# imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!



# Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China





I2C precision pressure sensor with altimetryRev. 5.1 — 13 September 2016Data set

**Data sheet: Technical data** 

#### **General description** 1

The MPL3115A2 is a compact, piezoresistive, absolute pressure sensor with an I<sup>2</sup>C digital interface. MPL3115A2 has a wide operating range of 20 kPa to 110 kPa, a range that covers all surface elevations on earth. The MEMS is temperature compensated utilizing an on-chip temperature sensor. The pressure and temperature data is fed into a high resolution ADC to provide fully compensated and digitized outputs for pressure in Pascals and temperature in °C. The compensated pressure output can then be converted to altitude, utilizing the formula stated in Section 8.1.3 "Pressure/altitude" provided in meters. The internal processing in MPL3115A2 removes compensation and unit conversion load from the system MCU, simplifying system design.

MPL3115A2's advanced ASIC has multiple user programmable modes such as power saving, interrupt and autonomous data acquisition modes, including programmed acquisition cycle timing, and poll-only modes. Typical active supply current is 40 µA per measurement-second for a stable 10 cm output resolution.

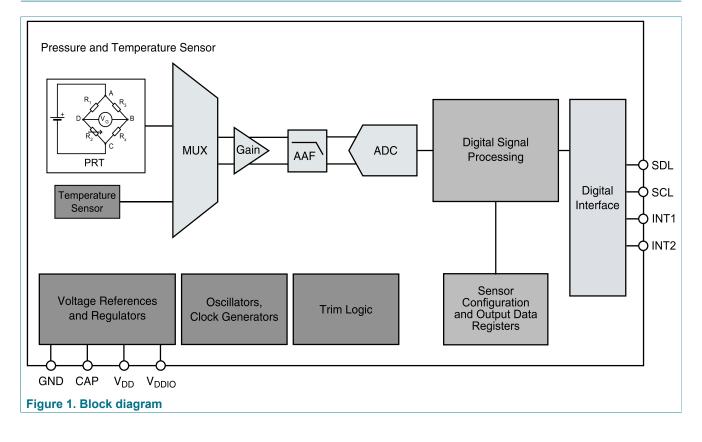
#### **Features and benefits** 2

- Operating range: 20 kPa to 110 kPa absolute pressure
- –700 m to be equivalent altitude at 50 kPa
- Calibrated range: 50 kPa to 110 kPa absolute pressure
- Calibrated temperature output: −40 °C to 85 °C
- I<sup>2</sup>C digital output interface (up to 400 kHz)
- Fully compensated internally
- Precision ADC resulting in 0.1 meter of effective resolution
   1.6 V to 3.6 V digital interface supply voltage
- Direct reading
  - Pressure: 20-bit measurement (Pascals)
    - 20 to 110 kPa
  - Altitude: 20-bit measurement (meters) – 698 to 11,775 m
  - Temperature: 12-bit measurement (°C)
    - –40 °C to 85 °C

- Programmable interrupts
- Autonomous data acquisition
  - Embedded 32-sample FIFO
  - Data logging up to 12 days using the FIFO
- One-second to nine-hour data acquisition rate
- 1.95 V to 3.6 V supply voltage, internally regulated
- Operating temperature from -40 °C to +85 °C



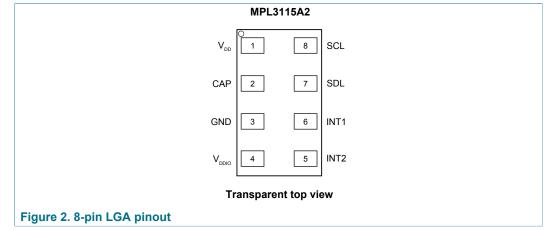
I2C precision pressure sensor with altimetry


## **3** Applications

- · High-accuracy altimetry and barometry
- · Smartphones, tablets and wearable devices
- GPS applications: dead reckoning, map assist, navigation, enhancement for emergency services
- Weather station equipment

# 4 Ordering information

| Table 1. Ordering | information   |              |      |                 |      |             |              |          |           |
|-------------------|---------------|--------------|------|-----------------|------|-------------|--------------|----------|-----------|
| Device number     | Shipping      | ig Package   |      | Number of ports |      | Pressure Ty | Digital      |          |           |
|                   |               |              | None | Single          | Dual | Gauge       | Differential | Absolute | interface |
| MPL3115A2         | Tray          | 98ASA002260D | •    | —               | _    | _           | —            | •        | •         |
| MPL3115A2R1       | Tape and reel | 98ASA002260D | •    | _               | _    | _           |              | •        | •         |

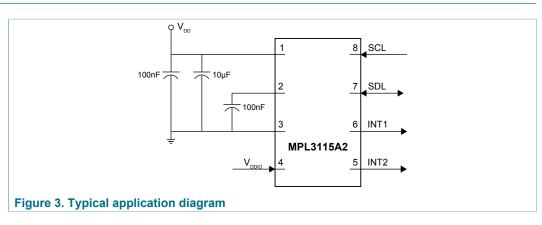

## 5 Block diagram



I2C precision pressure sensor with altimetry

## 6 Pinning information

## 6.1 Pinning




## 6.2 Pin description

### Table 2. Pin description

| Symbol            | Pin | Description                                      |
|-------------------|-----|--------------------------------------------------|
| V <sub>DD</sub>   | 1   | $V_{DD}$ power supply connection (1.95 to 3.6 V) |
| CAP               | 2   | External capacitor                               |
| GND               | 3   | Ground                                           |
| V <sub>DDIO</sub> | 4   | Digital interface power supply (1.62 to 3.6 V)   |
| INT2              | 5   | Pressure interrupt 2                             |
| INT1              | 6   | Pressure interrupt 1                             |
| SDL               | 7   | I <sup>2</sup> C serial data                     |
| SCL               | 8   | I <sup>2</sup> C serial clock                    |

# 7 System connections



© NXP B.V. 2016. All rights reserved

The device power is supplied through the V<sub>DD</sub> line. Power supply decoupling capacitors (100 nF ceramic plus 10  $\mu$ F bulk or 10  $\mu$ F ceramic) should be placed as near as possible to pin 1 of the device. A second 100 nF capacitor is used to bypass the internal regulator. The functions, threshold and the timing of the interrupt pins (INT1 and INT2) are user programmable through the I<sup>2</sup>C interface.

## 8 Mechanical and electrical specifications

## 8.1 Terminology

### 8.1.1 Resolution

The resolution of a pressure sensor is the minimum change of pressure that can be reliably measured. The usable resolution of the device is programmable, enabling the user to choose a compromise between acquisition speed, power consumption, and resolution that best fits the application. To simplify the programming, the data is always reported in the same format with differing number of usable bits.

### 8.1.2 Accuracy

#### 8.1.2.1 Offset

The offset is defined as the output signal obtained when the reference pressure (a vacuum for an absolute pressure sensor) is applied to the sensor. Offset error affects absolute pressure measurements but not relative pressure measurements. An altitude measurement is the pressure value in comparison to sea level, a barometric measurement is the pressure value read by the sensor. That is, a measurement of total pressure seen (for example 70 kPa), or total height (for example 3000 m) above sea level. A change in the offset will affect the pressure value or height seen above sea level as it shifts the sea level base reference. An absolute pressure measurement is not the same as relative pressure measurement, where the pressure is compared when raising or lowering pressure in shorter intervals. This would be a walk up a hill, measuring the pressure and altitude difference from start to finish. In the relative case, the offset shifts are shared in the two absolute measurements and negate each other during the pressure calculation.

For the MPL3115A2, the long term offset shift can be removed by adjusting the pressure or altitude offset correction. See <u>Section 13.23 "Offset correction registers"</u>. This adjustment is provided to override the factory programmed values to compensate for offsets introduced by manufacturing and mounting stresses. It is highly recommended that this is utilized to realize the full accuracy potential of the device.

### 8.1.2.2 Linearity

Linearity compares the slope of the measurement data to that of an ideal transfer function. It refers to how well a transducer's output follows the equation  $P_{OUT} = P_{OFF}$  + sensitivity × P straight-line equation over the operating pressure range. The method used by NXP to give the linearity specification is the end-point straight line method measured at midrange pressure.

#### 8.1.2.3 Absolute pressure

Absolute pressure sensors measure an external pressure relative to a zeropressure reference (vacuum) sealed inside the reference chamber of the die during manufacturing. This standard allows comparison to a standard value set such that 14.7 psi = 101,325 Pa = 1 atm at sea level as a measurement target. The absolute pressure is used to determine altitude as it has a constant reference for comparison. Measurement at sea level can be compared to measurement at a mountain summit as they use the same vacuum reference. The conversion of absolute pressure to altitude in meters is calculated based on US Standard Atmosphere 1976 (NASA).

**Note:** Absolute pressure is not linear in relation to altitude, it is an exponential function. The value of altitude can be read directly from the device in increments of 0.0625 meters, or the value of pressure in 0.25 Pascal (Pa) units.

#### 8.1.2.4 Span

Span is the value of full-scale output with offset subtracted, representing the full range of the pressure sensor. Ideally the span is a specification over a constant temperature. The device uses internal temperature compensation to remove drift. Span accuracy is the comparison of the measured difference and the actual difference between the highest and lowest pressures in the specified range.

#### 8.1.3 Pressure/altitude

The device is a high accuracy pressure sensor with integrated data calculation and logging capabilities. To provide altitude readings, the altitude calculations are based on the measured pressure (p), the user input of the equivalent sea level pressure to compensate for local weather conditions (OFF\_H) and the US Standard Atmosphere 1976 (NASA). Pressure is given in Pascals (Pa), and fractions of a Pa. Altitude is given in meters (m) and fractions of a meter. The altitude is calculated from the pressure using the following equation:

$$h = 44330.77 \left\{ 1 - \left(\frac{p}{p_0}\right)^{0.1902632} \right\} + OFF_H (Register value)$$

where:

 $p_0$  = sea level pressure (101,326 Pa) h = altitude in meters

### 8.2 Absolute maximum ratings

Absolute maximum ratings are the limits the device can be exposed to without permanently damaging it. Absolute maximum ratings are stress ratings only, functional operation at these ratings is not guaranteed. Exposure to absolute maximum ratings conditions for extended periods may affect device reliability.

This device contains circuitry to protect against damage due to high static voltage or electrical fields. It is advised, however, that normal precautions be taken to avoid application of any voltages higher than maximum-rated voltages to this high-impedance circuit.

#### I2C precision pressure sensor with altimetry

| Symbol            | Characteristic                              | Value                           | Unit |
|-------------------|---------------------------------------------|---------------------------------|------|
| P <sub>max</sub>  | Maximum applied pressure                    | 500                             | kPa  |
| V <sub>DD</sub>   | Supply voltage                              | -0.3 to 3.6                     | V    |
| V <sub>DDIO</sub> | Interface supply voltage                    | -0.3 to 3.6                     | V    |
| V <sub>IN</sub>   | Input voltage on any control pin (SCL, SDA) | -0.3 to V <sub>DDIO</sub> + 0.3 | V    |
| T <sub>OP</sub>   | Operating temperature range                 | -40 to +85                      | °C   |
| T <sub>STG</sub>  | Storage temperature range                   | -40 to +125                     | °C   |

## Table 3. Maximum ratings

#### Table 4. ESD and latchup protection characteristics

| Symbol | Rating                       | Value | Unit |
|--------|------------------------------|-------|------|
| HBM    | Human body model             | ±2000 | V    |
| CDM    | Charge device model          | ±500  | V    |
|        | Latchup current at T = 85 °C | ±100  | mA   |



Caution This device is sensitive to mechanical shock. Improper handling can cause permanent damage to the part or cause the part to otherwise fail.



Caution This is an ESD sensitive device. Improper handling can cause permanent damage to the part.

### 8.3 Mechanical characteristics

#### **Table 5. Mechanical characteristics**

 $V_{DD}$  = 2.5 V, T = 25 °C, over 50 kPa to 110 kPa, unless otherwise noted.

| Symbol          | Parameter                  | Test conditions                      | Min  | Тур  | Мах | Unit   |
|-----------------|----------------------------|--------------------------------------|------|------|-----|--------|
| Pressure ser    | isor                       |                                      |      |      |     |        |
| P <sub>FS</sub> | Measurement range          | Calibrated range                     | 50   |      | 110 | kPa    |
|                 |                            | Operational range                    | 20   |      | 110 | kPa    |
|                 | Pressure reading noise [1] | 1x oversample                        |      | 19   |     | Pa RMS |
|                 |                            | 128x oversample                      |      | 1.5  |     | Pa RMS |
|                 | Pressure absolute accuracy | 50 to 110 kPa over 0 °C to 50 °C     | -0.4 |      | 0.4 | kPa    |
|                 |                            | 50 to 110 kPa over−10 °C to<br>70 °C |      | ±0.4 |     | kPa    |

## **NXP Semiconductors**

# **MPL3115A2**

### I2C precision pressure sensor with altimetry

| Symbol          | Parameter                    | Test conditions                                                                                                                      | Min    | Тур   | Max | Unit |
|-----------------|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|--------|-------|-----|------|
|                 | Pressure relative accuracy   | Relative accuracy during<br>pressure change between 70<br>to 110 kPa at any constant<br>temperature between -10 °C<br>to 50 °C       |        | ±0.05 |     | kPa  |
|                 |                              | Relative accuracy during<br>changing temperature<br>between -10 °C to 50 °C<br>at any constant pressure<br>between 50 kPa to 110 kPa |        | ±0.1  |     | kPa  |
|                 | Pressure/altitude resolution | Barometer mode                                                                                                                       | 0.25   | 1.5   |     | Pa   |
|                 | [-][0][1]                    | Altimeter mode                                                                                                                       | 0.0625 | 0.3   |     | m    |
|                 | Output data rate             | One-shot mode                                                                                                                        |        | 100   |     | Hz   |
|                 |                              | FIFO mode                                                                                                                            |        |       | 1   | Hz   |
|                 | Board mount drift            | After solder reflow                                                                                                                  |        | ±0.15 |     | kPa  |
|                 | Long term drift              | After a period of 1 year                                                                                                             |        | ±0.1  |     | kPa  |
| Temperature     | sensor                       | '                                                                                                                                    |        | 1     |     |      |
| T <sub>FS</sub> | Measurement range            |                                                                                                                                      | -40    |       | +85 | °C   |
|                 | Temperature accuracy         | @25 °C                                                                                                                               |        | ±1    |     | °C   |
|                 |                              | Over temperature range                                                                                                               |        | ±3    |     | °C   |
| Т <sub>ОР</sub> | Operating temperature range  |                                                                                                                                      | -40    |       | +85 | °C   |

[1] Oversample (OSR) modes internally combine and average samples to reduce noise.

Smallest bit change in register represents minimum value change in Pascals or meters. Typical resolution to signify change in altitude is 0.3 m.

[2] [3] [4] Reference pressure = 101.325 kPa (sea level).

At 128x oversample ratio.

## 8.4 Electrical characteristics

#### **Table 6. Electrical characteristics**

@  $V_{DD}$  = 2.5 V, T = 25 °C unless otherwise noted.

| Symbol              | Parameter                                     | Test conditions                          | Min  | Тур | Max | Unit |
|---------------------|-----------------------------------------------|------------------------------------------|------|-----|-----|------|
| V <sub>DDIO</sub>   | I/O supply voltage                            | —                                        | 1.62 | 1.8 | 3.6 | V    |
| V <sub>DD</sub>     | Operating supply voltage                      | —                                        | 1.95 | 2.5 | 3.6 | V    |
| I <sub>DD</sub>     | Integrated current 1 update per second        | Highest speed mode<br>oversample = 1     | _    | 8.5 | —   | μA   |
|                     |                                               | Standard mode oversample<br>= 16         | —    | 40  | —   | μA   |
|                     |                                               | High resolution mode<br>oversample = 128 | _    | 265 | _   | μA   |
| I <sub>DDMAX</sub>  | Max current during acquisition and conversion | During acquisition/<br>conversion        | _    | 2   |     | mA   |
| I <sub>DDSTBY</sub> | Supply current drain in STANDBY mode          | STANDBY mode selected<br>SBYB = 0        | _    | 2   | —   | μA   |

I2C precision pressure sensor with altimetry

| Parameter                                       | Test conditions                                                                                                                                                                                                                                        | Min                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Тур                                                                                                                                                                                                                                                                                                                                                         | Мах                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Unit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
|-------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Digital high level input<br>voltage<br>SCL, SDA | _                                                                                                                                                                                                                                                      | 0.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | V <sub>DDIO</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| Digital low level input voltage SCL, SDA        |                                                                                                                                                                                                                                                        | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                             | 0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | V <sub>DDIO</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| High level output voltage INT1, INT2            | I <sub>O</sub> = 500 μA                                                                                                                                                                                                                                | 0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | V <sub>DDIO</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| Low level output voltage<br>INT1, INT2          | Ι <sub>Ο</sub> = 500 μΑ                                                                                                                                                                                                                                | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                             | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | V <sub>DDIO</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| Low level output voltage SDA                    | I <sub>O</sub> = 500 μA                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                             | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | V <sub>DDIO</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| Turn-on time [1][2][3]                          | High speed mode                                                                                                                                                                                                                                        | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | _                                                                                                                                                                                                                                                                                                                                                           | 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
|                                                 | High resolution mode                                                                                                                                                                                                                                   | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | —                                                                                                                                                                                                                                                                                                                                                           | 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| Operating temperature range                     |                                                                                                                                                                                                                                                        | -40                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 25                                                                                                                                                                                                                                                                                                                                                          | +85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | °C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| 9                                               | l                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                                                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| —                                               | —                                                                                                                                                                                                                                                      | 0x60 Hex                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
|                                                 | Digital high level input<br>voltage<br>SCL, SDADigital low level input voltage<br>SCL, SDAHigh level output voltage<br>INT1, INT2Low level output voltage<br>INT1, INT2Low level output voltage<br>SDATurn-on time[1][2][3]Operating temperature range | Digital high level input<br>voltage<br>SCL, SDADigital low level input voltage<br>SCL, SDAHigh level output voltage<br>INT1, INT2Io = 500 $\mu$ ALow level output voltage<br>INT1, INT2Io = 500 $\mu$ ALow level output voltage<br>SDAIo = 500 $\mu$ ALow level output voltage<br>INT1, INT2Io = 500 $\mu$ ALow level output voltage<br>INT1, INT2Io = 500 $\mu$ ALow level output voltage<br>SDAIo = 500 $\mu$ AOperating temperature rangeOperating temperature range | Digital high level input<br>voltage<br>SCL, SDA—0.75Digital low level input voltage<br>SCL, SDA——High level output voltage<br>INT1, INT2Io = 500 $\mu$ A0.9Low level output voltage<br>INT1, INT2Io = 500 $\mu$ A—Low level output voltage<br>SDAIo = 500 $\mu$ A—Turn-on time[1][2][3]Io = 500 $\mu$ A—Migh resolution mode——Operating temperature range—— | Digital high level input<br>voltage<br>SCL, SDA—0.75—Digital low level input voltage<br>SCL, SDA———Digital low level input voltage<br>SCL, SDA———High level output voltage<br>INT1, INT2Io = 500 µA0.9—Low level output voltage<br>INT1, INT2Io = 500 µA——Low level output voltage<br>SDAIo = 500 µA——Intervention<br>InterventionIo = 500 µA——Low level output voltage<br>SDAIo = 500 µA——Intervention<br>InterventionIo = 500 µA——Operating temperature rangeHigh speed mode——Operating temperature range—-4025 | Digital high level input<br>voltage<br>SCL, SDA————Digital low level input voltage<br>SCL, SDA——————Digital low level input voltage<br>INT1, INT2Io = 500 $\mu$ A0.9————Low level output voltage<br>INT1, INT2Io = 500 $\mu$ A0.9———0.1Low level output voltage<br>SDAIo = 500 $\mu$ A——0.11Low level output voltage<br>SDAIo = 500 $\mu$ A——0.1Low level output voltage<br>SDAIo = 500 $\mu$ A——0.1Turn-on time[1][2][3]High speed mode——60High resolution mode———1000Operating temperature range—-4025+85 |  |

[1] [2] [3] Time to obtain valid data from STANDBY mode to ACTIVE mode

High speed mode is achieved by setting the oversample rate of 1x. High resolution mode is achieved by setting the oversample to 128x.

#### **Digital interface** 9

The registers embedded inside the device are accessed through an  $I^2C$  serial interface.

| Table 7. Serial interface pin descriptions |                               |
|--------------------------------------------|-------------------------------|
| Name                                       | Description                   |
| SCL                                        | I <sup>2</sup> C serial clock |
| SDA                                        | I <sup>2</sup> C serial data  |

# 9.1 I<sup>2</sup>C characteristics

#### Table 8. I<sup>2</sup>C Slave timing values

All values referred to VIH(min) and VIL(max) levels.

| Symbol              | Parameter                                                                | l <sup>2</sup> C                     | Unit                   |     |     |
|---------------------|--------------------------------------------------------------------------|--------------------------------------|------------------------|-----|-----|
|                     |                                                                          | Condition                            | Min                    | Max |     |
| f <sub>SCL</sub>    | SCL clock frequency                                                      | Pull-up = 1 k $\Omega$ , Cb = 400 pF | 0                      | 400 | kHz |
| f <sub>SCL</sub>    | SCL clock frequency                                                      | Pull-up = 1 k $\Omega$ , Cb = 20 pF  | 0                      | 4   | MHz |
| t <sub>BUF</sub>    | Bus free time between STOP and START condition                           | -                                    | 1.3                    | _   | μs  |
| t <sub>HD;STA</sub> | Repeated START hold time                                                 | —                                    | 0.6                    |     | μs  |
| t <sub>SU;STA</sub> | Repeated START setup time                                                | —                                    | 0.6                    |     | μs  |
| t <sub>su;sто</sub> | STOP condition setup time                                                | —                                    | 0.6                    |     | μs  |
| t <sub>HD;DAT</sub> | SDA data hold time [1][2][3]                                             | —                                    | 50                     |     | ns  |
| t <sub>SU;DAT</sub> | SDA setup time [4]                                                       | _                                    | 100                    |     | ns  |
| t <sub>LOW</sub>    | SCL clock low time                                                       | _                                    | 1.3                    |     | μs  |
| t <sub>HIGH</sub>   | SCL clock high time                                                      | —                                    | 0.6                    |     | μs  |
| t <sub>r</sub>      | SDA and SCL rise time <sup>[5]</sup>                                     | _                                    | 20 + 0.1C <sub>b</sub> | 300 | ns  |
| t <sub>f</sub>      | SDA and SCL fall Time [2][5][6][7]                                       | _                                    | 20+ 0.1C <sub>b</sub>  | 300 | ns  |
| t <sub>SP</sub>     | Pulse width of spikes that are<br>suppressed by internal input<br>filter | _                                    | _                      | 50  | ns  |

[1]

t<sub>HD:DAT</sub> is the data hold time that is measured from the falling edge of SCL, applies to data in transmission and the acknowledge. The device must internally provide a hold time of at least 300 ns for the SDA signal (with respect to the VIH(min) of the SCL signal) to bridge the undefined region of the falling edge of SCL [2]

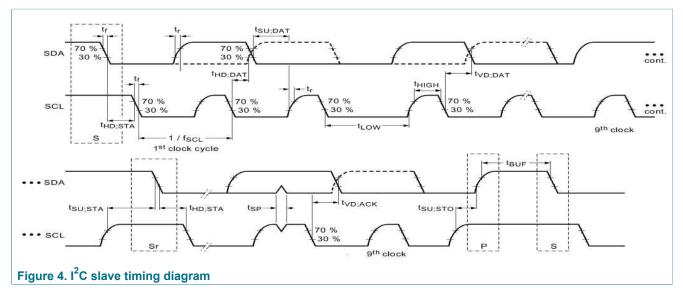
The maximum t<sub>HD;DAT</sub> must be less than the maximum of t<sub>VD;DAT</sub> or t<sub>VD;ACK</sub> by a transition time. This device does not stretch the LOW period (t<sub>LOW</sub>) of the [3] SCL signal.

A fast mode  $I^2C$  device can be used in a standard mode  $I^2C$  system, but the requirement  $t_{SU;DAT}$  250 ns must then be met. This will automatically be the [4] case if the device does not stretch the LOW period of the SCL signal. If such a device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line  $t_r(max) + t_{SU;DAT} = 1000 + 250 = 1250$  ns (according to the standard mode I<sup>2</sup>C specification) before the SCL line is released. Also the acknowledge timing must meet this set-up time.

Cb = Total capacitance of one bus line in pF. [5]

The maximum t<sub>f</sub> for the SDA and SCL bus lines is specified at 300 ns. The maximum fall time for the SDA output stage t<sub>f</sub> is specified at 250 ns. This [6] allows series protection resistors to be connected in between the SDA and the SCL pins and the SDA/SCL bus lines without exceeding the maximum specified t<sub>6</sub>

In fast mode plus, fall time is specified the same for both output stage and bus timing. If series resistors are used, designers should allow for this when [7] considering bus timing.


## 9.2 I<sup>2</sup>C operation

The transaction on the bus is started through a start condition (START) signal. START condition is defined as a HIGH to LOW transition on the data line while the SCL line is held HIGH. After START has been transmitted by the master, the bus is considered busy. The next byte of data transmitted after START contains the slave address in the first 7 bits, and the eighth bit tells whether the master is receiving data from the slave or transmitting data to the slave. When an address is sent, each device in the system compares the first seven bits after a start condition with its address. If they match, the device considers itself addressed by the master. The ninth clock pulse, following the slave address byte (and each subsequent byte) is the acknowledge (ACK).The transmitter must release the SDA line during the ACK period. The receiver must then pull the data line low so that it remains stable low during the high period of the acknowledge clock period.

The number of bytes per transfer is unlimited. If the master cannot receive another complete byte of data until it has performed some other function, it can hold the clock line, SCL low to force the transmitter into a wait state. Data transfer only continues when the master is ready for another byte and releases the clock line.

A low to high transition on the SDA line while the SCL line is high is defined as a stop condition (STOP). A data transfer is always terminated by a STOP. A master may also issue a repeated START during a data transfer. Device expects repeated STARTs to be used to randomly read from specific registers.

The standard 7-bit  $\rm I^2C$  slave address is 60h or 1100000. 8-bit read is C1h, 8-bit write is C0h.



#### I2C precision pressure sensor with altimetry

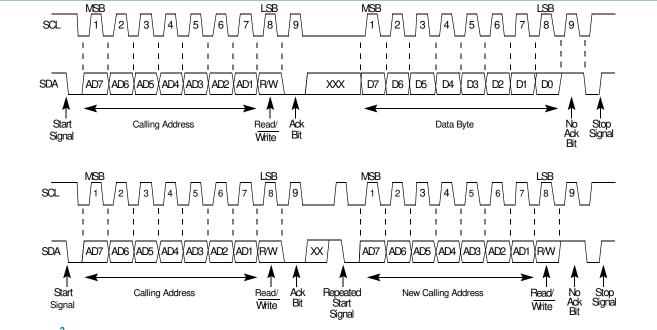
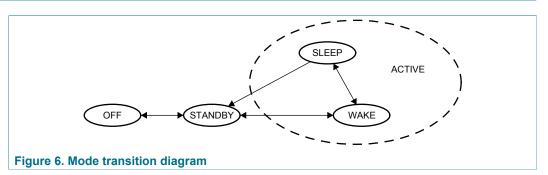




Figure 5. I<sup>2</sup>C bus transmission signals

Consult factory for alternate addresses. See the application note titled Sensor I<sup>2</sup>C Setup and FAQ (document AN4481).

## **10 Modes of operation**



#### Table 9. Mode of operation description

| Mode    | I <sup>2</sup> C-bus state                                           | V <sub>DD</sub> | Condition                        | Function description                                                      |
|---------|----------------------------------------------------------------------|-----------------|----------------------------------|---------------------------------------------------------------------------|
| OFF     | Powered down                                                         | < 1.62 V        | < V <sub>DD</sub> + 0.3 V        | Device is powered off.                                                    |
| STANDBY | I <sup>2</sup> C/SPI<br>communication with<br>the device is possible | ON              | SBYB bit of CTRL_REG1 is cleared | Only POR and digital blocks are enabled.<br>Analog subsystem is disabled. |
| ACTIVE  | I <sup>2</sup> C/SPI<br>communication with<br>the device is possible | ON              | SBYB bit of CTRL_REG1 is set     | All blocks are enabled (POR, digital, analog).                            |

MPL3115A2 Data sheet: Technical data

#### 10.1 OFF

Unit is powered down and has no operating functionality.  $V_{\text{DD}}$  and  $V_{\text{DDIO}}$  are not powered.

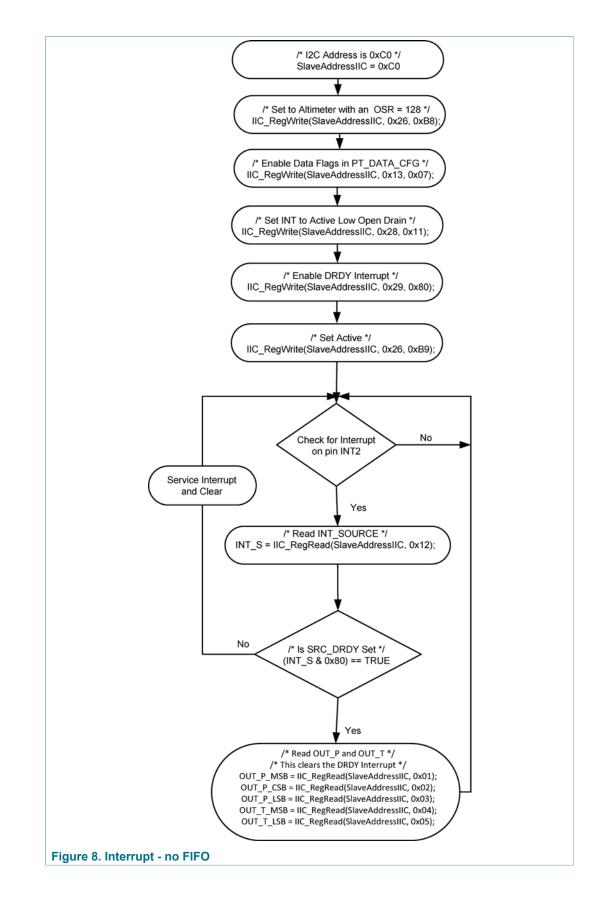
#### **10.2 STANDBY**

The digital sections are operational and the unit is capable of receiving commands and delivering stored data. The analog sections are off. The part is waiting for CTRL\_REG1 to be configured and the part to enter active mode.

### **10.3 ACTIVE**

Both analog and digital sections are running. The unit is capable of gathering new data, and accepting commands. The device is fully functional.

## 11 Quick start setup


To set up the device in altimeter mode, you may select your data retrieval method between polling (no FIFO), interrupt (no FIFO) or with the FIFO. The flow charts in Figure  $\underline{7}$  and Figure 8 describe the setup for polling or interrupt with an OSR of 128.

For more information, see application note titled Data Manipulation and Basic Settings of the MPL3115A2 Command Line Interface (document AN4519).

#### I2C precision pressure sensor with altimetry



## I2C precision pressure sensor with altimetry



## **12 Functionality**

The device is a low-power, high accuracy, digital output altimeter, barometer and thermometer, packaged in a  $3 \times 5 \times 1.1$  mm form factor. The complete device includes a sensing element, analog and digital signal processing and an  $l^2C$  interface.

The device has two operational modes, barometer and altimeter. Both modes include a thermometer temperature output function.

Power consumption and sensitivity are programmable where the data oversampling ratio can be set to balance current consumption and noise/resolution. Serial interface communication is through an I<sup>2</sup>C interface thus making the device particularly suitable for direct interfacing with a microcontroller. The device features two independently programmable interrupt signals INT1 and INT2. These can be set to generate an interrupt signal when a new set of pressure/altitude and temperature data is available, thereby simplifying data acquisition for the host controller. These interrupt pins can also be configured to generate interrupts when a user programmed set of conditions are met (see Section 12.6 "External interrupts").

Examples are:

- · interrupt can be triggered when a single new data acquisition is ready
- · when a desired number of samples are stored within the internal FIFO
- · when a change of pressure/altitude or temperature is detected.

In RAW mode, the FIFO must be disabled and all other functionality including alarms, deltas and other interrupts are disabled.

### **12.1 Factory calibration**

The device is factory calibrated for sensitivity, offset for both temperature and pressure measurements. Trim values are stored on-chip, in non-volatile memory (NVM). In normal use, further calibration is not necessary. However, in order to realize the highest possible accuracy, the device allows the user to override the factory set offset values after power-up. The user adjustments are stored in volatile registers. The factory calibration values are not affected, and are always used by default on power-up.

#### 12.2 Barometer/altimeter function

The mode of operation of the device can be selected as barometer or altimeter. The internal sensor gives an absolute pressure signal. The absolute pressure signal is processed to provide a scaled pressure or an altitude, depending on the mode selected. The combination of a high performance sensor and the signal processing enable resolution of pressures below 1 Pa and altitude resolution of better than 1 m at sea level.

When in barometer mode, all pressure related data is reported as 20-bit unsigned data in Pascals. When in altimeter mode, all pressure data is converted to equivalent altitude, based on the US standard atmosphere and then stored as 20-bit 2's complement value in meters and fractions of a meter.

#### 12.2.1 Barometric input

In order to accurately determine the altitude by pressure, the OFF\_H register (see <u>Section 13.23.3 "OFF\_H - altitude data user offset register (address 2Dh)"</u>) is provided to

input the local barometric pressure correction. The default value is 101,326 Pa since the BAR\_IN\_MSB and BAR\_IN\_LSB registers are in units of 2 Pascals per LSB.

### 12.3 Temperature function

The unit contains a high-resolution temperature sensor that provides data to the user via a 16-bit data register, as well as for internal compensation of the pressure sensor.

## 12.4 Autonomous data acquisition

The unit can be programmed to periodically capture altitude/pressure and temperature data. Up to 32 data acquisitions can be stored in the internal FIFO. The interval between acquisitions is programmable from one second to nine hours.

Data collection capabilities: (up to 32 samples over 12 days). The unit can also be programmed to make a single reading and then go to standby mode.

### 12.5 FIFO

A 32-sample FIFO is incorporated to minimize the overhead of collecting multiple data samples. The FIFO stores both temperature and pressure/altitude data. The device can be programmed to autonomously collect data at programmed intervals and store the data in the FIFO. FIFO interrupts can be triggered by watermark full or data contention (FIFO GATE) events.

### 12.6 External interrupts

Two independent interrupt out pins are provided. The configuration of the pins are programmable (polarity, open drain or push/pull.) Any one of the internal interrupt sources can be routed to either pin.

#### 12.6.1 Reach target threshold pressure/altitude (SRC\_PTH)

The interrupt flag is set on reaching the value stored in the pressure/altitude target register. Additionally, a window value provides the ability to signal when the target is nearing the value in the pressure/altitude target register from either above or below. When in barometer mode, these values represent pressures rather than altitudes.

#### Examples:

- Set altitude alert to 3000 m and window value to 100 m, interrupt is asserted passing 2900 m, 3000 m, and 3100 m.
- Set pressure alert to 100.0 kPa and window value to 5 kPa, interrupt can be sent passing 95 kPa, 100 kPa, and 105 kPa.

**Note:** When the window value is set to 0 then the interrupt will only be generated when reaching or crossing the target value.

#### 12.6.2 Reach window target pressure/altitude (SRC\_PW)

The interrupt flag is set when the pressure/altitude value is within the window defined by the following formula:

I2C precision pressure sensor with altimetry

 $Window = P_T GT_{MSB,LSB} + P_W IND_{MSB,LSB}$ 

**Note:** No interrupt is generated if the P\_WND value is set to 0.

### 12.6.3 Reach target threshold temperature (SRC\_TTH)

Interrupt flag is set on reaching the value stored in the temperature target register. Additionally a window value provides ability to signal when the target is nearing from either above or below the value in the temperature target register.

**Note:** When the window value is set to 0 then the interrupt will only be generated when reaching or crossing the target value.

#### 12.6.4 Reach window target temperature (SRC\_TW)

The interrupt flag is set when the temperature value is within the window defined by the following formula:

 $Window = T_TGT \pm T_WIND$ 

*Note:* No interrupt is generated if the T\_WND value is set to 0.

#### 12.6.5 Pressure/altitude change (SRC\_PCHG)

Interrupt flag is set if sequential pressure/altitude acquisitions exceed value stored in pressure/altitude window value register.

#### 12.6.6 Temperature change (SRC\_TCHG)

Interrupt flag is set if sequential temperature acquisitions exceed the value stored in pressure/altitude window value register.

#### 12.6.7 Data ready

Interrupt flag is set when new data or a data overwrite event has occurred. PTOW and/or PTDR (DR\_STATUS register) must be set for an interrupt to be generated.

#### 12.6.8 FIFO event

Interrupt flag is set when either an overflow or watermark event has occurred. For more information see <u>Section 13.8 "FIFO setup registers"</u>.

#### 12.6.9 Pressure/altitude and temperature delta

Registers show the differences from the last pressure/altitude and temperature samples.

#### 12.6.10 Min/max data value storage

Registers record the minimum and maximum pressure/altitude and temperature.

I2C precision pressure sensor with altimetry

# **13 Register descriptions**

| Register<br>Address | Name            | Access | Reset<br>value | Description                                      | Reset when<br>STBY to<br>Active | Comment                                                     |             | crement<br>ress | Reference      |  |               |
|---------------------|-----------------|--------|----------------|--------------------------------------------------|---------------------------------|-------------------------------------------------------------|-------------|-----------------|----------------|--|---------------|
| 00h                 | STATUS          | R      | 00h            | Sensor status register <sup>[1],[2]</sup>        | Yes                             | Alias for DR_STATUS or<br>F_STATUS                          | 01          | 1h              | Section 13.1   |  |               |
| 01h                 | OUT_P_MSB       | R      | 00h            | Pressure data out MSB <sup>[1][2]</sup>          | Yes                             | Bits 12 to 19 of 20-bit real-<br>time pressure sample.      | 02h         | 01h             | Section 13.3   |  |               |
|                     |                 |        |                |                                                  |                                 | Root pointer to pressure<br>and temperature FIFO<br>data.   |             |                 |                |  |               |
| 02h                 | OUT_P_CSB       | R      | 00h            | Pressure data out CSB <sup>[1][2]</sup>          | Yes                             | Bits 4 to 11 of 20-bit real-<br>time pressure sample        | 03          | 3h              | Section 13.3   |  |               |
| 03h                 | OUT_P_LSB       | R      | 00h            | Pressure data out LSB <sup>[1][2]</sup>          | Yes                             | Bits 0 to 3 of 20-bit real-<br>time pressure sample         | 04          | 1h              | Section 13.3   |  |               |
| 04h                 | OUT_T_MSB       | R      | 00h            | Temperature data out MSB <sup>[1][2]</sup>       | Yes                             | Bits 4 to 11 of 12-bit real-<br>time temperature sample     | 05          | ōh              | Section 13.4   |  |               |
| 05h                 | OUT_T_LSB       | R      | 00h            | Temperature data out LSB <sup>[1][2]</sup>       | Yes                             | Bits 0 to 3 of 12-bit real-<br>time temperature sample      | 00          | Dh              | Section 13.4   |  |               |
| 06h/00h             | DR_STATUS       | R      | 00h            | Sensor status register <sup>[1][2]</sup>         | Yes                             | Data ready status<br>information                            | 07          | 7h              | Section 13.2   |  |               |
| 07h                 | OUT_P_DELTA_MSB | R      | 00h            | Pressure data out delta MSB <sup>[1][2]</sup>    | Yes                             | Bits 12 to 19 of 20-bit pressure change data                | 08          | 3h              | Section 13.5   |  |               |
| 08h                 | OUT_P_DELTA_CSB | R      | 00h            | Pressure data out delta CSB <sup>[1][2]</sup>    | Yes                             | Bits 4 to 11 of 20-bit<br>pressure change data              | 09          | 9h              | Section 13.5   |  |               |
| 09h                 | OUT_P_DELTA_LSB | R      | 00h            | Pressure data out delta LSB <sup>[1][2]</sup>    | Yes                             | Bits 0 to 3 of 20-bit pressure change data                  | 04          | ۸h              | Section 13.5   |  |               |
| 0Ah                 | OUT_T_DELTA_MSB | R      | 00h            | Temperature data out delta MSB <sup>[1][2]</sup> | Yes                             | Bits 4 to 11 of 12-bit temperature change data              | OE          | 3h              | Section 13.6   |  |               |
| 0Bh                 | OUT_T_DELTA_LSB | R      | 00h            | Temperature data out delta LSB <sup>[1][2]</sup> | Yes                             | Bits 0 to 3 of 12-bit temperature change data               | 06h         |                 | Section 13.6   |  |               |
| 0Ch                 | WHO_AM_I        | R      | C4h            | Device identification register                   | No                              | Fixed device ID number                                      | 0Dh         |                 | Section 13.7   |  |               |
| 0Dh                 | F_STATUS        | R      | 00h            | FIFO status register <sup>[1][2]</sup>           | Yes                             | FIFO status: no FIFO<br>event detected                      | OE          | Eh              | Section 13.8.1 |  |               |
| 0Eh/01h             | F_DATA          | R      | 00h            | FIFO 8-bit data access <sup>[1][2]</sup>         | Yes                             | FIFO 8-bit data access                                      | OE          | Eh              | Section 13.8.2 |  |               |
| 0Fh                 | F_SETUP         | R/W    | 00h            | FIFO setup register [1][3]                       | No                              | FIFO setup                                                  | 10          | Dh              | Section 13.8.3 |  |               |
| 10h                 | TIME_DLY        | R      | 00h            | Time delay register [1][2]                       | Yes                             | Time since FIFO overflow                                    | 11          | 1h              | Section 13.9   |  |               |
| 11h                 | SYSMOD          | R      | 00h            | System mode register [2]                         | Yes                             | Current system mode                                         | 12          | 2h              | Section 13.10  |  |               |
| 12h                 | INT_SOURCE      | R      | 00h            | Interrupt source register [1]                    | No                              | Interrupt status                                            | 13          | 3h              | Section 13.11  |  |               |
| 13h                 | PT_DATA_CFG     | R/W    | 00h            | PT data configuration register <sup>[1][3]</sup> | No                              | Data event flag<br>configuration                            | 14          | 4h              | Section 13.12  |  |               |
| 14h                 | BAR_IN_MSB      | R/W    | C5h            | BAR input in MSB <sup>[1][3]</sup>               | No                              | Barometric input for<br>altitude calculation bits 8<br>to15 | 15          | ōh              | Section 13.13  |  |               |
| 15h                 | BAR_IN_LSB      | R/W    | E7h            | BAR input in LSB <sup>[1][3]</sup>               | No                              | Barometric input for<br>altitude calculation bits 0<br>to 7 | 16          | 6h              | Section 13.13  |  |               |
| 16h                 | P_TGT_MSB       | R/W    | 00h            | Pressure target MSB <sup>[1][3]</sup>            | No                              | Pressure/altitude target value bits 8 to 15                 | 17          | 7h              | Section 13.14  |  |               |
| 17h                 | P_TGT_LSB       | R/W    | 00h            | Pressure target LSB <sup>[1][3]</sup>            | No                              | Pressure/altitude target value bits 0 to 7                  | 18          | 3h              | Section 13.14  |  |               |
| 18h                 | T_TGT           | R/W    | 00h            | Temperature target register [1][3]               | No                              | Temperature target value                                    | 19          | 9h              | Section 13.15  |  |               |
| 19h                 | P_WND_MSB       | R/W    | 00h            | Pressure/altitude window MSB <sup>[1][3]</sup>   | No                              | Pressure/altitude window value bits 8 to 15                 | 1Ah         |                 | 1Ah            |  | Section 13.16 |
| 1Ah                 | P_WND_LSB       | R/W    | 00h            | Pressure/altitude window LSB <sup>[1][3]</sup>   | No                              | Pressure/altitude window value bits 0 to 7                  |             |                 | Section 13.16  |  |               |
| 1Bh                 | T_WND           | R/W    | 00h            | Temperature window register <sup>[1][3]</sup>    | No                              | Temperature window value                                    | 1Ch Section |                 | Section 13.17  |  |               |
| 1Ch                 | P_MIN_MSB       | R/W    | 00h            | Minimum pressure data out MSB <sup>[1][3]</sup>  | No                              | Minimum pressure/altitude bits 12 to 19                     | 1[          | Dh              | Section 13.18  |  |               |
| 1Dh                 | P_MIN_CSB       | R/W    | 00h            | Minimum pressure data out CSB <sup>[1][3]</sup>  | No                              | Minimum pressure/altitude<br>bits 4 to 11                   | 16          | Ēh              | Section 13.18  |  |               |
|                     |                 |        |                |                                                  |                                 | 1                                                           |             |                 | 1              |  |               |

# Table 10 Pegister address man

MPL3115A2

#### I2C precision pressure sensor with altimetry

| Register<br>Address | Name      | Access | Reset<br>value | Description                                     | Reset when<br>STBY to<br>Active | Comment                                     | Auto-increment<br>address | Reference       |
|---------------------|-----------|--------|----------------|-------------------------------------------------|---------------------------------|---------------------------------------------|---------------------------|-----------------|
| 1Eh                 | P_MIN_LSB | R/W    | 00h            | Minimum pressure data out LSB <sup>[1][3]</sup> | No                              | Minimum pressure/altitude bits 0 to 3       | 1Fh                       | Section 13.18   |
| 1Fh                 | T_MIN_MSB | R/W    | 00h            | Minimum temperature data out MSB [1][3]         | No                              | Minimum temperature bits 8 to15             | 20h                       | Section 13.20   |
| 20h                 | T_MIN_LSB | R/W    | 00h            | Minimum temperature data out LSB [1][3]         | No                              | Minimum temperature bits 0 to 7             | 21h                       | Section 13.20   |
| 21h                 | P_MAX_MSB | R/W    | 00h            | Maximum pressure data out MSB <sup>[1][3]</sup> | No                              | Maximum pressure/<br>altitude bits 12 to 19 | 22h                       | Section 13.19   |
| 22h                 | P_MAX_CSB | R/W    | 00h            | Maximum pressure data out CSB <sup>[1][3]</sup> | No                              | Maximum pressure/<br>altitude bits 4 to 11  | 23h                       | Section 13.19   |
| 23h                 | P_MAX_LSB | R/W    | 00h            | Maximum pressure data out LSB <sup>[1][3]</sup> | No                              | Maximum pressure/<br>altitude bits 0 to 3   | 24h                       | Section 13.19   |
| 24h                 | T_MAX_MSB | R/W    | 00h            | Maximum temperature data out MSB [1][3]         | No                              | Maximum temperature bits 8 to 15            | 25h                       | Section 13.21   |
| 25h                 | T_MAX_LSB | R/W    | 00h            | Maximum temperature data out LSB [1][3]         | No                              | Maximum temperature bits 0 to 7             | 26h                       | Section 13.21   |
| 26h                 | CTRL_REG1 | R/W    | 00h            | Control register 1 [1][4]                       | No                              | Modes, oversampling                         | 27h                       | Section 13.22.1 |
| 27h                 | CTRL_REG2 | R/W    | 00h            | Control register 2 <sup>[1]</sup>               | No                              | Acquisition time step                       | 28h                       | Section 13.22.2 |
| 28h                 | CTRL_REG3 | R/W    | 00h            | Control register 3 [1][4]                       | No                              | Interrupt pin configuration                 | 29h                       | Section 13.22.3 |
| 29h                 | CTRL_REG4 | R/W    | 00h            | Control register 4 [1][4]                       | No                              | Interrupt enables                           | 2Ah                       | Section 13.22.4 |
| 2Ah                 | CTRL_REG5 | R/W    | 00h            | Control register 5 <sup>[1][4]</sup>            | No                              | Interrupt output pin assignment             | 2Bh                       | Section 13.22.5 |
| 2Bh                 | OFF_P     | R/W    | 00h            | Pressure data user offset register              | No                              | Pressure data offset                        | 2Ch                       | Section 13.23   |
| 2Ch                 | OFF_T     | R/W    | 00h            | Temperature data user offset register           | No                              | Temperature data offset                     | 2Dh                       | Section 13.23.2 |
| 2Dh                 | OFF_H     | R/W    | 00h            | Altitude data user offset register              | No                              | Altitude data offset                        | 0Ch                       | Section 13.23.3 |

[1]

Register contents are preserved when transitioning from ACTIVE to STANDBY mode Register contents are reset when transitioning from STANDBY to ACTIVE mode. Register contents can be modified anytime in STANDBY or ACTIVE mode. Modification of this register's contents can only occur when device in STANDBY mode except the SBYB, OST and RST bit fields in CTRL\_REG1 register. [2] [3] [4]

#### Table 11. Register address map: Area A (F\_Mode = 0, FIFO disabled)

| Register<br>Address | Name                     | Access | Reset<br>value | Description              | Description Reset when<br>STBY to<br>Active |                                                                                                                | Auto-ind<br>addi |     | Reference    |
|---------------------|--------------------------|--------|----------------|--------------------------|---------------------------------------------|----------------------------------------------------------------------------------------------------------------|------------------|-----|--------------|
| 00h/06h             | DR_STATUS <sup>[1]</sup> | R      | 00h            | Sensor status register   | Yes                                         | DR_STATUS                                                                                                      | 01               | lh  | Section 13.2 |
| 01h                 | OUT_P_MSB <sup>[1]</sup> | R      | 00h            | Pressure data out MSB    | Yes                                         | Bits12 to 19 of 20-bit real-time<br>pressure sample.<br>Root pointer to pressure and<br>temperature FIFO data. | 02h              | 01h | Section 13.3 |
| 02h                 | OUT_P_CSB <sup>[1]</sup> | R      | 00h            | Pressure data out CSB    | Yes                                         | Bits 4 to 11 of 20-bit real-time pressure sample                                                               | 03               | ßh  | Section 13.3 |
| 03h                 | OUT_P_LSB <sup>[1]</sup> | R      | 00h            | Pressure data out LSB    | Yes                                         | Bits 0 to 3 of 20-bit real-time<br>pressure sample                                                             | 04               | lh  | Section 13.3 |
| 04h                 | OUT_T_MSB <sup>[1]</sup> | R      | 00h            | Temperature data out MSB | Yes                                         | Bits 4 to 11 of 12-bit real-time temperature sample                                                            | 05               | ōh  | Section 13.4 |
| 05h                 | OUT_T_LSB <sup>[1]</sup> | R      | 00h            | Temperature data out LSB | Yes                                         | Bits 0 to 3 of 12-bit real-time temperature sample                                                             | 00               | )h  | Section 13.4 |

[1] The Registers in Area A from 00h to 05h depend on the F\_MODE bit setting in FIFO Setup Register (F\_SETUP).

• F\_MODE = 00, FIFO is disabled.

• F\_MODE = 01 is circular buffer.

• F\_MODE = 10 is full stop mode.

#### I2C precision pressure sensor with altimetry

#### Table 12. Register address map: Area A (F\_Mode > 0, FIFO in circular buffer or full stop mode)

| Register<br>Address | Name                                            | Access | Reset<br>value | Description            | Reset when<br>STBY to<br>Active | Comment  | Auto-<br>increment<br>address | Reference      |
|---------------------|-------------------------------------------------|--------|----------------|------------------------|---------------------------------|----------|-------------------------------|----------------|
| 00h/0Dh             | F_STATUS <sup>[1]</sup>                         | R      | 00h            | Sensor status register | Yes                             | F_STATUS | 01h                           | Section 13.8.1 |
| 01h                 | F_DATA <sup>[1]</sup>                           | R      | 00h            | FIFO 8-bit data access | Yes                             | -        | 01h                           | Section 13.8.2 |
| 02h                 | Read to reserved area returns 00 <sup>[1]</sup> | -      | 00h            | -                      | n.a.                            | —        | 03h                           | _              |
| 03h                 | Read to reserved area returns 00 <sup>[1]</sup> | -      | 00h            | -                      | n.a.                            | _        | 04h                           | _              |
| 04h                 | Read to reserved area returns 00 <sup>[1]</sup> | -      | 00h            | -                      | n.a.                            | _        | 05h                           | _              |
| 05h                 | Read to reserved area returns 00 <sup>[1]</sup> | -      | 00h            | -                      | n.a.                            | —        | 00h                           | —              |

[1] The registers in area A from 00h to 05h depend on the F\_MODE bit setting in FIFO setup register (F\_SETUP).

• F\_MODE = 00, FIFO is disabled.

• F\_MODE = 01 is circular buffer.

• F\_MODE = 10 is full stop mode.

## 13.1 STATUS - sensor status register (address 00h)

The aliases allow the STATUS register to be read easily before reading the current pressure/altitude or temperature data, the delta pressure/altitude or temperature data, or the FIFO data, using the register address auto-incrementing mechanism.

#### Table 13. Alias for DR\_Status (06h) or F\_Status (0Dh) registers

| FIFO data enabled mode bit setting | Status register alias |
|------------------------------------|-----------------------|
| F_MODE = 00 <sup>[1]</sup>         | 00h = DR_STATUS (06h) |
| F_MODE >00                         | 00h = F_STATUS (0Dh)  |

[1] The F\_MODE is defined in <u>Section 13.8.3 " F\_SETUP- FIFO setup register (address 0Fh)"</u>

### 13.2 DR\_STATUS - status register (address 06h)

The DR\_STATUS register provides the acquisition status information on a per sample basis, and reflects real-time updates to the OUT\_P and OUT\_T registers. The same STATUS register can be read through an alternate address 00h (F\_Mode = 00).

#### Table 14. DR\_STATUS - status register (address 06h) bit allocation

| Bit    | 7    | 6   | 5   | 4        | 3    | 2   | 1   | 0        |
|--------|------|-----|-----|----------|------|-----|-----|----------|
| Symbol | PTOW | POW | TOW | reserved | PTDR | PDR | TDR | reserved |
| Reset  | 0    | 0   | 0   | 0        | 0    | 0   | 0   | 0        |
| Access | R    | R   | R   | R        | R    | R   | R   | R        |

MPL3115A2 Data sheet: Technical data able 45 DD STATUS, status vesister (address 00b) bit description

## **MPL3115A2**

#### I2C precision pressure sensor with altimetry

|     |                     | tatus register (address 06h) bit description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-----|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Bit | Symbol              | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 7   | PTOW <sup>[1]</sup> | <ul> <li>Pressure/altitude or temperature data overwrite. PTOW is set to 1 whenever new data is acquired before completing the retrieval of the previous set. This event occurs when the content of at least one data register (OUT_P, OUT_T) has been overwritten. PTOW is cleared when the high-bytes of the data (OUT_P_MSB or OUT_T_MSB) are read, when F_MODE is zero. PTOW is cleared by reading F_DATA register when F_MODE &gt; 0.</li> <li>0 — No data overwrite has occurred (reset value)</li> <li>1 — Previous pressure/altitude or temperature data was overwritten by new pressure/altitude or temperature data before it was read</li> </ul> |
| 6   | POW <sup>[2]</sup>  | Pressure/altitude data overwrite. POW is set to 1 whenever a new pressure/altitude acquisition is completed before the retrieval of the previous data. When this occurs the previous data is overwritten. POW is cleared anytime OUT_P_MSB register is read, when F_MODE is zero. POW is cleared by reading F_DATA register when F_MODE > 0.<br><b>0</b> — No data overwrite has occurred (reset value)<br><b>1</b> — Previous pressure/altitude data was overwritten by new pressure/altitude data before it was read                                                                                                                                      |
| 5   | TOW <sup>[3]</sup>  | <ul> <li>Temperature data overwrite. TOW is set to 1 whenever a new temperature acquisition is completed before the retrieval of the previous data. When this occurs the previous data is overwritten. TOW is cleared anytime OUT_T_MSB register is read, when F_MODE is zero. TOW is cleared by reading F_DATA register when F_MODE &gt; 0.</li> <li>0 — No data overwrite has occurred (reset value)</li> <li>1 — Previous temperature data was overwritten by new temperature data before it was read</li> </ul>                                                                                                                                         |
| 4   | reserved            | This bit is reserved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 3   | PTDR <sup>[1]</sup> | <ul> <li>Pressure/altitude or temperature data ready. PTDR signals that a new acquisition for either pressure/altitude or temperature is available. PTDR is cleared anytime OUT_P_MSB or OUT_T_MSB register is read, when F_MODE is zero. PTDR is cleared by reading F_DATA register when F_MODE &gt; 0.</li> <li>0 — No new set of data ready (reset value)</li> <li>1 — A new set of data is ready</li> </ul>                                                                                                                                                                                                                                             |
| 2   | PDR <sup>[2]</sup>  | Pressure/altitude new data available. PDR is set to 1 whenever a new pressure/altitude data acquisition is completed. PDR is cleared anytime OUT_P_MSB register is read, when F_MODE is zero. PDR is cleared by reading F_DATA register when F_MODE > 0.<br><b>0</b> — No new pressure/altitude data is available (reset value)<br><b>1</b> — A new set of Pressure/Altitude data is ready                                                                                                                                                                                                                                                                  |
| 1   | TDR <sup>[3]</sup>  | Temperature new data available. TDR is set to 1 whenever a temperature data acquisition is completed. TDR is cleared anytime OUT_T_MSB register is read, when F_MODE is zero. TDR is cleared by reading F_DATA register when F_MODE > 0.<br><b>0</b> — No new temperature data ready (reset value)<br><b>1</b> — A new temperature data is ready                                                                                                                                                                                                                                                                                                            |
|     | reserved            | This bit is reserved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

# PTDR and PTOW flag generation requires the DREM event flag generator to be enabled in the PT data configuration register (PT\_DATA\_CFG). PDR and POW flag generation is required for the pressure/altitude event flag generator to be enabled (PDEFE = 1) in the PT data configuration register

[2] PDR and POW flag generation is required for the pressure/altitude event flag generator to be enabled (PDEFE = 1) in the PT data configuration register (PT\_DATA\_CFG).

[3] TDR and TOW flag generation is required for the temperature event flag generator to be enabled (TDEFE = 1) in the PT data configuration register (PT\_DATA\_CFG).

## 13.2.1 Data registers with F\_MODE = 00 (FIFO disabled)

When the FIFO data output register,  $F_DATA$  (0Eh), is disabled ( $F_MODE$ [7:6] = 00 in the  $F_SETUP$  register, 0Fh), the pressure and altitude data registers indicate the real-

time status information of the sample data. This data can be either altimeter or barometer data based on the mode defined by the ALT bit in the CTRL\_REG1 register. See <u>Section</u> <u>13.8 "FIFO setup registers"</u> for additional information.

# 13.3 OUT\_P\_MSB, OUT\_P\_CSB, OUT\_P\_LSB - pressure and altitude data registers (address 01h, 02h, 03h)

Pressure and altitude data registers 01h, 02h and 03h comprise the pressure and altitude data depending on the setting of the ALT bit in the CTRL\_REG1 register, in either altimeter or barometer mode. For example if the ALT bit is set (ALT = 1) then after acquisition the data stored in registers 01h, 02h and 03h is the altitude in meters. Otherwise the data stored in registers 01h, 02h and 03h (ALT = 0) is pressure data in Pascals.

The altitude data is stored as a 20-bit signed integer with a fractional part. The OUT\_P\_MSB (01h) and OUT\_P\_CSB (02h) registers contain the integer part in meters and the OUT\_P\_LSB (03h) register contains the fractional part. This value is represented as a Q16.4 fixed-point format where there are 16 integer bits (including the signed bit) and four fractional bits.

The pressure data is stored as a 20-bit unsigned integer with a fractional part. The OUT\_P\_MSB (01h), OUT\_P\_CSB (02h) and bits 7 to 6 of the OUT\_P\_LSB (03h) registers contain the integer part in Pascals. Bits 5 to 4 of OUT\_P\_LSB contain the fractional component. This value is representative as a Q18.2 fixed point format where there are 18 integer bits (including the signed bit) and two fractional bits.

**Note:** When a RAW bit is set in the CTRL\_REG1 register then the RAW value is stored in all 24 bits of OUT\_P\_MSB, OUT\_P\_CSB and OUT\_P\_LSB registers whether in altimeter or barometer mode.

| allocation |                        |   |                 |      |      |       |      |      |  |  |  |  |
|------------|------------------------|---|-----------------|------|------|-------|------|------|--|--|--|--|
| Lo         | cation                 |   | Bit             |      |      |       |      |      |  |  |  |  |
| Address    | Register               | 7 | 7 6 5 4 3 2 1   |      |      |       |      |      |  |  |  |  |
| 01h        | OUT_P_MSB              |   |                 |      | PD[1 | 9:12] |      | ·    |  |  |  |  |
| 02h        | OUT_P_CSB              |   |                 |      | PD[′ | 11:4] |      |      |  |  |  |  |
| 03h        | OUT_P_LSB              |   | PD[             | 3:0] |      |       | rese | rved |  |  |  |  |
| Reset      |                        | 0 | 0 0 0 0 0 0 0 0 |      |      |       |      |      |  |  |  |  |
| Access     | Access R R R R R R R R |   |                 |      |      |       |      | R    |  |  |  |  |

# Table 16. OUT\_P\_MSB, OUT\_P\_CSB, OUT\_P\_LSB - pressure and altitude data registers (address 01h, 02h, 03h) bit allocation

### 13.3.1 Data registers with F\_MODE = 00

The DR\_STATUS, OUT\_P\_MSB, OUT\_P\_CSB, OUT\_P\_LSB, OUT\_T\_MSB, and OUT\_T\_LSB registers are stored in the auto-incrementing address range of 00h to 05h. This allows the host controller to read the status register followed by the 20-bit pressure/ altitude and 12-bit temperature in a 6-byte I<sup>2</sup>C transaction.

See <u>Section 13.8 "FIFO setup registers"</u> for additional information.

# 13.4 OUT\_T\_MSB, OUT\_T\_LSB - temperature data registers (address 04h, 05h)

The temperature data is stored as a signed 12-bit integer with a fractional part. The OUT\_T\_MSB (04h) register contains the integer part in °C and the OUT\_T\_LSB (05h) register contains the fractional part. This value is representative as a Q8.4 fixed point format where there are eight integer bits (including the signed bit) and four fractional bits.

**Note:** When the RAW bit is set in CTRL\_REG1 is selected then the RAW temperature value is stored in all 16 bits of the OUT\_T\_MSB and OUT\_T\_LSB.

| Table 17. 0            | UI_I_MSB, O | UI_I_LSB | - temperatu   | re data regi | sters (addre | ess 04n, 05i | n) bit alloca | tion |  |  |  |  |
|------------------------|-------------|----------|---------------|--------------|--------------|--------------|---------------|------|--|--|--|--|
| Lo                     | cation      | Bit      |               |              |              |              |               |      |  |  |  |  |
| Address                | Register    | 7        | 7 6 5 4 3 2 1 |              |              |              |               |      |  |  |  |  |
| 04h                    | OUT_T_MSB   |          |               |              | TD[′         | 11:4]        |               |      |  |  |  |  |
| 05h                    | OUT_T_LSB   |          | TD[           | 3:0]         |              |              | rese          | rved |  |  |  |  |
| Reset                  |             | 0        | 0 0 0 0 0 0 0 |              |              |              |               |      |  |  |  |  |
| Access R R R R R R R R |             |          |               |              |              | R            |               |      |  |  |  |  |

#### Table 17. OUT\_T\_MSB, OUT\_T\_LSB - temperature data registers (address 04h, 05h) bit allocation

# 13.5 OUT\_P\_DELTA\_MSB, OUT\_P\_DELTA\_CSB, OUT\_P\_DELTA\_LSB - pressure and altitude delta register (address 07h, 08h, 09h)

The pressure and altitude delta registers 07h, 08h and 09h comprise the pressure and altitude delta data and provide the differences from either the last pressure or altitude samples based on the setting of the ALT bit in the CTRL\_REG1 register. Device can be in either altimeter or barometer mode.

The altitude data is arranged as a 20-bit signed integer with a fractional part. Stored as meters with the 16 bits of OUT\_P\_DELTA\_MSB and OUT\_P\_DELTA\_CSB and with fractions of a meter stored in four bits in position 7 to 4 of OUT\_P\_DELTA\_LSB.

The pressure is arranged as a 20-bit unsigned integer with a fractional part in Pascals. The first 18 bits are located in OUT\_P\_DELTA\_MSB, OUT\_P\_DELTA\_CSB and bits 7 to 6 of OUT\_P\_DELTA\_LSB. The two bits in position 5 to 4 of OUT\_P\_DELTA\_LSB represent the fractional component.

In RAW mode, these registers are not used and their values are not updated.

**Note:** The OUT\_P\_DELTA register store the difference data information regardless of the state of the FIFO data output register driver bit,  $F_MODE > 00$ .

| (address 0 | 7h, 08h, 09h) bit allocati | on |                   |     |      |        |   |   |   |
|------------|----------------------------|----|-------------------|-----|------|--------|---|---|---|
| Location   |                            |    |                   | Bit |      |        |   |   |   |
| Address    | Register                   | 7  | 6                 | 5   | 4    | 3      | 2 | 1 | 0 |
| 07h        | OUT_P_DELTA_MSB            |    |                   | ·   | PDD[ | 19:12] |   |   | 2 |
| 08h        | OUT_P_DELTA_CSB            |    |                   |     | PDD  | [11:4] |   |   |   |
| 09h        | OUT_P_DELTA_LSB            |    | PDD[3:0] reserved |     |      |        |   |   |   |
| Reset      | 0 0 0 0 0 0 0              |    |                   |     |      |        |   |   | 0 |

# Table 18. OUT\_P\_DELTA\_MSB, OUT\_P\_DELTA\_CSB, OUT\_P\_DELTA\_LSB - pressure and altitude delta register (address 07h, 08h, 09h) bit allocation

MPL3115A2

I2C precision pressure sensor with altimetry

| Location |          | Bit |   |   |   |   |   |   |   |  |
|----------|----------|-----|---|---|---|---|---|---|---|--|
| Address  | Register | 7   | 6 | 5 | 4 | 3 | 2 | 1 | 0 |  |
| Access   |          | R   | R | R | R | R | R | R | R |  |

# 13.6 OUT\_T\_DELTA\_MSB, OUT\_T\_DELTA\_LSB - temperature delta register (address 0Ah, 0Bh)

The temperature delta register 0Ah and 0Bh comprise the temperature delta data and provide the difference from the last temperature samples.

The temperature data is arranged as 12-bit signed integer with a fractional part in °C. The eight bits of OUT\_T\_DELTA\_MSB representing degrees and with fractions of a degree stored in four bits in position 7 to 4 of OUT\_T\_DELTA\_LSB.

In RAW mode, these registers are not used and their values are not updated.

**Note:** The OUT\_T\_DELTA register store the difference data information regardless of the state of the FIFO data output register driver bit, F\_MODE > 00.

## Table 19. OUT\_T\_DELTA\_MSB, OUT\_T\_DELTA\_LSB - temperature delta register (address 0Ah, 0Bh) bit allocation

|         | Location        | Bit |     |       |      |        |      |      |   |  |
|---------|-----------------|-----|-----|-------|------|--------|------|------|---|--|
| Address | Register        | 7   | 6   | 5     | 4    | 3      | 2    | 1    | 0 |  |
| 0Ah     | OUT_T_DELTA_MSB |     |     |       | TDD[ | [11:4] | ·    |      |   |  |
| 0Bh     | OUT_T_DELTA_LSB |     | TDD | [3:0] |      |        | rese | rved |   |  |
| Reset   |                 | 0   | 0   | 0     | 0    | 0      | 0    | 0    | 0 |  |
|         |                 |     |     | R     |      | R      | R    | R    | R |  |

## 13.7 WHO\_AM\_I - device ID register (address 0Ch)

This register contains the device identifier which is set to C4h by default. The value is factory programmed. Consult the NXP factory for custom alternate values.

Table 20. WHO\_AM\_I - device ID register (address 0Ch) bit allocation

| Bit    | 7             | 6             | 5             | 4             | 3             | 2             | 1             | 0             |
|--------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|
| Symbol |               |               |               | WHO_A         | M_I[7:0]      |               |               |               |
| Reset  | 0             | 0             | 0             | 0             | 0             | 0             | 0             | 0             |
| Access | NVM data<br>1 | NVM data<br>1 | NVM data<br>0 | NVM data<br>0 | NVM data<br>0 | NVM data<br>1 | NVM data<br>0 | NVM data<br>0 |

## **13.8 FIFO setup registers**

## 13.8.1 F\_STATUS - FIFO status register (address 0Dh)

#### Table 21. F\_STATUS - FIFO status register (address 0Dh) bit allocation

| Bit       | 7                                                                          | 6           | 5          | 4 | 3 | 2 | 1             | 0                        |
|-----------|----------------------------------------------------------------------------|-------------|------------|---|---|---|---------------|--------------------------|
| Symbol    | F_OVF                                                                      | F_WMRK_FLAG | F_CNT[5:0] |   |   |   |               |                          |
| MPL3115A2 | All information provided in this document is subject to legal disclaimers. |             |            |   |   |   | © NXP B.V. 20 | 016. All rights reserved |

Data sheet: Technical data

I2C precision pressure sensor with altimetry

| Bit    | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|--------|---|---|---|---|---|---|---|---|
| Reset  | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Access | R | R | R | R | R | R | R | R |

#### Table 22. F\_STATUS - FIFO status register (address 0Dh) bit description

| F_OVF | F_WMRK_FLAG                     | G Event description                                                           |  |  |  |  |  |  |
|-------|---------------------------------|-------------------------------------------------------------------------------|--|--|--|--|--|--|
| 0     |                                 | No FIFO overflow events detected.                                             |  |  |  |  |  |  |
| 1     | — FIFO overflow event detected. |                                                                               |  |  |  |  |  |  |
| _     | 0                               | No FIFO watermark events detected.                                            |  |  |  |  |  |  |
| _     | 1                               | FIFO watermark event detected. FIFO sample count greater than watermark value |  |  |  |  |  |  |

The F\_OVF and F\_WMRK\_FLAG flags remain asserted while the event source is still active, but the user can clear the FIFO interrupt bit flag in the interrupt source register (INT\_SOURCE) by reading the F\_STATUS register. Therefore, the F\_OVF bit flag will remain asserted while the FIFO has overflowed and the F\_WMRK\_FLAG bit flag will remain asserted while the F\_CNT value is greater than then F\_WMRK value.

#### Table 23. F\_STATUS - FIFO status register (address 0Dh) bit description

| Bit    | Symbol | Description                                                                                                                                                                                                                                                           |
|--------|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5 to 0 | F_CNT  | <ul> <li>FIFO sample counter. F_CNT[5:0] bits indicate the number of samples currently stored in the FIFO buffer.</li> <li>00_0000 — indicates that the FIFO is empty (reset value)</li> <li>00_0001 to 10_0000 — indicates 1 to 32 samples stored in FIFO</li> </ul> |

### 13.8.2 F\_DATA - FIFO data register (address 0Eh)

F\_DATA is a read only address which provides access to 8-bit FIFO data. FIFO holds a maximum of 32 samples, a maximum of  $5 \times 32 = 160$  data bytes of samples can be read. When F\_MODE bit in FIFO SETUP (F\_SETUP) register is set to logic '1', the F\_DATA pointer shares the same address location as OUT\_P\_MSB (01h), therefore all accesses of the FIFO buffer data use the I<sup>2</sup>C address 01h. Reads from the other data registers (02h, 03h, 04h, 05h) will return a value of 00h.

**Note:** The FIFO will NOT suspend to data accumulation during read transactions to *F\_DATA*.

| Bit    | 7           | 6 | 5 | 4 | 3 | 2 | 1 | 0 |  |
|--------|-------------|---|---|---|---|---|---|---|--|
| Symbol | F_DATA[7:0] |   |   |   |   |   |   |   |  |
| Reset  | 0           | 0 | 0 | 0 | 0 | 0 | 0 | 0 |  |
| Access | R           | R | R | R | R | R | R | R |  |

#### Table 24. F\_DATA - FIFO data register (address 0Eh) bit allocation

MPL3115A2 Data sheet: Technical data