imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Freescale Semiconductor Data Sheet: Technical Data

Integrated Silicon Pressure Sensor On-Chip Signal Conditioned, Temperature Compensated and Calibrated

The MPXV7025 series piezoresistive transducer is a state-of-the-art monolithic silicon pressure sensor designed for a wide range of applications, but particularly those employing a microcontroller or microprocessor with A/D inputs. This patented, single element transducer combines advanced micromachining techniques, thin-film metallization, and bipolar processing to provide an accurate, high level analog output signal that is proportional to the applied pressure.

Features

- 5.0% Maximum Error Over 0° to 85°C
- · Ideally Suited for Microprocessor or Microcontroller-Based Systems
- Temperature Compensated Over –40° to +125°C
- Thermoplastic (PPS) Surface Mount Package
- Patented Silicon Shear Stress Strain Gauge
- Available in Differential and Gauge Configurations

MPXV7025 Series

-25 to 25 kPa (-3.6 to 3.6 psi) 0.2 to 4.7 V Output

Application Examples

- Respiratory Systems
- Process Control
- Patient Monitoring
- Remote Monitoring Devices

			ORDER	ING INFO	RMATIO	N			
Device Name	Package	Case	# of Ports		Pressure Type			Device	
	Options	No.	None	Single	Dual	Gauge	Differential	Absolute	Marking
Small Outline Packag	e (MPXV7025 Ser	ies)							
MPXV7025GC6U	Rails	482A		•		•			MPXV7025G
MPXV7025GC6T1	Tape & Reel	482A		•		•			MPXV7025G
MPXV7025GP	Trays	1369		•		•			MPXV7025GF
MPXV7025DP	Trays	1351			•		•		MPXV7025DP
Small Outline Packag	e (Media Resista	nt Gel) (MP	VZ7025 Se	eries)				•	
MPVZ7025GC6U	Rails	482A		•		•			MPVZ7025G
MPVZ7025GP	Trays	1369		•		•			MPVZ7025GP
MPVZ7025G6U	Rails	482	•				•		MPVZ7025G
MPVZ7025DP	Trays	1351			•		•		MPVZ7025DP

MPXV7025GC6U/T1 MPVZ7025GC6U CASE 482A-01

SMALL OUTLINE PACKAGE

MPVZ7025G6U CASE 482-01

MPXV7025GP MPVZ7025GP CASE 1369-01

MPXV7025DP MPVZ7025DP CASE 1351-01

Operating Characteristics

Table 1. Operating Characteristics ($V_S = 5.0 \text{ Vdc}$, $T_A = 25^{\circ}\text{C}$ unless otherwise noted, P1 > P2. Decoupling circuit shown in Figure 3 required to meet electrical specifications.)

Characteristic		Symbol	Min	Тур	Max	Unit
Pressure Range ⁽¹⁾		P _{OP}	-25	_	25	kPa
Supply Voltage ⁽²⁾		V _S	4.75	5.0	5.25	Vdc
Supply Current		۱ _o	_	7.0	10	mAdc
Minimum Pressure Offset ⁽³⁾ @ V _S = 5.0 Volts	(0 to 85°C)	V _{off}	0.116	0.25	0.384	Vdc
Full Scale Output ⁽⁴⁾ @ V _S = 5.0 Volts	(0 to 85°C)	V _{FSO}	4.610	4.75	4.890	Vdc
Full Scale Span ⁽⁵⁾ @ V _S = 5.0 Volts	(0 to 85°C)	V _{FSS}	_	4.5	_	Vdc
Accuracy	(0 to 85°C)	_		—	±5.0	%V _{FSS}
Sensitivity		V/P		90		mV/kPa
Response Time ⁽⁶⁾		t _R	_	1.0		ms
Output Source Current at Full Scale Output		I _{o+}		0.1		mAdc
Warm-Up Time ⁽⁷⁾		—	—	20		ms
Offset Stability ⁽⁸⁾		—	—	±0.5		%V _{FSS}

1. 1.0 kPa (kiloPascal) equals 0.145 psi.

2. Device is ratiometric within this specified excitation range.

3. Offset (Voff) is defined as the output voltage at the minimum rated pressure.

4. Full Scale Output (V_{FSO}) is defined as the output voltage at the maximum or full rated pressure.

5. Full Scale Span (V_{FSS}) is defined as the algebraic difference between the output voltage at full rated pressure and the output voltage at the minimum rated pressure.

- 6. Response Time is defined as the time for the incremental change in the output to go from 10% to 90% of its final value when subjected to a specified step change in pressure.
- 7. Warm-up Time is defined as the time required for the product to meet the specified output voltage after the Pressure has been stabilized.

8. Offset Stability is the product's output deviation when subjected to 1000 hours of Pulsed Pressure, Temperature Cycling with Bias Test.

Maximum Ratings

Table 2. Maximum Ratings⁽¹⁾

Rating	Symbol	Value	Unit
Maximum Pressure (P1 > P2)	P _{max} 200		kPa
Storage Temperature	T _{stg}	-40 to +125	°C
Operating Temperature	T _A	-40 to +125	°C

1. Exposure beyond the specified limits may cause permanent damage or degradation to the device.

Figure 1 shows a block diagram of the internal circuitry integrated on a pressure sensor chip.

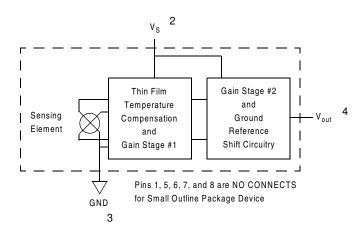


Figure 1. Integrated Pressure Sensor Schematic

On-chip Temperature Compensation and Calibration

The MPXV7025 series pressure sensor operating characteristics, and internal reliability and qualification tests are based on use of dry air as the pressure media. Media, other than dry air, may have adverse effects on sensor performance and long-term reliability. Contact the factory for information regarding media compatibility in your application.

Figure 2 shows the sensor output signal relative to pressure input. Typical, minimum, and maximum output

curves are shown for operation over a temperature range of 0° to 85°C using the decoupling circuit shown in Figure 3. The output will saturate outside of the specified pressure range.

Figure 3 shows the recommended decoupling circuit for interfacing the output of the integrated sensor to the A/D input of a microprocessor or microcontroller. Proper decoupling of the power supply is recommended.

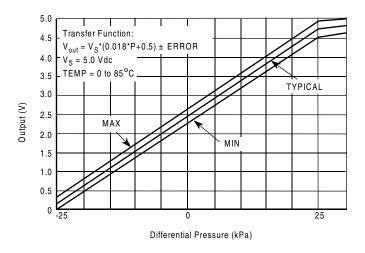
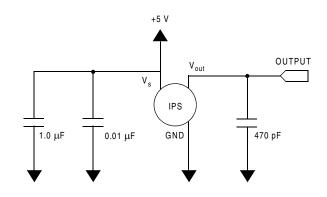
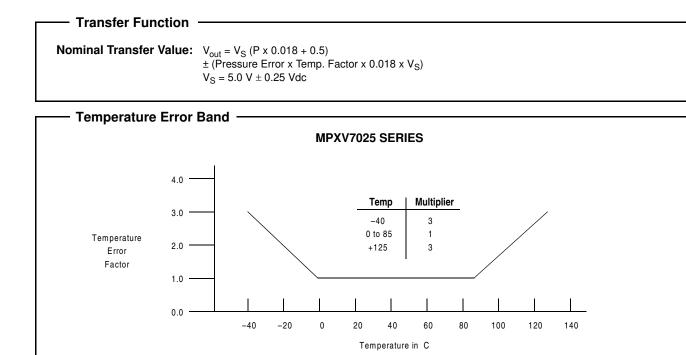
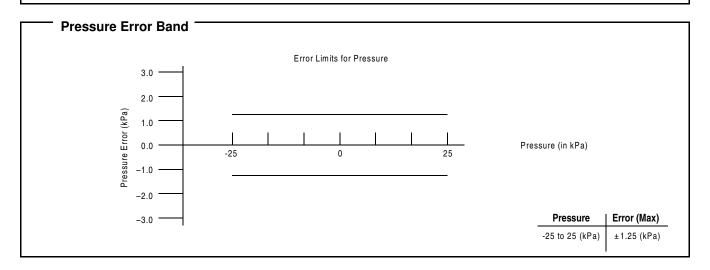


Figure 2. Output versus Pressure Differential


Figure 3. Recommended Power Supply Decoupling and Output Filtering (For additional output filtering, please refer to Application Note AN1646.)

Pressure

NOTE: The Temperature Multiplier is a linear response from 0° to -40°C and from 85° to 125°C.

PRESSURE (P1)/VACUUM (P2) SIDE IDENTIFICATION TABLE

Freescale designates the two sides of the pressure sensor as the Pressure (P1) side and the Vacuum (P2) side. The Pressure (P1) side is the side containing fluorosilicone gel which protects the die from harsh media. The pressure sensor is designed to operate with positive differential pressure applied, P1 > P2.

The Pressure (P1) side may be identified by using the following table:

Part Number	Case Type	Pressure (P1) Side Identifier
MPXV7025GC6U/C6T1, MPVZ7025GC6U	482A	Side with Port Attached
MPXV7025GP, MPVZ7025GP	1369	Side with Port Attached
MPXV7025DP, MPVZ7025DP	1351	Side with Part Marking
MPVZ7025G6U	482	Side with Part Marking

MINIMUM RECOMMENDED FOOTPRINT FOR SURFACE MOUNTED APPLICATIONS

Surface mount board layout is a critical portion of the total design. The footprint for the surface mount packages must be the correct size to ensure proper solder connection interface between the board and the package. With the correct

footprint, the packages will self align when subjected to a solder reflow process. It is always recommended to design boards with a solder mask layer to avoid bridging and shorting between solder pads.

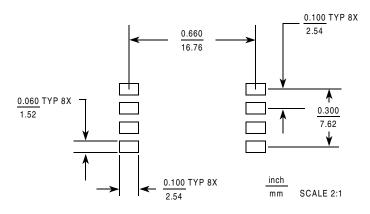
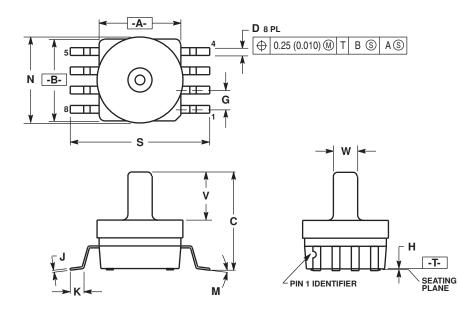
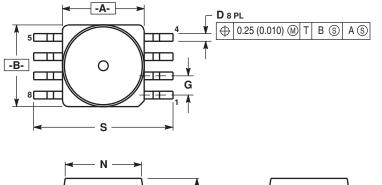



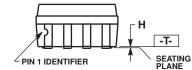
Figure 4. Small Outline Package Footprint

PACKAGE DIMENSIONS



NOT	ES:		

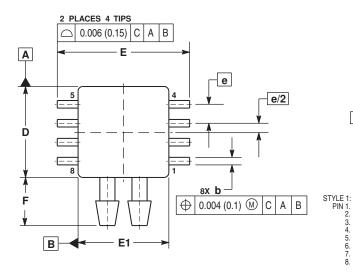
IOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. 3. DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION. 4. MAXIMUM MOLD PROTRUSION 0.15 (0.006). 5. ALL VERTICAL SURFACES S' TYPICAL DRAFT.

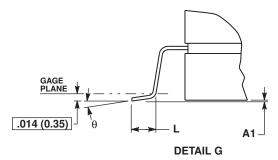

	INC	HES	MILLIMETERS		
DIM	MIN	MAX	MIN	MAX	
Α	0.415	0.425	10.54	10.79	
В	0.415	0.425	10.54	10.79	
С	0.500	0.520	12.70	13.21	
D	0.038	0.042	0.96	1.07	
G	0.100 BSC		2.54 BSC		
н	0.002	0.010	0.05	0.25	
J	0.009	0.011	0.23	0.28	
Κ	0.061	0.071	1.55	1.80	
Μ	0°	7°	0°	7°	
Ν	0.444	0.448	11.28	11.38	
S	0.709	0.725	18.01	18.41	
٧	0.245	0.255	6.22	6.48	
W	0.115	0.125	2.92	3.17	

CASE 482A-01 **ISSUE A** SMALL OUTLINE PACKAGE

С

М


NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTPOLLING DIMENSION: INCH. 3. DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION. 4. MAXIMUM MOLD PROTRUSION 0.15 (0.006). 5. ALL VERTICAL SURFACES 5' TYPICAL DRAFT.


	INC	HES	MILLIMETERS		
DIM	MIN	MAX	MIN	MAX	
Α	0.415	0.425	10.54	10.79	
В	0.415	0.425	10.54	10.79	
С	0.212	0.230	5.38	5.84	
D	0.038	0.042	0.96	1.07	
G	0.100 BSC		2.54 BSC		
Н	0.002	0.010	0.05	0.25	
J	0.009	0.011	0.23	0.28	
K	0.061	0.071	1.55	1.80	
Μ	0°	7°	0°	7°	
Ν	0.405	0.415	10.29	10.54	
S	0.709	0.725	18.01	18.41	

CASE 482-01 **ISSUE O** SMALL OUTLINE PACKAGE

PACKAGE DIMENSIONS

NOTES:

STYLE 2: PIN 1. N/C 2. Vs 3. GND 4. Vout 5. N/C 6. N/C 7. N/C 8. N/C

1: 1. GND 2. +Vout 3. Vs 4. -Vout 5. N/C 6. N/C 7. N/C 8. N/C

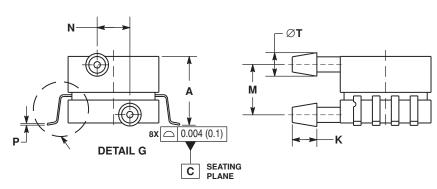
- CONTROLLING DIMENSION: INCH.
 INTERPRET DIMENSIONS AND TOLERANCES PER
- ASME Y14.5M, 1994. ASME Y14.5M, 1994. MOLD FLASH OR PROTRUSIONS. MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.006 (0.152) PER SIDE.
- DIMENSION "b" DOES NOT INCLUDE DAMBAR
 PROTRUSION. ALLOWABLE DAMBAR
 PROTRUSION SHALL BE 0.008 (0.203) MAXIMUM.

 INCHES
 MILLIMETERS

 DIM
 MIN
 MAX

 A
 0.370
 0.390
 9.39

 A1
 0.002
 0.010

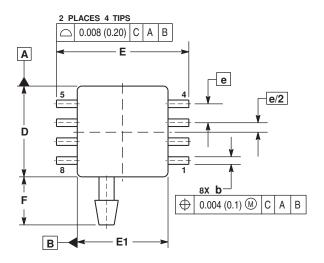

 b
 0.038
 0.042

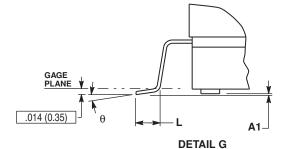
 D
 0.465
 0.485

 E
 0.680
 0.700
 0.25 0.05 0.96 12.32 17.78 11.81 17.27 E1 0.465 0.485 e 0.100 BSC 11.81 12.32 e F 2.54 BSC 0.240 0.260 6.10 6.60
 K
 0.115
 0.135

 L
 0.040
 0.060
 2.92 3.43 1.02 1.52 M 0.270 0.290 7.37 6.86 N 0.160 0.180 P 0.009 0.011 4.06 4.57 0.23 0.28
 T
 0.110
 0.130

 θ
 0°
 7°
 2.79 3.30 0° 7




CASE 1351-01 ISSUE O SMALL OUTLINE PACKAGE

MPXV7025

PACKAGE DIMENSIONS

NOTES:

- CONTROLLING DIMENSION: INCH.
 INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M, 1994.
- 3. DIMENSIONS "D" AND "E1" DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS. MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.006 (0.152) PER SIDE.

 DIMENSION "b" DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.008 (0.203) MAXIMUM.

	INC	HES	MILLIN	IETERS
DIM	MIN	MAX	MIN	MAX
Α	0.300	0.330	7.11	7.62
A1	0.002	0.010	0.05	0.25
b	0.038	0.042	0.96	1.07
D	0.465	0.485	11.81	12.32
Е	0.717	BSC	18.21 BSC	
E1	0.465	0.485	11.81	12.32
е	0.100	BSC	2.54 BSC	
F	0.245	0.255	6.22	6.47
Κ	0.120	0.130	3.05	3.30
L	0.061	0.071	1.55	1.80
Μ	0.270	0.290	6.86	7.36
Ν	0.080	0.090	2.03	2.28
Р	0.009	0.011	0.23	0.28
Т	0.115	0.125	2.92	3.17
θ	0°	7°	0°	7°

CASE 1369-01 **ISSUE O** SMALL OUTLINE PACKAGE

М

ĸ

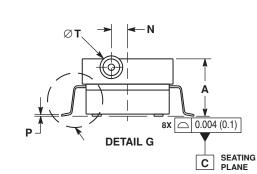


Table 3. Revision History

Revision number	Revision date	Description of changes
6	10/2012	 Deleted references to device number MPVZ7025GC6T1 and MPVZ7025G6T1 throughout the document

MPXV7025

How to Reach Us:

Home Page: freescale.com

Web Support: freescale.com/support Information in this document is provided solely to enable system and software implementers to use Freescale products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document.

Freescale reserves the right to make changes without further notice to any products herein. Freescale makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including "typicals," must be validated for each customer application by customer's technical experts. Freescale does not convey any license under its patent rights nor the rights of others. Freescale sells products pursuant to standard terms and conditions of sale, which can be found at the following address: freescale.com/salestermsandconditions.

Freescale, the Freescale logo, Energy Efficient Solutions logo, are trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. Xtrinsic is a trademark of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners.

© 2012 Freescale Semiconductor, Inc.

