imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

MPU-3300 Product Specification Revision 1.1

CONTENTS

1	REVISION HISTORY4					
2	PURPOSE AND SCOPE4					
3	PRODUCT OVERVIEW					
	3.1	MPU-3300 OVERVIEW	6			
4	APPL	ICATIONS	7			
5	FEAT	URES	8			
	5.1	GYROSCOPE FEATURES	8			
	5.2	Additional Features	8			
	5.3	CLOCKING	8			
6	ELEC	TRICAL CHARACTERISTICS	9			
	6.1	GYROSCOPE SPECIFICATIONS	9			
	6.2	ELECTRICAL AND OTHER COMMON SPECIFICATIONS	10			
	6.3	ELECTRICAL SPECIFICATIONS, CONTINUED	11			
	6.4	ELECTRICAL SPECIFICATIONS, CONTINUED	12			
	6.5	ELECTRICAL SPECIFICATIONS, CONTINUED	13			
	6.6	I ² C TIMING CHARACTERIZATION	14			
	6.7	SPI TIMING CHARACTERIZATION	15			
	6.8	Absolute Maximum Ratings	16			
7	APPL	ICATIONS INFORMATION	17			
	7.1	PIN OUT AND SIGNAL DESCRIPTION	17			
	7.2	TYPICAL OPERATING CIRCUIT	18			
	7.3	BILL OF MATERIALS FOR EXTERNAL COMPONENTS	18			
	7.4	BLOCK DIAGRAM	19			
	7.5	OVERVIEW	19			
	7.6	THREE-AXIS MEMS GYROSCOPE WITH 16-BIT ADCS AND SIGNAL CONDITIONING	19			
	7.7	PRIMARY I ² C AND SPI SERIAL COMMUNICATIONS INTERFACES	20			
	7.8	AUXILIARY I ² C SERIAL INTERFACE	21			
	7.9	Self-Test	22			
	7.10	BIAS INSTABILITY	22			
	Z-Axis	GYROSCOPE – EXAMPLE ALLAN VARIANCE PLOT	23			
	7.11	MPU-3300 USING SPI INTERFACE	23			
	7.12	INTERNAL CLOCK GENERATION	24			
	7.13	Sensor Data Registers	25			

	7.14	FIFO	25
	7.15	INTERRUPTS	26
	7.16	DIGITAL-OUTPUT TEMPERATURE SENSOR	26
	7.17	BIAS AND LDO	26
	7.18	CHARGE PUMP	26
8	PROG	GRAMMABLE INTERRUPTS	27
9	DIGIT	AL INTERFACE	28
	9.1	I ² C AND SPI SERIAL INTERFACES	
	9.2	I ² C INTERFACE	
	9.3	I ² C COMMUNICATIONS PROTOCOL	
	9.4	I ² C TERMS	31
	9.5	SPI INTERFACE	32
10	ASSE	EMBLY	33
	10.1	ORIENTATION OF AXES	33
	10.2	PACKAGE DIMENSIONS	34
	10.3	PCB DESIGN GUIDELINES	35
	10.4	ASSEMBLY PRECAUTIONS	
	10.5	STORAGE SPECIFICATIONS	
	10.6	PACKAGE MARKING SPECIFICATION	
	10.7	TAPE & REEL SPECIFICATION	40
	10.8	LABEL	41
	10.9	Packaging	42
	10.10	REPRESENTATIVE SHIPPING CARTON LABEL	43
11	RELIA	ABILITY	44
	11.1	QUALIFICATION TEST POLICY	44
	11.2	QUALIFICATION TEST PLAN	44
12	2 ENVIE	RONMENTAL COMPLIANCE	45

1 Revision History

Revision Date	Revision	Description
5/31/2012	1.0	Initial Release
7/23/2012	1.1	Removed watermarks.

2 Purpose and Scope

This product specification provides advanced information regarding the electrical specification and design related information for the MPU-3300[™] MotionTracking[™] devices.

Electrical characteristics are based upon design analysis and simulation results only. Specifications are subject to change without notice. Final specifications will be updated based upon characterization of production silicon. For references to register map and descriptions of individual registers, please refer to the MPU-3300 Register Map and Register Descriptions document.

3 **Product Overview**

3.1 MPU-3300 Overview

The MPU-3300 is the world's first integrated 3-axis gyroscope for Industrial applications. The MPU-3300 features three 16-bit analog-to-digital converters (ADCs) for digitizing the gyroscope outputs. For precision tracking of motion, the parts feature a user-programmable gyroscope full-scale range of ± 225 and $\pm 450^{\circ}$ /sec (dps).

An on-chip 1024 Byte FIFO buffer helps lower system power consumption by allowing the system processor to read the sensor data in bursts and then enter a low-power mode as the MPU collects more data. Communication with all registers of the device is performed using either I^2C at 400kHz or SPI at 1MHz. For applications requiring faster communications, the sensor and interrupt registers may be read using SPI at 20MHz. Additional features include an embedded temperature sensor and an on-chip oscillator with ±1% variation over the operating temperature range.

By leveraging its patented and volume-proven Nasiri-Fabrication platform, which integrates MEMS wafers with companion CMOS electronics through wafer-level bonding, InvenSense has driven the MPU-3300 package size down to a revolutionary footprint of 4x4x0.9mm (QFN), while providing the highest performance, lowest noise, and the lowest cost semiconductor packaging required for industrial electronic devices. The part features a robust 10,000*g* shock tolerance, and has programmable low-pass filters for the gyroscopes, and the on-chip temperature sensor.

For power supply flexibility, the MPU-3300 operates from VDD power supply voltage range of 2.375V-3.46V.

4 Applications

- Attitude Heading Reference Systems (AHRS)
 - Aerospace
 - Robotics
- Navigation Systems
 - Industrial vehicles
 - o Aircraft
 - o Ships
- Platform and Antenna Stabilization
- Precision Robotics
- Inventory Control Systems
- Survey Instruments
- Factory Equipment
- Industrial Power Tools
- Unmanned Aerial Vehicles (UAVs)
- Precision Agriculture Machinery
- Guidance and Steering Applications
- Construction Equipment

5 Features

5.1 Gyroscope Features

The triple-axis MEMS gyroscope in the MPU-3300 includes a wide range of features:

- Digital-output X-, Y-, and Z-Axis angular rate sensors (gyroscopes) with a user-programmable fullscale range of ±225, and ±450°/sec
- Integrated 16-bit ADCs enable simultaneous sampling of gyros
- Enhanced bias and sensitivity temperature stability reduces the need for user calibration
- Improved low-frequency noise performance
- Digitally-programmable low-pass filter
- Bias Instability: 15°/hour on each axis
- Gyroscope operating current: 3.6mA
- Standby current: 10µA
- Factory calibrated sensitivity scale factor
- User self-test

5.2 Additional Features

The MPU-3300 includes the following additional features:

- VDD supply voltage range of 2.375V-3.46V
- Smallest and thinnest QFN package for industrial applications: 4x4x0.9mm
- 1024 byte FIFO buffer reduces power consumption by allowing host processor to read the data in bursts and then go into a low-power mode as the MPU collects more data
- Digital-output temperature sensor
- User-programmable digital filters for gyroscope and temp sensor
- 10,000 *g* shock tolerant
- 400kHz Fast Mode I²C for communicating with all registers
- 1MHz SPI serial interface for communicating with all registers
- 20MHz SPI serial interface for reading sensor and interrupt registers
- MEMS structure hermetically sealed and bonded at wafer level
- RoHS and Green compliant

5.3 Clocking

- On-chip timing generator ±1% frequency variation over full temperature range
- Optional external clock inputs of 32.768kHz or 19.2MHz

6 Electrical Characteristics

6.1 Gyroscope Specifications

Typical Operating Circuit of Section 7.2, VDD = 2.375V-3.46V, T_A = 25°C

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
GYROSCOPE SENSITIVITY						
Full-Scale Range	FS_SEL=0		±225		°/s	
	FS_SEL=1		±450		°/s	
Gyroscope ADC Word Length			16		bits	
Sensitivity Scale Factor	FS_SEL=0		145.6		LSB/(°/s)	
	FS_SEL=1		72.8		LSB/(°/s)	
Sensitivity Scale Factor Tolerance	25°C	-3		+3	%	
Sensitivity Scale Factor Variation Over	-40°C to +105°C		±2		%	
Temperature						
Nonlinearity	Best fit straight line; 25°C		0.2		%	
Cross-Axis Sensitivity			±2		%	
GYROSCOPE ZERO-RATE OUTPUT (ZRO)						
Initial ZRO Tolerance	25°C		±20		°/s	
ZRO Variation Over Temperature	-40°C to +105°C		±20		°/s	
Power-Supply Sensitivity (1 – 10Hz)	Sine wave, 100mVpp; VDD=2.5V		0.2		°/s	
Power-Supply Sensitivity (10 – 250Hz)	Sine wave, 100mVpp; VDD=2.5V		0.2		°/s	
Power-Supply Sensitivity (250Hz – 100kHz)	Sine wave, 100mVpp; VDD=2.5V		4		°/s	
Linear Acceleration Sensitivity	Static		0.1		°/s/g	
SELF-TEST RESPONSE						
	Change from factory trim	-14		14	%	1
GYROSCOPE NOISE PERFORMANCE	FS_SEL=0					
Total RMS Noise	DLPFCFG=2 (100Hz)		0.05		°/s-rms	
Low-frequency RMS noise	Bandwidth 1Hz to10Hz		0.033		°/s-rms	
Rate Noise Spectral Density	At 10Hz		0.005		°/s/ √ Hz	
GYROSCOPE MECHANICAL						
FREQUENCIES						
X-Axis		30	33	36	kHz	
Y-Axis		27	30	33	kHz	
Z-Axis		24	27	30	kHz	
LOW PASS FILTER RESPONSE						
	Programmable Range	5		256	Hz	
OUTPUT DATA RATE						
	Programmable	4		8,000	Hz	
GYROSCOPE START-UP TIME	DLPFCFG=0					
ZRO Settling	to ±1°/s of Final		30		ms	

1. Please refer to the following document for further information on Self-Test: MPU-3300 Register Map and Descriptions

6.2 Electrical and Other Common Specifications Typical Operating Circuit of Section 7.2, VDD = 2.375V-3.46V, T_A = 25°C

PARAMETER	CONDITIONS	MIN	TYP	MAX	Units	Notes
TEMPERATURE SENSOR						
Range			-40 to +105		°C	
Sensitivity	Untrimmed		340		LSB/ºC	
Temperature Offset	35°C		-521		LSB	
Linearity	Best fit straight line (-40°C to +105°C)		±1		°C	
VDD POWER SUPPLY						
Operating Voltages		2.375		3.46	V	
Normal Operating Current	Gyroscope		3.6		mA	
Full-Chip Idle Mode Supply Current			10		μA	
Power Supply Ramp Rate	Monotonic ramp. Ramp rate is 10% to 90% of the final value			100	ms	
START-UP TIME FOR REGISTER READ/WRITE			20	100	ms	
TEMPERATURE RANGE						
Specified Temperature Range	Performance parameters are not applicable beyond Specified Temperature Range	-40		+105	°C	

6.3 Electrical Specifications, Continued Typical Operating Circuit of Section 7.2, VDD = 2.375V-3.46V, T_A = 25°C

PARAMETER	CONDITIONS	MIN	TYP	MAX	Units	Notes
SERIAL INTERFACE						
SPI Operating Frequency, All Registers Read/Write	Low Speed Characterization		100 ±10%		kHz	
	High Speed Characterization		1 ±10%		MHz	
SPI Operating Frequency, Sensor and Interrupt Registers Read Only			20 ±10%		MHz	
I ² C Operating Frequency	All registers, Fast-mode			400	kHz	
	All registers, Standard-mode			100	kHz	
I ² C ADDRESS	AD0 = 0		1101000			
	AD0 = 1		1101001			
DIGITAL INPUTS (SDI/SDA, AD0, SCLK/SCL, FSYNC, /CS, CLKIN)						
V _{IH} , High Level Input Voltage		0.7*VDD			V	
VIL, Low Level Input Voltage				0.3*VDD	V	
C _I , Input Capacitance			< 5		pF	
DIGITAL OUTPUT (SDO, INT)						
V _{OH} , High Level Output Voltage	R_{LOAD} =1M Ω	0.9*VDD			V	
V _{OL1} , LOW-Level Output Voltage	$R_{LOAD}=1M\Omega$			0.1*VDD	V	
V _{OL.INT1} , INT Low-Level Output Voltage	OPEN=1, 0.3mA sink Current			0.1	V	
Output Leakage Current	OPEN=1		100		nA	
t _{INT} , INT Pulse Width	LATCH_INT_EN=0		50		μs	
DIGITAL OUTPUT (CLKOUT)						
V _{OH} , High Level Output Voltage	R_{LOAD} =1M Ω	0.9*VDD			V	
V _{OL1} , LOW-Level Output Voltage	$R_{LOAD}=1M\Omega$			0.1*VDD	V	

6.4 Electrical Specifications, Continued Typical Operating Circuit of Section 7.2, VDD = 2.375V-3.46V, T_A = 25°C

Parameters	Conditions	Typical	Units	Notes
Primary I ² C I/O (SCL, SDA)				
VIL, LOW Level Input Voltage		-0.5V to 0.3*VDD	V	
VIH, HIGH-Level Input Voltage		0.7*VDD to VDD + 0.5V	V	
Vhys, Hysteresis		0.1*VDD	V	
V _{OL1} , LOW-Level Output Voltage	3mA sink current	0 to 0.4	V	
IoL, LOW-Level Output Current	$V_{OL} = 0.4V$	3	mA	
	V _{OL} = 0.6V	5	mA	
Output Leakage Current		100	nA	
t_{of} , Output Fall Time from V_{IHmax} to V_{ILmax}	C _b bus capacitance in pF	20+0.1C _b to 250	ns	
C _I , Capacitance for Each I/O pin		< 10	pF	
Auxiliary I ² C I/O (AUX_CL, AUX_DA)				
VIL, LOW-Level Input Voltage		-0.5 to 0.3*VDD	V	
V _{IH} , HIGH-Level Input Voltage		0.7*VDD to VDD+0.5V	V	
V _{hys} , Hysteresis		0.1*VDD	V	
V _{OL1} , LOW-Level Output Voltage	1mA sink current	0 to 0.4	V	
IOL, LOW-Level Output Current	$V_{OL} = 0.4V$	1	mA	
	$V_{OL} = 0.6V$	1	mA	
Output Leakage Current		100	nA	
$t_{\text{of}},$ Output Fall Time from V_{IHmax} to V_{ILmax}	C _b bus cap. in pF	20+0.1C _b to 250	ns	
C _I , Capacitance for Each I/O pin		< 10	pF	

6.5 Electrical Specifications, Continued Typical Operating Circuit of Section 7.2, VDD = 2.375V-3.46V, T_A = 25°C

Parameters	Conditions	Min	Typical	Max	Units	Notes
INTERNAL CLOCK SOURCE	CLK_SEL=0,1,2,3					
Gyroscope Sample Rate, Fast	DLPFCFG=0 SAMPLERATEDIV = 0		8		kHz	
Gyroscope Sample Rate, Slow	DLPFCFG=1,2,3,4,5, or 6 SAMPLERATEDIV = 0		1		kHz	
Reference Clock Output	CLKOUTEN = 1		1.024		MHz	
Clock Frequency Initial Tolerance	CLK_SEL=0, 25°C	-5		+5	%	
	CLK_SEL=1,2,3; 25°C	-1		+1	%	
Frequency Variation over Temperature	CLK_SEL=0		-15 to +10		%	
	CLK_SEL=1,2,3		±1		%	
PLL Settling Time	CLK_SEL=1,2,3		1	10	ms	
EXTERNAL 32.768kHz CLOCK	CLK_SEL=4					
External Clock Frequency			32.768		kHz	
External Clock Allowable Jitter	Cycle-to-cycle rms		1 to 2		μs	
Gyroscope Sample Rate, Fast	DLPFCFG=0 SAMPLERATEDIV = 0		8.192		kHz	
Gyroscope Sample Rate, Slow	DLPFCFG=1,2,3,4,5, or 6 SAMPLERATEDIV = 0		1.024		kHz	
Reference Clock Output	CLKOUTEN = 1		1.0486		MHz	
PLL Settling Time			1	10	ms	
EXTERNAL 19.2MHz CLOCK	CLK_SEL=5					
External Clock Frequency			19.2		MHz	
Gyroscope Sample Rate	Full programmable range	3.9		8000	Hz	
Gyroscope Sample Rate, Fast Mode	DLPFCFG=0 SAMPLERATEDIV = 0		8		kHz	
Gyroscope Sample Rate, Slow Mode	DLPFCFG=1,2,3,4,5, or 6 SAMPLERATEDIV = 0		1		kHz	
Reference Clock Output	CLKOUTEN = 1		1.024		MHz	
PLL Settling Time			1	10	ms	

6.6 I²C Timing Characterization

Typical Operating Circuit of Section 7.2, VDD = 2.375V-3.46V, T_A = 25°C

Parameters	Conditions	Min	Typical	Max	Units	Notes
I ² C TIMING	I ² C FAST-MODE					
f _{SCL} , SCL Clock Frequency				400	kHz	
$t_{\text{HD.STA}}$ (Repeated) START Condition Hold Time		0.6			μs	
t _{LOW} , SCL Low Period		1.3			μs	
t _{HIGH} , SCL High Period		0.6			μs	
t _{SU.STA} , Repeated START Condition Setup Time		0.6			μs	
t _{HD.DAT} , SDA Data Hold Time		0			μs	
t _{SU.DAT} , SDA Data Setup Time		100			ns	
t _r , SDA and SCL Rise Time	C_b bus cap. from 10 to 400pF	20+0.1Cb		300	ns	
t _f , SDA and SCL Fall Time	C_b bus cap. from 10 to 400pF	20+0.1Cb		300	ns	
t _{SU.STO} , STOP Condition Setup Time		0.6			μs	
$t_{\mbox{\scriptsize BUF}},$ Bus Free Time Between STOP and START Condition		1.3			μs	
C _b , Capacitive Load for each Bus Line			< 400		pF	
t _{VD.DAT} , Data Valid Time				0.9	μs	
$t_{\text{VD.ACK}}$, Data Valid Acknowledge Time				0.9	μs	

Note: Timing Characteristics apply to both Primary and Auxiliary I²C Bus

I²C Bus Timing Diagram

6.7 SPI Timing Characterization

Typical Operating Circuit of Section 7.2, VDD = 2.375V-3.46V, T_A = 25°C, unless otherwise noted.

Parameters	Conditions	Min	Typical	Мах	Units	Notes
SPI TIMING						
f _{SCLK} , SCLK Clock Frequency				1	MHz	
t _{LOW} , SCLK Low Period		400			ns	
t _{HIGH} , SCLK High Period		400			ns	
t _{su.cs} , CS Setup Time		8			ns	
$t_{\text{HD.CS}}$, CS Hold Time		500			ns	
t _{SU.SDI} , SDI Setup Time		11			ns	
t _{HD.SDI} , SDI Hold Time		7			ns	
t _{VD.SDO} , SDO Valid Time	C _{load} = 20pF			100	ns	
$t_{\text{HD.SDO}}$, SDO Hold Time	C _{load} = 20pF	4			ns	
t _{DIS.SDO} , SDO Output Disable Time				10	ns	

SPI Bus Timing Diagram

6.8 Absolute Maximum Ratings

Stress above those listed as "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these conditions is not implied. Exposure to the absolute maximum ratings conditions for extended periods may affect device reliability.

Parameter	Rating
Supply Voltage, VDD	-0.5V to +6V
REGOUT	-0.5V to 2V
Input Voltage Level (CLKIN, AUX_DA, AD0, FSYNC, INT, SCL, SDA)	-0.5V to VDD + 0.5V
CPOUT (2.5V \leq VDD \leq 3.6V)	-0.5V to 30V
Acceleration (Any Axis, unpowered)	10,000g for 0.2ms
Operating Temperature Range	-40°C to +125°C
Storage Temperature Range	-65°C to +150°C
Electrostatic Discharge (ESD) Protection	2kV (HBM); 200V (MM)
Latch-up	JEDEC Class II (2),125°C ±60mA

7 Applications Information

7.1 Pin Out and Signal Description

Pin Number	Pin Name	Pin Description
1	CLKIN	Optional external reference clock input. Connect to GND if unused.
6	AUX_DA	I ² C master serial data, for connecting to external sensors
7	AUX_CL	I ² C master serial clock, for connecting to external sensors
8	/CS	SPI chip select (0=SPI mode)
9	AD0 / SDO	I ² C Slave Address LSB (AD0); SPI serial data output (SDO)
10	REGOUT	Regulator filter capacitor connection
11	FSYNC	Frame synchronization digital input. Connect to GND if unused.
12	INT	Interrupt digital output (totem pole or open-drain)
13	VDD	Power supply voltage and Digital I/O supply voltage
18	GND	Power supply ground
19, 21	RESV	Reserved. Do not connect.
20	CPOUT	Charge pump capacitor connection
22	CLKOUT	System clock output
23	SCL / SCLK	I ² C serial clock (SCL); SPI serial clock (SCLK)
24	SDA / SDI	I ² C serial data (SDA); SPI serial data input (SDI)
2, 3, 4, 5, 14, 15, 16, 17	NC	Not internally connected. May be used for PCB trace routing.

QFN Package 24-pin, 4mm x 4mm x 0.9mm

Orientation of Axes of Sensitivity and Polarity of Rotation

7.2 Typical Operating Circuit

Typical Operating Circuit

7.3 Bill of Materials for External Components

Component	Label	Specification	Quantity
Regulator Filter Capacitor (Pin 10)	C1	Ceramic, X7R, 0.1µF ±10%, 2V	1
VDD Bypass Capacitor (Pin 13)	C2	Ceramic, X7R, 0.1µF ±10%, 4V	1
Charge Pump Capacitor (Pin 20)	C3	Ceramic, X7R, 2.2nF ±10%, 50V	1

7.4 Block Diagram

7.5 Overview

The MPU-3300 is comprised of the following key blocks and functions:

- Three-axis MEMS rate gyroscope sensor with 16-bit ADCs and signal conditioning
- Primary I²C and SPI serial communications interfaces
- Auxiliary I²C serial interface for external accelerometer & other sensors
- Clocking
- Sensor Data Registers
- FIFO
- Interrupts
- Digital-Output Temperature Sensor
- Gyroscope & Self-test
- Bias and LDO
- Charge Pump

7.6 Three-Axis MEMS Gyroscope with 16-bit ADCs and Signal Conditioning

The MPU-3300 consists of three independent vibratory MEMS rate gyroscopes, which detect rotation about the X-, Y-, and Z- Axes. When the gyros are rotated about any of the sense axes, the Coriolis Effect causes a vibration that is detected by a capacitive pickoff. The resulting signal is amplified, demodulated, and filtered to produce a voltage that is proportional to the angular rate. This voltage is digitized using individual on-chip 16-bit Analog-to-Digital Converters (ADCs) to sample each axis. The full-scale range of the gyro sensors may be digitally programmed to ±225, or ±450 degrees per second (dps). The ADC sample rate is programmable

from 8,000 samples per second, down to 3.9 samples per second, and user-selectable low-pass filters enable a wide range of cut-off frequencies.

7.7 Primary I²C and SPI Serial Communications Interfaces

The MPU-3300 communicates to a system processor using either a SPI or an I²C serial interface. The MPU-3300 always acts as a slave when communicating to the system processor. The LSB of the of the I²C slave address is set by pin 9 (AD0).

The logic levels for communications between the MPU-3300 and its master is set by the voltage on VDD.

7.8 Auxiliary I²C Serial Interface

The MPU-3300 has an auxiliary I²C bus for communicating to an off-chip accelerometer, magnetometer or other sensors. This bus has two operating modes:

- <u>I²C Master Mode</u>: The MPU-3300 acts as a master to any external sensors connected to the auxiliary I²C bus
- <u>Pass-Through Mode</u>: The MPU-3300 directly connects the primary and auxiliary I²C buses together, allowing the system processor to directly communicate with any external sensors.

Auxiliary I²C Bus Modes of Operation:

• <u>I²C Master Mode</u>: Allows the MPU-3300 to directly access the data registers of external digital sensors, such as a magnetometer. In this mode, the MPU-3300 directly obtains data from auxiliary sensors, without intervention from the system applications processor.

For example, in I²C Master mode, the MPU-3300 can be configured to perform burst reads, returning the following data from an accelerometer:

- X accelerometer data (2 bytes)
- Y accelerometer data (2 bytes)
- Z accelerometer data (2 bytes)
- <u>Pass-Through Mode</u>: Allows an external system processor to act as master and directly communicate to the external sensors connected to the auxiliary I²C bus pins (AUX_DA and AUX_CL). In this mode, the auxiliary I²C bus control logic (3rd party sensor interface block) of the MPU-3300 is disabled, and the auxiliary I²C pins AUX_DA and AUX_CL (Pins 6 and 7) are connected to the main I²C bus (Pins 23 and 24) through analog switches.

Pass-Through Mode is useful for configuring the external sensors, or for keeping the MPU-3300 in a low-power mode when only the external sensors are used.

In Pass-Through Mode the system processor can still access MPU-3300 data through the I²C interface.

Auxiliary I²C Bus IO Logic Levels

The logic level of the auxiliary I²C bus is VDD

7.9 Self-Test

Self-test allows for the testing of the mechanical and electrical portions of the sensors. The self-test for each measurement axis can be activated by the bits of the gyroscope control register (register 27, *GYRO_CONFIG*). Please refer to the register map document for more details on self-test.

When self-test is activated, the electronics cause the sensors to be actuated and produce an output signal. The output signal is used to observe the self-test response.

The self-test response is defined as follows:

Self-test response = Sensor output with self-test enabled – Sensor output without self-test enabled

The self-test response for each gyroscope axis is defined in the gyroscope specification table (Section 6.1).

When the value of the self-test response is within the min/max limits of the product specification, the part has passed self-test. When the self-test response exceeds the min/max values, the part is deemed to have failed self-test.

7.10 Bias Instability

Bias Instability is a critical performance parameter for gyroscopes. The MPU-3300 provides typical bias instability of 15°/hour on each axis, measured using the Allan Variance method. The figures below show example Allan Variance plots for representative MPU-3300 devices.

X-Axis Gyroscope – Example Allan Variance Plot

Y-Axis Gyroscope – Example Allan Variance Plot

Z-Axis Gyroscope – Example Allan Variance Plot

7.11 MPU-3300 Using SPI Interface

In the figure below, the system processor is an SPI master to the MPU-3300. Pins 8, 9, 23, and 24 are used to support the /CS, SDO, SCLK, and SDI signals for SPI communications. Because these SPI pins are shared with the I²C slave pins (9, 23 and 24), the system processor cannot access the auxiliary I²C bus through the interface bypass multiplexer, which connects the processor I²C interface pins to the sensor I²C interface pins.

Since the MPU-3300 has limited capabilities as an I²C Master, and depends on the system processor to manage the initial configuration of any auxiliary sensors, another method must be used for programming the sensors on the auxiliary sensor I²C bus pins 6 and 7 (AUX_DA and AUX_CL).

When using SPI communications between the MPU-3300 and the system processor, configuration of devices on the auxiliary I²C sensor bus can be achieved by using I²C Slaves 0-4 to perform read and write transactions on any device and register on the auxiliary I²C bus. The I²C Slave 4 interface can be used to perform only single byte read and write transactions.

Once the external sensors have been configured, the MPU-3300 can perform single or multi-byte reads using the sensor I²C bus. The read results from the Slave 0-3 controllers can be written to the FIFO buffer as well as to the external sensor registers.

For further information regarding the control of the MPU-3300's auxiliary I²C interface, please refer to the MPU-3300 Register Map and Register Descriptions document.

7.12 Internal Clock Generation

The MPU-3300 has a flexible clocking scheme, allowing a variety of internal or external clock sources to be used for the internal synchronous circuitry. This synchronous circuitry includes the signal conditioning and ADCs, and various control circuits and registers. An on-chip PLL provides flexibility in the allowable inputs for generating this clock.

Allowable internal sources for generating the internal clock are:

- An internal relaxation oscillator
- Any of the X, Y, or Z gyros (MEMS oscillators with a variation of ±1% over temperature)

Allowable external clocking sources are:

- 32.768kHz square wave
- 19.2MHz square wave

Selection of the source for generating the internal synchronous clock depends on the availability of external sources and the requirements for power consumption and clock accuracy. These requirements will most likely vary by mode of operation.

Clock accuracy is important, since timing errors directly affect the distance and angle calculations performed by the Digital Motion Processor (and by extension, by any processor).

There are also start-up conditions to consider. When the MPU-3300 first starts up, the device uses its internal clock until programmed to operate from another source. This allows the user, for example, to wait for the MEMS oscillators to stabilize before they are selected as the clock source.

7.13 Sensor Data Registers

The sensor data registers contain the latest gyro, auxiliary sensor, and temperature measurement data. They are read-only registers, and are accessed via the serial interface. Data from these registers may be read anytime. However, the interrupt function may be used to determine when new data is available.

For a table of interrupt sources please refer to Section 8.

7.14 FIFO

The MPU-3300 contains a 1024-byte FIFO register that is accessible via the Serial Interface. The FIFO configuration register determines which data is written into the FIFO. Possible choices include gyro data, temperature readings, auxiliary sensor readings, and FSYNC input. A FIFO counter keeps track of how many bytes of valid data are contained in the FIFO. The FIFO register supports burst reads. The interrupt function may be used to determine when new data is available.

For further information regarding the FIFO, please refer to the MPU-3300 Register Map and Register Descriptions document.