

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

InvenSense Inc.

1745 Technology Drive, San Jose, CA 95110 U.S.A.
Tel: +1 (408) 988-7339 Fax: +1 (408) 988-8104
Website: www.invensense.com

Document Number: PS-MPU-6500A-01

Revision: 1.1

Release Date: 03/05/2014

MPU-6500 Product Specification Revision 1.1

Document Number: PS-MPU-6500A-01

Revision: 1.1

Release Date: 03/05/2014

TABLE OF CONTENTS

T	ABLE C	PF TABLES	5
1	DOC	UMENT INFORMATION	6
	1.1	REVISION HISTORY	6
	1.2	PURPOSE AND SCOPE	7
	1.3	PRODUCT OVERVIEW	7
	1.4	APPLICATIONS	7
2	FEAT	*URES	8
	2.1	GYROSCOPE FEATURES	8
	2.2	ACCELEROMETER FEATURES	8
	2.3	Additional Features	8
	2.4	MOTIONPROCESSING	8
3	ELEC	TRICAL CHARACTERISTICS	9
	3.1	GYROSCOPE SPECIFICATIONS	9
	3.2	ACCELEROMETER SPECIFICATIONS	10
	3.3	ELECTRICAL SPECIFICATIONS	11
	3.4	I2C TIMING CHARACTERIZATION	15
	3.5	SPI TIMING CHARACTERIZATION	16
	3.6	ABSOLUTE MAXIMUM RATINGS	18
4	APPI	ICATIONS INFORMATION	19
	4.1	PIN OUT DIAGRAM AND SIGNAL DESCRIPTION	19
	4.2	TYPICAL OPERATING CIRCUIT	20
	4.3	BILL OF MATERIALS FOR EXTERNAL COMPONENTS	20
	4.4	BLOCK DIAGRAM	21
	4.5	Overview	21
	4.6	THREE-AXIS MEMS GYROSCOPE WITH 16-BIT ADCS AND SIGNAL CONDITIONING	22
	4.7	THREE-AXIS MEMS ACCELEROMETER WITH 16-BIT ADCS AND SIGNAL CONDITIONING	22
	4.8	DIGITAL MOTION PROCESSOR	22
	4.9	PRIMARY I2C AND SPI SERIAL COMMUNICATIONS INTERFACES	22
	4.10	AUXILIARY I2C SERIAL INTERFACE	24
	4.11	Self-Test	25
	4.12	CLOCKING	25
	4.13	SENSOR DATA REGISTERS	26
	4 14	FIFO	26

Document Number: PS-MPU-6500A-01 Revision: 1.1 Release Date: 03/05/2014

	4.15	INTERRUPTS	26
	4.16	DIGITAL-OUTPUT TEMPERATURE SENSOR	26
	4.17	BIAS AND LDOS	27
	4.18	CHARGE PUMP	27
	4.19	STANDARD POWER MODES	27
5	PRO	GRAMMABLE INTERRUPTS	28
	5.1	WAKE-ON-MOTION INTERRUPT	29
6	DIGIT	AL INTERFACE	30
	6.1	I2C AND SPI SERIAL INTERFACES	30
	6.2	I2C INTERFACE	30
	6.3	I2C COMMUNICATIONS PROTOCOL	30
	6.4	I ² C TERMS	33
	6.5	SPI INTERFACE	34
7	SERI	AL INTERFACE CONSIDERATIONS	35
	7.1	MPU-6500 SUPPORTED INTERFACES	35
8	ASSE	EMBLY	36
	8.1	ORIENTATION OF AXES	36
	8.2	PACKAGE DIMENSIONS	37
9	PAR	NUMBER PACKAGE MARKING	38
10	RELI	ABILITY	39
	10.1	QUALIFICATION TEST POLICY	39
	10.2	QUALIFICATION TEST PLAN	39
11	REFE	RENCE	40

Document Number: PS-MPU-6500A-01 Revision: 1.1 Release Date: 03/05/2014

Table of Figures

Figure 1: I2C Bus Timing Diagram	15
Figure 2: SPI Bus Timing Diagram	16
Figure 3: Pin out Diagram for MPU-6500 3.0x3.0x0.9mm QFN	
Figure 4: MPU-6500 QFN Application Schematic. (a) I2C operation, (b) SPI operation	20
Figure 5: MPU-6500 Block Diagram	21
Figure 6: MPU-6500 Solution Using I ² C Interface	
Figure 7: MPU-6500 Solution Using SPI Interface	24
Figure 8: Wake-on-Motion Interrupt Configuration	

Document Number: PS-MPU-6500A-01

Revision: 1.1 Release Date: 03/05/2014

Table of Tables

Table 1: Gyroscope Specifications	
Table 2: Accelerometer Specifications	
Table 3: D.C. Electrical Characteristics	
Table 4: A.C. Electrical Characteristics	13
Table 5: Other Electrical Specifications	14
Table 6: I ² C Timing Characteristics	15
Table 7: SPI Timing Characteristics	
Table 8: fCLK = 20MHz	
Table 9: Absolute Maximum Ratings	18
Table 10: Signal Descriptions	19
Table 11: Bill of Materials	20
Table 12: Standard Power Modes for MPU-6500	27
Table 13: Table of Interrupt Sources	
Table 14: Serial Interface	
Table 15: I ² C Terms	33

Document Number: PS-MPU-6500A-01 Revision: 1.1 Release Date: 03/05/2014

Document Information 1

Revision History 1.1

Revision Date	Revision	Description
09/18/2013	1.0	Initial Release
03/05/2014	1.1	Updated Sections 1, 2, 4, 9, 11

Document Number: PS-MPU-6500A-01

Revision: 1.1

Release Date: 03/05/2014

1.2 Purpose and Scope

This document is a preliminary product specification, providing a description, specifications, and design related information on the MPU-6500™ MotionTracking device. The device is housed in a small 3x3x0.90mm QFN package.

Specifications are subject to change without notice. Final specifications will be updated based upon characterization of production silicon. For references to register map and descriptions of individual registers, please refer to the MPU-6500 Register Map and Register Descriptions document.

1.3 Product Overview

The MPU-6500 is a 6-axis MotionTracking device that combines a 3-axis gyroscope, 3-axis accelerometer, and a Digital Motion ProcessorTM (DMP) all in a small 3x3x0.9mm package. It also features a 512-byte FIFO that can lower the traffic on the serial bus interface, and reduce power consumption by allowing the system processor to burst read sensor data and then go into a low-power mode. With its dedicated I²C sensor bus, the MPU-6500 directly accepts inputs from external I²C devices. MPU-6500, with its 6-axis integration, on-chip DMP, and run-time calibration firmware, enables manufacturers to eliminate the costly and complex selection, qualification, and system level integration of discrete devices, guaranteeing optimal motion performance for consumers. MPU-6500 is also designed to interface with multiple non-inertial digital sensors, such as pressure sensors, on its auxiliary I²C port.

The gyroscope has a programmable full-scale range of ± 250 , ± 500 , ± 1000 , and ± 2000 degrees/sec and very low rate noise at 0.01 dps/ $\sqrt{\text{Hz}}$. The accelerometer has a user-programmable accelerometer full-scale range of $\pm 2g$, $\pm 4g$, $\pm 8g$, and $\pm 16g$. Factory-calibrated initial sensitivity of both sensors reduces production-line calibration requirements.

Other industry-leading features include on-chip 16-bit ADCs, programmable digital filters, a precision clock with 1% drift from -40°C to 85°C, an embedded temperature sensor, and programmable interrupts. The device features I²C and SPI serial interfaces, a VDD operating range of 1.71 to 3.6V, and a separate digital IO supply, VDDIO from 1.71V to 3.6V.

Communication with all registers of the device is performed using either I²C at 400kHz or SPI at 1MHz. For applications requiring faster communications, the sensor and interrupt registers may be read using SPI at 20MHz.

By leveraging its patented and volume-proven CMOS-MEMS fabrication platform, which integrates MEMS wafers with companion CMOS electronics through wafer-level bonding, InvenSense has driven the package size down to a footprint and thickness of 3x3x0.90mm (24-pin QFN), to provide a very small yet high performance low cost package. The device provides high robustness by supporting 10,000*g* shock reliability.

1.4 Applications

- TouchAnywhere™ technology (for "no touch" UI Application Control/Navigation)
- *MotionCommand*™ technology (for Gesture Short-cuts)
- Motion-enabled game and application framework
- Location based services, points of interest, and dead reckoning
- Handset and portable gaming
- Motion-based game controllers
- 3D remote controls for Internet connected DTVs and set top boxes, 3D mice
- Wearable sensors for health, fitness and sports

Document Number: PS-MPU-6500A-01

Revision: 1.1

Release Date: 03/05/2014

2 Features

2.1 Gyroscope Features

The triple-axis MEMS gyroscope in the MPU-6500 includes a wide range of features:

- Digital-output X-, Y-, and Z-axis angular rate sensors (gyroscopes) with a user-programmable full-scale range of ±250, ±500, ±1000, and ±2000°/sec and integrated 16-bit ADCs
- Digitally-programmable low-pass filter
- Gyroscope operating current: 3.2mA
- Factory calibrated sensitivity scale factor
- Self-test

2.2 Accelerometer Features

The triple-axis MEMS accelerometer in MPU-6500 includes a wide range of features:

- Digital-output X-, Y-, and Z-axis accelerometer with a programmable full scale range of ±2g, ±4g, ±8g and ±16g and integrated 16-bit ADCs
- Accelerometer normal operating current: 450µA
- Low power accelerometer mode current: 6.37μA at 0.98Hz, 17.75μA at 31.25Hz
- User-programmable interrupts
- Wake-on-motion interrupt for low power operation of applications processor
- Self-test

2.3 Additional Features

The MPU-6500 includes the following additional features:

- Auxiliary master l²C bus for reading data from external sensors (e.g. magnetometer)
- 3.4mA operating current when all 6 motion sensing axes are active
- VDD supply voltage range of 1.8 3.3V ± 5%
- VDDIO reference voltage of 1.8 3.3V ± 5% for auxiliary I²C devices
- Smallest and thinnest QFN package for portable devices: 3x3x0.9mm
- Minimal cross-axis sensitivity between the accelerometer and gyroscope axes
- 512 byte FIFO buffer enables the applications processor to read the data in bursts
- Digital-output temperature sensor
- User-programmable digital filters for gyroscope, accelerometer, and temp sensor
- 10,000 g shock tolerant
- 400kHz Fast Mode I²C for communicating with all registers
- 1MHz SPI serial interface for communicating with all registers
- 20MHz SPI serial interface for reading sensor and interrupt registers
- MEMS structure hermetically sealed and bonded at wafer level
- RoHS and Green compliant

2.4 MotionProcessing

- Internal Digital Motion Processing™ (DMP™) engine supports advanced MotionProcessing and low power functions such as gesture recognition using programmable interrupts
- In addition to the angular rate, this device optionally outputs the angular position (angle).
- Low-power pedometer functionality allows the host processor to sleep while the DMP maintains the step count.

Document Number: PS-MPU-6500A-01

Revision: 1.1

Release Date: 03/05/2014

3 Electrical Characteristics

3.1 Gyroscope Specifications

Typical Operating Circuit of section 4.2, VDD = 1.8V, VDDIO = 1.8V, T_A=25°C, unless otherwise noted.

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
	GYROSCOPE SENSITIVITY					
Full-Scale Range	FS_SEL=0		±250		º/s	3
	FS_SEL=1		±500		º/s	3
	FS_SEL=2		±1000		º/s	3
	FS_SEL=3		±2000		º/s	3
Gyroscope ADC Word Length			16		bits	3
Sensitivity Scale Factor	FS_SEL=0		131		LSB/(º/s)	3
	FS_SEL=1		65.5		LSB/(º/s)	3
	FS_SEL=2		32.8		LSB/(º/s)	3
	FS_SEL=3		16.4		LSB/(º/s)	3
Sensitivity Scale Factor Tolerance	25°C		±3		%	2
Sensitivity Scale Factor Variation Over Temperature	-40°C to +85°C		±4		%	1
Nonlinearity	Best fit straight line; 25°C		±0.1		%	1
Cross-Axis Sensitivity			±2		%	1
	ZERO-RATE OUTPUT (ZRO)					
Initial ZRO Tolerance	25°C		±5		º/s	2
ZRO Variation Over Temperature	-40°C to +85°C		±0.24		º/s/°C	1
GYI	ROSCOPE NOISE PERFORMANCE (FS_SEL=0)			
Total RMS Noise	DLPFCFG=2 (92 Hz)		0.1		º/s-rms	2
Rate Noise Spectral Density			0.01		°/s/√Hz	4
GYROSCOPE MECHANICAL FREQUENCIES		25	27	29	KHz	2
LOW PASS FILTER RESPONSE	Programmable Range	5		250	Hz	3
GYROSCOPE START-UP TIME	From Sleep mode		35		ms	1
OUTPUT DATA RATE	Programmable, Normal (Filtered) mode	4		8000	Hz	1

Table 1: Gyroscope Specifications

Notes:

- 1. Derived from validation or characterization of parts, not guaranteed in production.
- 2. Tested in production.
- 3. Guaranteed by design.
- 4. Calculated from Total RMS Noise.

Please refer to the following document for information on Self-Test: MPU-6500 Accelerometer and Gyroscope Self-Test Implementation; AN-MPU-6500A-02

Document Number: PS-MPU-6500A-01

Revision: 1.1

Release Date: 03/05/2014

Accelerometer Specifications

Typical Operating Circuit of section 4.2, VDD = 1.8V, VDDIO = 1.8V, T_A=25°C, unless otherwise noted.

PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS	NOTES
	ACCELE	ROMETER SENSITIV	/ITY				
	AFS_SEL=0			±2		g	3
Full Ocale Degree	AFS_SEL=1			±4		g	3
Full-Scale Range	AFS_SEL=2			±8		g	3
	AFS_SEL=3			±16		g	3
ADC Word Length	Output in two's comp		16		bits	3	
	AFS_SEL=0			16,384		LSB/g	3
Canaitivity Caala Factor	AFS_SEL=1			8,192		LSB/g	3
Sensitivity Scale Factor	AFS_SEL=2			4,096		LSB/g	3
	AFS_SEL=3			2,048		LSB/g	3
Initial Tolerance	Component-level			±3		%	2
Sensitivity Change vs. Temperature	-40°C to +85°C AFS Component-level	_SEL=0		±0.026		%/°C	1
Nonlinearity	Best Fit Straight Line	Э		±0.5		%	1
Cross-Axis Sensitivity				±2		%	1
	7	ZERO-G OUTPUT					
Initial Tolerance	Component-level, al	laxes		±60		m <i>g</i>	2
Zero-G Level Change vs. Temperature	-40°C to +85°C,	X and Y axes		±0.64		m <i>g</i> /°C	1
Zero-d Level Change vs. Temperature	Board-level	Z axis		±1		m <i>g</i> /°C	1
	NOI	SE PERFORMANCE					
Power Spectral Density	Low noise mode			300		μ <i>g</i> /√Hz	4
LOW PASS FILTER RESPONSE	Programmable Rang	је	5		260	Hz	3
INTELLIGENCE FUNCTION INCREMENT	0			4		m <i>g</i> /LSB	3
ACCELEROMETER STARTUP TIME	From Sleep mode			20		ms	1
ACCEPTION FILL OF THE	From Cold Start, 1ms V _{DD} ramp			30		ms	1
	Low power (duty-cycled)		0.24		500	Hz	
OUTPUT DATA RATE	Duty-cycled, over temp			±15		%	1
	Low noise (active)	Low noise (active)			4000	Hz	

Table 2: Accelerometer Specifications

Notes:

- Derived from validation or characterization of parts, not guaranteed in production.
- Tested in production.
- 3.
- Guaranteed by design.
 Calculated from Total RMS Noise.

Please refer to the following document for information on Self-Test: MPU-6500 Accelerometer and Gyroscope Self-Test Implementation; AN-MPU-6500A-02

Document Number: PS-MPU-6500A-01

Revision: 1.1

Release Date: 03/05/2014

3.3 Electrical Specifications

3.3.1 D.C. Electrical Characteristics

Typical Operating Circuit of section 4.2, VDD = 1.8V, VDDIO = 1.8V, T_A=25°C, unless otherwise noted.

PARAMETER	CONDITIONS	MIN	TYP	MAX	Units	Notes			
SUPPLY VOLTAGES									
VDD		1.71	1.8	3.45	V	1			
VDDIO		1.71	1.8	3.45	V	1			
	SUPPLY CURRENTS								
Normal Mode	6-axis		3.4		mA	1			
	3-axis Gyroscope		3.2		mA	1			
	3-Axis Accelerometer, 4kHz ODR		450		μΑ	1			
Accelerometer Low Power Mode	0.98 Hz update rate		7.27		μΑ	1,2			
	31.25 Hz update rate		18.65		μΑ	1,2			
Standby Mode			1.6		mA	1			
Full-Chip Sleep Mode			6		μΑ	1			
TEMPERATURE RANGE									
Specified Temperature Range	Performance parameters are not applicable beyond Specified Temperature Range	-40		+85	°C	1			

Table 3: D.C. Electrical Characteristics

Notes:

- 1. Derived from validation or characterization of parts, not guaranteed in production.
- 2. Accelerometer Low Power Mode supports the following output data rates (ODRs): 0.24, 0.49, 0.98, 1.95, 3.91, 7.81, 15.63, 31.25, 62.50, 125, 250, 500Hz. Supply current for any update rate can be calculated as:
 - a. Supply Current in μ A = 6.9 + Update Rate * 0.376

Document Number: PS-MPU-6500A-01

Revision: 1.1 Release Date: 03/05/2014

A.C. Electrical Characteristics

Typical Operating Circuit of section 4.2, VDD = 1.8V, VDDIO = 1.8V, T_A =25°C, unless otherwise noted.

Parameter	Conditions	MIN	TYP	MAX	Units	NOTES
	SUP	PLIES				
Supply Ramp Time	Monotonic ramp. Ramp rate is 10% to 90% of the final value	0.1		100	ms	1
	TEMPERATI	JRE SENSOR				
Operating Range	Ambient	-40		85	°C	
Sensitivity	Untrimmed		333.87		LSB/°C	1
Room Temp Offset	21°C		0		LSB	
	Power-C	n RESET				I
Supply Ramp Time (T _{RAMP})	Valid power-on RESET	0.01	20	100	ms	1
Start-up time for register read/write	From power-up		11	100	ms	1
I ² C ADDRESS	AD0 = 0 AD0 = 1		1101000 1101001			
	DIGITAL INPUTS (FSYI	NC, AD0, SCLK	, SDI, CS)			
V _{IH} , High Level Input Voltage		0.7*VDDIO			V	
V _{IL} , Low Level Input Voltage				0.3*VDDIO	V	1
C _I , Input Capacitance			< 10		pF	1
	DIGITAL OUT	PUT (SDO, INT)				
V _{OH} , High Level Output Voltage	R_{LOAD} =1M Ω ;	0.9*VDDIO			V	
V _{OL1} , LOW-Level Output Voltage	R_{LOAD} =1M Ω ;			0.1*VDDIO	V	
V _{OLINT1} , INT Low-Level Output Voltage	OPEN=1, 0.3mA sink Current			0.1	V	1
Output Leakage Current	OPEN=1		100		nA	1
t _{INT} , INT Pulse Width	LATCH_INT_EN=0		50		μs	
	12C I/O (S	SCL, SDA)				
V _{IL} , LOW Level Input Voltage		-0.5V		0.3*VDDIO	V	
V _{IH} , HIGH-Level Input Voltage		0.7*VDDIO		VDDIO + 0.5V	V	
V _{hys} , Hysteresis			0.1*VDDIO		V	1
V _{OL} , LOW-Level Output Voltage	3mA sink current	0		0.4	V	1
I _{OL} , LOW-Level Output Current	V _{OL} =0.4V V _{OL} =0.6V		3 6		mA mA	
Output Leakage Current			100		nA	
t_{of} , Output Fall Time from V_{IHmax} to V_{ILmax}	C _b bus capacitance in pf	20+0.1C _b		250	ns	
	AUXILLIARY I/O (AUX_CL, AUX_	DA)			
V _{IL} , LOW-Level Input Voltage		-0.5V		0.3*VDDIO	V	
V _{IH} , HIGH-Level Input Voltage		0.7* VDDIO		VDDIO + 0.5V	V	1
V _{hys} , Hysteresis			0.1* VDDIO		V] '
V _{OL1} , LOW-Level Output Voltage	VDDIO > 2V; 1mA sink current	0		0.4	V	

Document Number: PS-MPU-6500A-01

Revision: 1.1 Release Date: 03/05/2014

Parameter	Conditions	MIN	TYP	MAX	Units	NOTES
V _{OL3} , LOW-Level Output Voltage	VDDIO < 2V; 1mA sink current	0		0.2* VDDIO	V	
I _{OL} , LOW-Level Output Current	$\begin{array}{ccc} V_{OL} & = & 0.4V \\ V_{OL} = 0.6V & & \end{array}$		3 6		mA mA	
Output Leakage Current			100		nA	
$t_{\text{of}},$ Output Fall Time from V_{IHmax} to V_{ILmax}	C _b bus capacitance in pF	20+0.1C _b		250	ns	
	INTERNAL CL	OCK SOURCE				
	Fchoice=0,1,2 SMPLRT_DIV=0		32		kHz	2
Sample Rate	Fchoice=3; DLPFCFG=0 or 7 SMPLRT DIV=0		8		kHz	2
	Fchoice=3; DLPFCFG=1,2,3,4,5,6; SMPLRT_DIV=0		1		kHz	2
Clark Francisco Initial Talerana	CLK_SEL=0, 6; 25°C	-2		+2	%	1
Clock Frequency Initial Tolerance	CLK_SEL=1,2,3,4,5; 25°C	-1		+1	%	1
Eroquanov Variation over Temperature	CLK_SEL=0,6	-10		+10	%	1
Frequency Variation over Temperature	CLK_SEL=1,2,3,4,5		±1		%	1

Table 4: A.C. Electrical Characteristics

Notes:

- 1. Derived from validation or characterization of parts, not guaranteed in production.
- 2. Guaranteed by design.

Document Number: PS-MPU-6500A-01

Revision: 1.1

Release Date: 03/05/2014

3.3.3 Other Electrical Specifications

Typical Operating Circuit of section 4.2, VDD = 1.8V, VDDIO = 1.8V, T_A =25°C, unless otherwise noted.

PARAMETER	CONDITIONS	MIN	TYP	MAX	Units	Notes		
SERIAL INTERFACE								
SPI Operating Frequency, All Registers Read/Write	Low Speed Characterization		100 ±10%		kHz	1		
Registers Read/Write	High Speed Characterization		1 ±10%		MHz	1		
SPI Operating Frequency, Sensor and Interrupt Registers Read Only			20 ±10%		MHz	1		
I ² C Operating Frequency	All registers, Fast-mode			400	kHz	1		
C Operating Frequency	All registers, Standard-mode			100	kHz	1		

Table 5: Other Electrical Specifications

Notes:

1. Derived from validation or characterization of parts, not guaranteed in production.

Document Number: PS-MPU-6500A-01

Revision: 1.1

Release Date: 03/05/2014

3.4 I2C Timing Characterization

Typical Operating Circuit of section 4.2, VDD = 1.8V, VDDIO = 1.8V, T_A=25°C, unless otherwise noted.

Parameters	Conditions	Min	Typical	Max	Units	Notes
I ² C TIMING	I ² C FAST-MODE					1
f _{SCL} , SCL Clock Frequency				400	kHz	2
t _{HD.STA} , (Repeated) START Condition Hold Time		0.6			μs	2
t _{LOW} , SCL Low Period		1.3			μs	2
t _{HIGH} , SCL High Period		0.6			μs	2
t _{SU.STA} , Repeated START Condition Setup Time		0.6			μs	2
t _{HD.DAT} , SDA Data Hold Time		0			μs	2
t _{SU.DAT} , SDA Data Setup Time		100			ns	2
t _r , SDA and SCL Rise Time	C _b bus cap. from 10 to 400pF	20+0.1C _b		300	ns	2
t _f , SDA and SCL Fall Time	C _b bus cap. from 10 to 400pF	20+0.1C _b		300	ns	2
t _{SU.STO} , STOP Condition Setup Time		0.6			μs	2
t _{BUF} , Bus Free Time Between STOP and START Condition		1.3			μs	2
C _b , Capacitive Load for each Bus Line			< 400		pF	2
t _{VD.DAT} , Data Valid Time				0.9	μs	2
t _{VD.ACK} , Data Valid Acknowledge Time				0.9	μs	2

Table 6: I²C Timing Characteristics

Notes:

- 1. Timing Characteristics apply to both Primary and Auxiliary I2C Bus
- 2. Based on characterization of 5 parts over temperature and voltage as mounted on evaluation board or in sockets

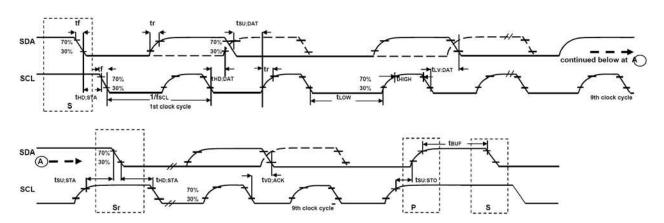


Figure 1: I2C Bus Timing Diagram

Document Number: PS-MPU-6500A-01

Revision: 1.1

Release Date: 03/05/2014

3.5 SPI Timing Characterization

Typical Operating Circuit of section 4.2, VDD = 1.8V, VDDIO = 1.8V, T_A=25°C, unless otherwise noted.

Parameters	Conditions	Min	Typical	Max	Units	Notes
SPI TIMING						
f _{SCLK} , SCLK Clock Frequency				1	MHz	1
t _{LOW} , SCLK Low Period		400			ns	1
t _{HIGH} , SCLK High Period		400			ns	1
t _{SU.CS} , CS Setup Time		8			ns	1
t _{HD.CS} , CS Hold Time		500			ns	1
t _{SU.SDI} , SDI Setup Time		11			ns	1
t _{HD.SDI} , SDI Hold Time		7			ns	1
t _{VD.SDO} , SDO Valid Time	C _{load} = 20pF			100	ns	1
t _{HD.SDO} , SDO Hold Time	C _{load} = 20pF	4			ns	1
t _{DIS.SDO} , SDO Output Disable Time				50	ns	1

Table 7: SPI Timing Characteristics

Notes:

1. Based on characterization of 5 parts over temperature and voltage as mounted on evaluation board or in sockets

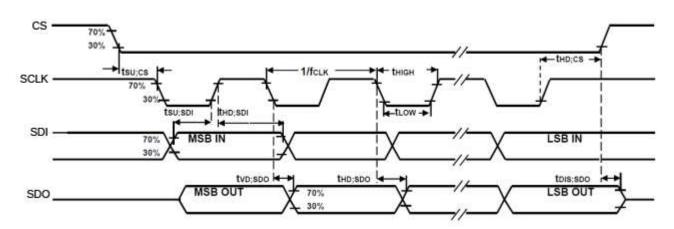


Figure 2: SPI Bus Timing Diagram

3.5.1 fSCLK = 20MHz

Parameters	Conditions	Min	Typical	Max	Units	Notes
SPI TIMING						
f _{SCLK} , SCLK Clock Frequency		0.9		20	MHz	1
t _{LOW} , SCLK Low Period		-		-	ns	
t _{HIGH} , SCLK High Period		-		-	ns	
t _{SU.CS} , CS Setup Time		1			ns	1
t _{HD.CS} , CS Hold Time		1			ns	1

Document Number: PS-MPU-6500A-01

Revision: 1.1 Release Date: 03/05/2014

t _{SU.SDI} , SDI Setup Time		0			ns	1
t _{HD.SDI} , SDI Hold Time		1			ns	1
t _{VD.SDO} , SDO Valid Time	$C_{load} = 20pF$		25		ns	1
t _{DIS.SDO} , SDO Output Disable Time				25	ns	1

Table 8: fCLK = 20MHz

Notes:

1. Based on characterization of 5 parts over temperature and voltage as mounted on evaluation board or in sockets

Document Number: PS-MPU-6500A-01

Revision: 1.1

Release Date: 03/05/2014

3.6 Absolute Maximum Ratings

Stress above those listed as "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these conditions is not implied. Exposure to the absolute maximum ratings conditions for extended periods may affect device reliability.

Parameter	Rating
Supply Voltage, VDD	-0.5V to +4V
Supply Voltage, VDDIO	-0.5V to +4V
REGOUT	-0.5V to 2V
Input Voltage Level (AUX_DA, AD0, FSYNC, INT, SCL, SDA)	-0.5V to VDD + 0.5V
Acceleration (Any Axis, unpowered)	10,000g for 0.2ms
Operating Temperature Range	-40°C to +105°C
Storage Temperature Range	-40°C to +125°C
Electrostatic Discharge (ESD) Protection	2kV (HBM); 250V (MM)
Latch-up	JEDEC Class II (2),125°C, ±100mA

Table 9: Absolute Maximum Ratings

Document Number: PS-MPU-6500A-01

Revision: 1.1

Release Date: 03/05/2014

4 Applications Information

4.1 Pin Out Diagram and Signal Description

Pin Number	Pin Name	Pin Description
7	AUX_CL	I ² C Master serial clock, for connecting to external sensors
8	VDDIO	Digital I/O supply voltage
9	AD0/SDO	I ² C Slave Address LSB (AD0); SPI serial data output (SDO)
10	REGOUT	Regulator filter capacitor connection
11	FSYNC	Frame synchronization digital input. Connect to GND if unused.
12	INT	Interrupt digital output (totem pole or open-drain) Note: The Interrupt line should be connected to a pin on the Application Processor (AP) that can bring the AP out of suspend mode.
13	VDD	Power supply voltage and Digital I/O supply voltage
18	GND	Power supply ground
19	RESV	Reserved. Do not connect.
20	RESV	Reserved. Connect to GND.
21	AUX_DA	I ² C master serial data, for connecting to external sensors
22	nCS	Chip select (SPI mode only)
23	SCL / SCLK	I ² C serial clock (SCL); SPI serial clock (SCLK)
24	SDA / SDI	I ² C serial data (SDA); SPI serial data input (SDI)
1 – 6, 14 - 17	NC	No Connect pins. Do not connect.

Table 10: Signal Descriptions

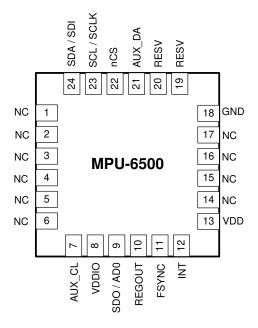


Figure 3: Pin out Diagram for MPU-6500 3.0x3.0x0.9mm QFN

Document Number: PS-MPU-6500A-01

Revision: 1.1

Release Date: 03/05/2014

4.2 Typical Operating Circuit

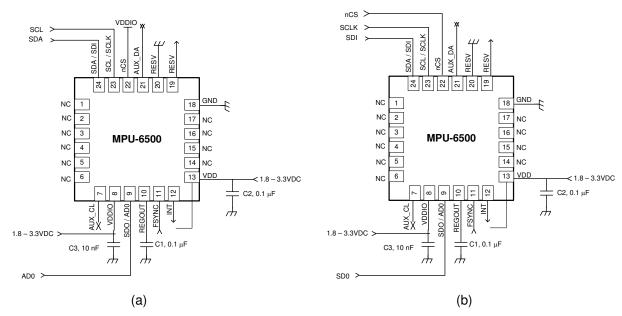


Figure 4: MPU-6500 QFN Application Schematic. (a) I2C operation, (b) SPI operation.

4.3 Bill of Materials for External Components

Component	Label	Specification	Quantity
Regulator Filter Capacitor	C1	Ceramic, X7R, 0.1µF ±10%, 2V	1
VDD Bypass Capacitor	C2	Ceramic, X7R, 0.1µF ±10%, 4V	1
VDDIO Bypass Capacitor	C3	Ceramic, X7R, 10nF ±10%, 4V	1

Table 11: Bill of Materials

Document Number: PS-MPU-6500A-01

Revision: 1.1

Release Date: 03/05/2014

4.4 Block Diagram

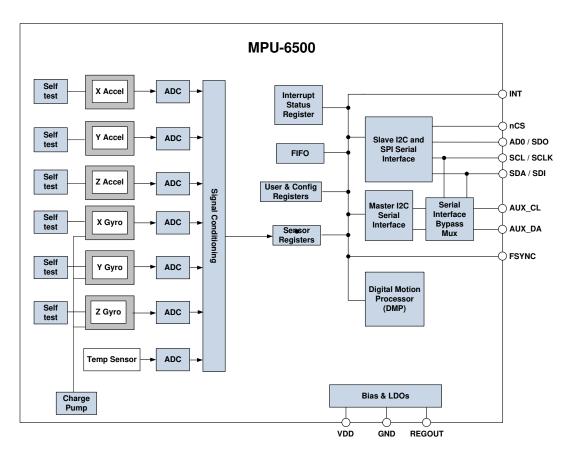


Figure 5: MPU-6500 Block Diagram

Note: The Interrupt line should be connected to a pin on the Application Processor (AP) that can bring the AP out of suspend mode.

4.5 Overview

The MPU-6500 is comprised of the following key blocks and functions:

- Three-axis MEMS rate gyroscope sensor with 16-bit ADCs and signal conditioning
- Three-axis MEMS accelerometer sensor with 16-bit ADCs and signal conditioning
- Digital Motion Processor (DMP) engine
- Primary I²C and SPI serial communications interfaces
- Auxiliary I²C serial interface
- Self-Test
- Clocking
- Sensor Data Registers
- FIFO
- Interrupts
- Digital-Output Temperature Sensor
- Bias and LDOs
- Charge Pump
- Standard Power Modes

Document Number: PS-MPU-6500A-01

Revision: 1.1

Release Date: 03/05/2014

4.6 Three-Axis MEMS Gyroscope with 16-bit ADCs and Signal Conditioning

The MPU-6500 consists of three independent vibratory MEMS rate gyroscopes, which detect rotation about the X-, Y-, and Z- Axes. When the gyros are rotated about any of the sense axes, the Coriolis Effect causes a vibration that is detected by a capacitive pickoff. The resulting signal is amplified, demodulated, and filtered to produce a voltage that is proportional to the angular rate. This voltage is digitized using individual on-chip 16-bit Analog-to-Digital Converters (ADCs) to sample each axis. The full-scale range of the gyro sensors may be digitally programmed to ± 250 , ± 500 , ± 1000 , or ± 2000 degrees per second (dps). The ADC sample rate is programmable from 8,000 samples per second, down to 3.9 samples per second, and user-selectable low-pass filters enable a wide range of cut-off frequencies.

4.7 Three-Axis MEMS Accelerometer with 16-bit ADCs and Signal Conditioning

The MPU-6500's 3-Axis accelerometer uses separate proof masses for each axis. Acceleration along a particular axis induces displacement on the corresponding proof mass, and capacitive sensors detect the displacement differentially. The MPU-6500's architecture reduces the accelerometers' susceptibility to fabrication variations as well as to thermal drift. When the device is placed on a flat surface, it will measure 0g on the X- and Y-axes and +1g on the Z-axis. The accelerometers' scale factor is calibrated at the factory and is nominally independent of supply voltage. Each sensor has a dedicated sigma-delta ADC for providing digital outputs. The full scale range of the digital output can be adjusted to $\pm 2g$, $\pm 4g$, $\pm 8g$, or $\pm 16g$.

4.8 Digital Motion Processor

The embedded Digital Motion Processor (DMP) within the MPU-6500 offloads computation of motion processing algorithms from the host processor. The DMP acquires data from accelerometers, gyroscopes, and additional 3rd party sensors such as magnetometers, and processes the data. The resulting data can be read from the FIFO. The DMP has access to one of the MPU's external pins, which can be used for generating interrupts.

The purpose of the DMP is to offload both timing requirements and processing power from the host processor. Typically, motion processing algorithms should be run at a high rate, often around 200Hz, in order to provide accurate results with low latency. This is required even if the application updates at a much lower rate; for example, a low power user interface may update as slowly as 5Hz, but the motion processing should still run at 200Hz. The DMP can be used to minimize power, simplify timing, simplify the software architecture, and save valuable MIPS on the host processor for use in applications.

The DMP supports the following functionality:

- Low Power Quaternion (3-Axis Gyroscope)
- Screen Orientation (A low-power implementation of Android's screen rotation algorithm)
- Pedometer (InvenSense implementation)

4.9 Primary I2C and SPI Serial Communications Interfaces

The MPU-6500 communicates to a system processor using either a SPI or an I²C serial interface. The MPU-6500 always acts as a slave when communicating to the system processor. The LSB of the of the I²C slave address is set by pin 9 (AD0).

4.9.1 MPU-6500 Solution Using I2C Interface

In the figure below, the system processor is an I²C master to the MPU-6500. In addition, the MPU-6500 is an I²C master to the optional external compass sensor. The MPU-6500 has limited capabilities as an I²C Master, and depends on the system processor to manage the initial configuration of any auxiliary sensors.

Document Number: PS-MPU-6500A-01

Revision: 1.1

Release Date: 03/05/2014

The MPU-6500 has an interface bypass multiplexer, which connects the system processor I²C bus pins 23 and 24 (SDA and SCL) directly to the auxiliary sensor I²C bus pins 6 and 7 (AUX_DA and AUX_CL).

Once the auxiliary sensors have been configured by the system processor, the interface bypass multiplexer should be disabled so that the MPU-6500 auxiliary I²C master can take control of the sensor I²C bus and gather data from the auxiliary sensors.

For further information regarding I²C master control, please refer to section 6.

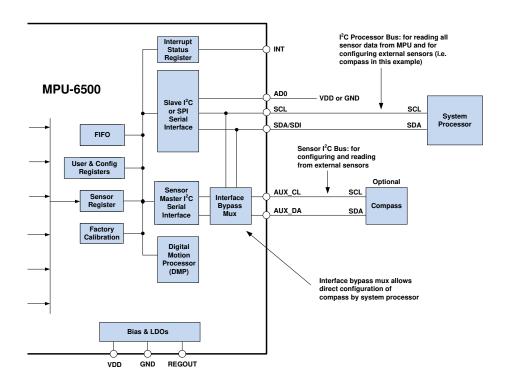


Figure 6: MPU-6500 Solution Using I²C Interface

Note: The Interrupt line should be connected to a pin on the Application Processor (AP) that can bring the AP out of suspend mode.

Document Number: PS-MPU-6500A-01

Revision: 1.1

Release Date: 03/05/2014

4.9.2 MPU-6500 Solution Using SPI Interface

In the figure below, the system processor is an SPI master to the MPU-6500. Pins 8, 9, 23, and 24 are used to support the CS, SDO, SCLK, and SDI signals for SPI communications. Because these SPI pins are shared with the I²C slave pins (9, 23 and 24), the system processor cannot access the auxiliary I²C bus through the interface bypass multiplexer, which connects the processor I²C interface pins to the sensor I²C interface pins. Since the MPU-6500 has limited capabilities as an I²C Master, and depends on the system processor to manage the initial configuration of any auxiliary sensors, another method must be used for programming the sensors on the auxiliary sensor I²C bus pins 6 and 7 (AUX DA and AUX CL).

When using SPI communications between the MPU-6500 and the system processor, configuration of devices on the auxiliary I²C sensor bus can be achieved by using I²C Slaves 0-4 to perform read and write transactions on any device and register on the auxiliary I²C bus. The I²C Slave 4 interface can be used to perform only single byte read and write transactions. Once the external sensors have been configured, the MPU-6500 can perform single or multi-byte reads using the sensor I²C bus. The read results from the Slave 0-3 controllers can be written to the FIFO buffer as well as to the external sensor registers.

For further information regarding the control of the MPU-6500's auxiliary I²C interface, please refer to the MPU-6500 Register Map and Register Descriptions document.

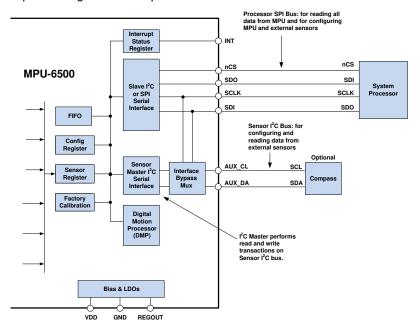


Figure 7: MPU-6500 Solution Using SPI Interface

Note: The Interrupt line should be connected to a pin on the Application Processor (AP) that can bring the AP out of suspend mode.

4.10 Auxiliary I2C Serial Interface

The MPU-6500 has an auxiliary I²C bus for communicating to an off-chip 3-Axis digital output magnetometer or other sensors. This bus has two operating modes:

- <u>I²C Master Mode</u>: The MPU-6500 acts as a master to any external sensors connected to the auxiliary I²C bus
- <u>Pass-Through Mode</u>: The MPU-6500 directly connects the primary and auxiliary I²C buses together, allowing the system processor to directly communicate with any external sensors.

Document Number: PS-MPU-6500A-01

Revision: 1.1

Release Date: 03/05/2014

Auxiliary I²C Bus Modes of Operation:

• <u>I²C Master Mode</u>: Allows the MPU-6500 to directly access the data registers of external digital sensors, such as a magnetometer. In this mode, the MPU-6500 directly obtains data from auxiliary sensors without intervention from the system applications processor.

For example, In I²C Master mode, the MPU-6500 can be configured to perform burst reads, returning the following data from a magnetometer:

- X magnetometer data (2 bytes)
- Y magnetometer data (2 bytes)
- Z magnetometer data (2 bytes)

The I²C Master can be configured to read up to 24 bytes from up to 4 auxiliary sensors. A fifth sensor can be configured to work single byte read/write mode.

• Pass-Through Mode: Allows an external system processor to act as master and directly communicate to the external sensors connected to the auxiliary I²C bus pins (AUX_DA and AUX_CL). In this mode, the auxiliary I²C bus control logic (3rd party sensor interface block) of the MPU-6500 is disabled, and the auxiliary I²C pins AUX_DA and AUX_CL (Pins 6 and 7) are connected to the main I²C bus (Pins 23 and 24) through analog switches internally. Pass-Through mode is useful for configuring the external sensors, or for keeping the MPU-6500 in a low-power mode when only the external sensors are used. In this mode the system processor can still access MPU-6500 data through the I²C interface.

4.11 Self-Test

Please refer to the register map document for more details on self-test.

Self-test allows for the testing of the mechanical and electrical portions of the sensors. The self-test for each measurement axis can be activated by means of the gyroscope and accelerometer self-test registers (registers 13 to 16).

When the self-test is activated, the electronics cause the sensors to be actuated and produce an output signal. The output signal is used to observe the self-test response.

The self-test response is defined as follows:

Self-test response = Sensor output with self-test enabled - Sensor output without self-test enabled

The self-test response for each gyroscope axis is defined in the gyroscope specification table, while that for each accelerometer axis is defined in the accelerometer specification table.

When the value of the self-test response is within the specified min/max limits of the product specification, the part has passed self-test. When the self-test response exceeds the min/max values, the part is deemed to have failed self-test. It is recommended to use InvenSense MotionApps software for executing self-test.

4.12 Clocking

The MPU-6500 has a flexible clocking scheme, allowing a variety of internal clock sources to be used for the internal synchronous circuitry. This synchronous circuitry includes the signal conditioning and ADCs, the DMP, and various control circuits and registers. An on-chip PLL provides flexibility in the allowable inputs for generating this clock.

Allowable internal sources for generating the internal clock are:

- An internal relaxation oscillator
- Any of the X, Y, or Z gyros (MEMS oscillators with a variation of ±1% over temperature)