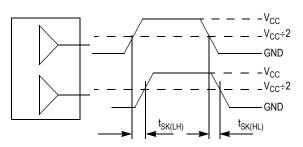
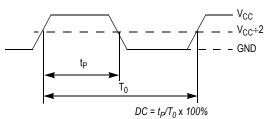
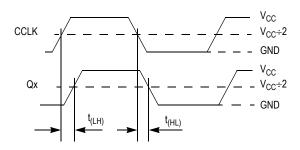
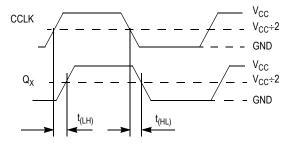




Figure 7. Output Transition Time Test Reference


The pin-to-pin skew is defined as the worst case difference in propagation delay between any two similar delay paths within a single device.



The time from the PLL controlled edge to the non controlled edge, divided by the time between PLL controlled edges, expressed as a percentage.

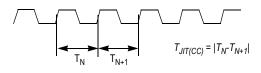
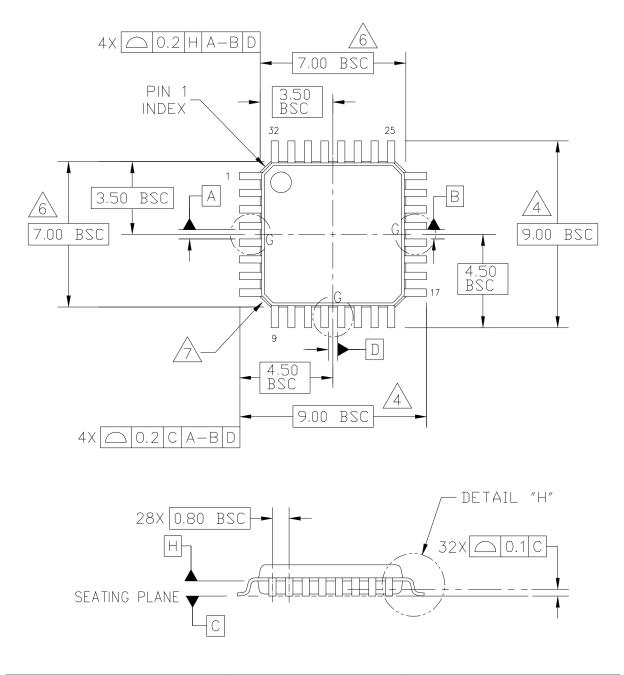


Figure 8. Propagation Delay (t_{PD}) Test Reference

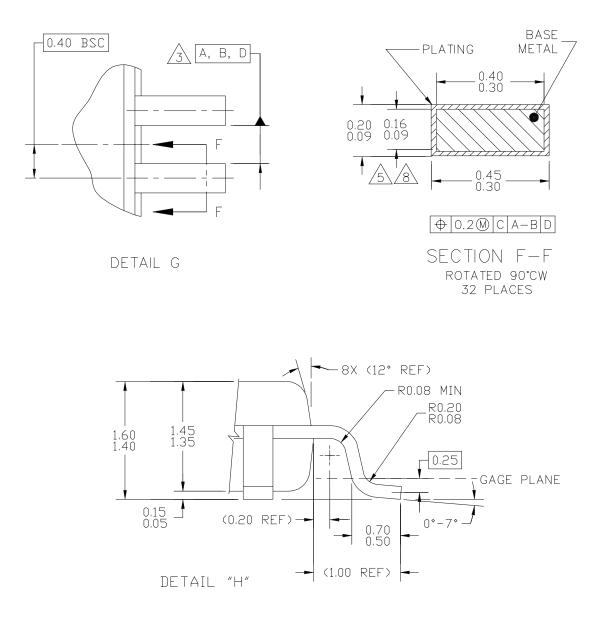
 $t_{\mathsf{SK}(\mathsf{P})} = \mid t_{\mathsf{PLH}} - t_{\mathsf{PHL}} \mid$


Figure 10. Output Pulse Skew (t_{SK(P)}) Test Reference

The variation in cycle time of a signal between adjacent cycles, over a random sample of adjacent cycle pairs.

Figure 12. Cycle-to-Cycle Jitter

PACKAGE DIMENSIONS


© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	Mechanical outline print version ne		JT TO SCALE		
TITLE:		DOCUMENT NE	CUMENT NO: 98ASH70029A		
LOW PROFILE QUAD FLAT PA	· · · · ·	CASE NUMBER: 873A-04 01 APR 200			
32 LEAD, 0.8 PITCH (7 X	7 X 1.4)	STANDARD: JE	DEC MS-026 BBA		

PAGE 1 OF 3

CASE 873A-04 ISSUE C 32-LEAD LQFP PACKAGE

MPC9446

PACKAGE DIMENSIONS

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	MECHANICAL OUTLINE		PRINT VERSION NOT TO SCALE	
TITLE: LOW PROFILE QUAD FLAT PACK (LQFP) 32 LEAD, 0.8 PITCH (7 X 7 X 1.4)		DOCUMENT NO]: 98ASH70029A	RE∨: C
		CASE NUMBER: 873A-04		01 APR 2005
		STANDARD: JE	DEC MS-026 BBA	•

PAGE 2 OF 3

CASE 873A-04 ISSUE C 32-LEAD LQFP PACKAGE

NOTES:

1. DIMENSIONS ARE IN MILLIMETERS.

2. INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5-1994.

 $\sqrt{3}$ datums a, b, and d to be determined at datum plane H.

4 dimensions to be determined at seating plane datum c.

5. DIMENSION DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL NOT CAUSE THE LEAD WIDTH TO EXCEED THE MAXIMUM DIMENSION BY MORE THAN 0.08 MM. DAMBAR CANNOT BE LOCATED ON THZ LOWER RADIUS OR THE FOOT. MINIMUM SPACE BETWEEN PROTRUSION AND ADJACENT LEAD OR PROTRUSION: 0.07 MM.

<u>/6.</u> DIMENSIONS DO NOT INCLUDE MOLD PROTRUSION. ALLOWABLE PROTRUSION IS 0.25 MM PER SIDE. DIMENSIONS ARE MAXIMUM PLASTIC BODY SIZE DIMENSIONS INCLUDING MOLD MISMATCH.

/7. EXACT SHAPE OF EACH CORNER IS OPTIONAL.

 $\underline{3}$ These dimensions apply to the flat section of the lead between 0.1 MM and 0.25 MM from the lead tip.

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	Mechanical outline		PRINT VERSION NOT TO SCALE	
32 IFAD OS PITCH (7 X 7 X 1 4)		DOCUMENT NO: 98ASH70029A		RE∨: C
		CASE NUMBER: 873A-04		01 APR 2005
		STANDARD: JE	DEC MS-026 BBA	

PAGE 3 OF 3

CASE 873A-04 ISSUE C 32-LEAD LQFP PACKAGE

MPC9446

NOTES

How to Reach Us:

Home Page: www.freescale.com

E-mail: support@freescale.com

USA/Europe or Locations Not Listed:

Freescale Semiconductor Technical Information Center, CH370 1300 N. Alma School Road Chandler, Arizona 85224 +1-800-521-6274 or +1-480-768-2130 support@freescale.com

Europe, Middle East, and Africa:

Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) support@freescale.com

Japan:

Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku, Tokyo 153-0064 Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor Hong Kong Ltd. Technical Information Center 2 Dai King Street Tai Po Industrial Estate Tai Po, N.T., Hong Kong +800 2666 8080 support.asia@freescale.com

For Literature Requests Only:

Freescale Semiconductor Literature Distribution Center P.O. Box 5405 Denver, Colorado 80217 1-800-441-2447 or 303-675-2140 Fax: 303-675-2150 LDCForFreescaleSemiconductor@hibbertgroup.com Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals", must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

Freescale[™] and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. © Freescale Semiconductor, Inc. 2005. All rights reserved.

