

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

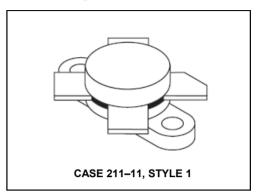
We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China



Rev. V1

Designed primarily for high–voltage applications as a high–power linear amplifiers from 2.0 to 30 MHz. Ideal for marine and base station equipment.

- Specified 50 V, 30 MHz characteristics
 Output power = 250 W
 Minimum gain = 12 dB
 Efficiency = 45%
- Intermodulation distortion @ 250 W (PEP) IMD = -30 dB (max)
- 100% tested for load mismatch at all phase angles with 3:1 VSWR

Product Image

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector–Emitter Voltage	V _{CEO}	50	Vdc
Collector-Base Voltage	V _{CBO}	100	Vdc
Emitter-Base Voltage	V _{EBO}	4.0	Vdc
Collector Current — Continuous	Ic	16	Adc
Withstand Current — 10 s	_	20	Adc
Total Device Dissipation @ T _C = 25°C (1) Derate above 25°C	P _D	290 1.67	Watts W/°C
Storage Temperature Range	T _{stg}	-65 to +150	°C

THERMAL CHARACTERISTICS

Characteristic		Max	Unit
Thermal Resistance, Junction to Case	$R_{\theta JC}$	0.6	°C/W

ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise noted.)

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS					
Collector-Emitter Breakdown Voltage (I _C = 200 mAdc, I _B = 0)	V _{(BR)CEO}	50	_	_	Vdc
Collector-Emitter Breakdown Voltage (I _C = 100 mAdc, V _{BE} = 0)	V _{(BR)CES}	100	_	_	Vdc
Collector-Base Breakdown Voltage (I _C = 100 mAdc, I _E = 0)	V _{(BR)CBO}	100	_	_	Vdc
Emitter–Base Breakdown Voltage (I _E = 10 mAdc, I _C = 0)	V _{(BR)EBO}	4.0	_	_	Vdc

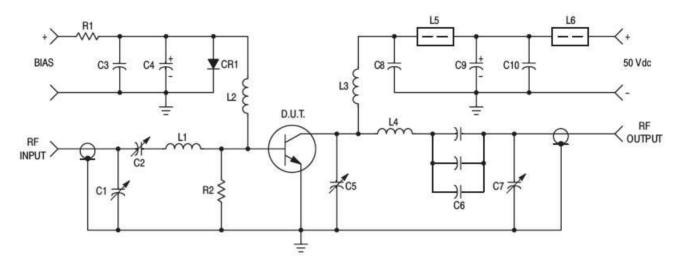
NOTE: (continued)

•

^{1.} PD is a measurement reflecting short term maximum condition. See SOAR curve for operating conditions.

Rev. V1

ELECTRICAL CHARACTERISTICS — continued (T_C = 25°C unless otherwise noted.)


Characteristic	Symbol	Min	Тур	Max	Unit
ON CHARACTERISTICS		•	•	•	•
DC Current Gain (I _C = 5.0 Adc, V _{CE} = 10 Vdc)	h _{FE}	10	30	_	_
DYNAMIC CHARACTERISTICS			•	•	•
Output Capacitance (V _{CB} = 50 Vdc, I _E = 0, f = 1.0 MHz)	C _{ob}	_	350	450	pF
FUNCTIONAL TESTS		•			
Common–Emitter Amplifier Power Gain (V _{CC} = 50 Vdc, P _{out} = 250 W CW, f = 30 MHz, I _{CQ} = 250 mA)	G _{PE}	12	14	_	dB
Collector Efficiency (V _{CC} = 50 Vdc, P _{out} = 250 W, f = 30 MHz, I _{CQ} = 250 mA)	η	_	45 65	_	% (PEP) % (CW)
Intermodulation Distortion (2) (V _{CE} = 50 Vdc, P _{out} = 250 W (PEP), I _{CQ} = 250 mA, f = 30 MHz)	IMD	_	-33	-30	dB
Electrical Ruggedness (V _{CC} = 50 Vdc, P _{out} = 250 W CW, f = 30 MHz, VSWR 3:1 at all Phase Angles)	Ψ	No Degradation in Output Power			

NOTE:

^{2.} To Mil-Std-1311 Version A, Test Method 2204, Two Tone, Reference each Tone.

Rev. V1

C1, C2, C5, C7 - 170-780 pF, Arco 469

C3, C8, C9 - 0.1 µF, 100 V Erie

C4 — 500 μF @ 6.0 V C6 — 360 pF, 3 x 120 pF 3.0 kV in parallel

C10 - 10 µF, 100 V

R1 — 10 Ω , 10 Watt

R2 - 10 Ω, 1.0 Watt

CR1 - 1N4997 or equivalent

L1 - 3 Turns, #16 Wire, 0.4" I.D., 0.3" Long

L2 - 0.8 μH, Ohmite Z-235 or equivalent

L3 — 12 Turns, #16 Enameled Wire Closewound 0.25" I.D.

L4 - 4 Turns, 1/8" Copper Tubing, 0.6" I.D., 1.0" Long

L5, L6 - 2.0 µH, Fair-Rite 2643021801 Ferrite bead each or equivalent

Figure 1. 30 MHz Test Circuit Schematic

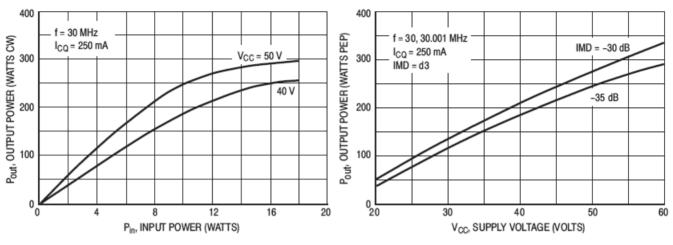


Figure 2. Output Power versus Input Power

Figure 3. Output Power versus Supply Voltage

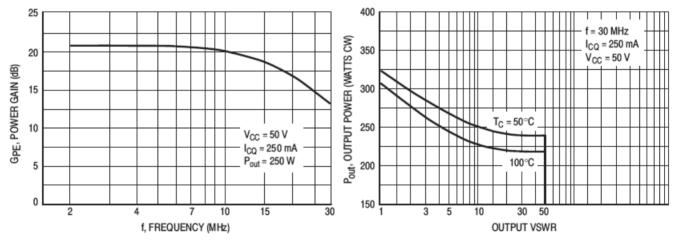


Figure 4. Power Gain versus Frequency

Figure 5. RF SOAR (Class AB) Pout versus Output VSWR

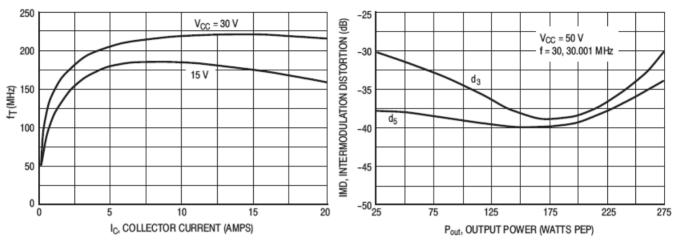


Figure 6. f_T versus Collector Current

Figure 7. IMD versus Pout

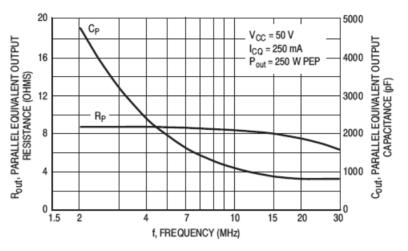
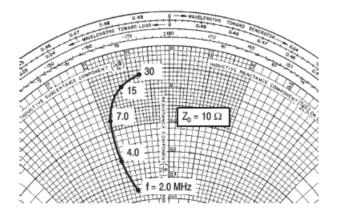
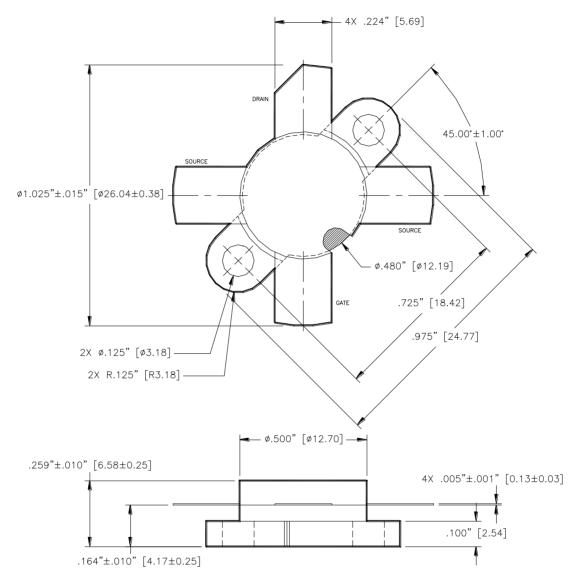



Figure 8. Output Resistance and Capacitance versus Frequency



 V_{CC} = 50 V I_{CQ} = 150 mA P_{out} = 250 W PEP

f MHz	Z _{in} Ohms
2.0	4.50 - j1.40
4.0	3.10 - j1.80
7.0	1.70 - j1.75
15	0.80 - j1.25
30	0.60 - j0.75

Figure 9. Series Equivalent Impedance

Unless otherwise noted, tolerances are inches $\pm .005$ " [millimeters ± 0.13 mm]

MRF448

The RF Line NPN Silicon Power Transistor 250W. 30MHz. 50V

Rev. V1

M/A-COM Technology Solutions Inc. All rights reserved.

Information in this document is provided in connection with M/A-COM Technology Solutions Inc ("MACOM") products. These materials are provided by MACOM as a service to its customers and may be used for informational purposes only. Except as provided in MACOM's Terms and Conditions of Sale for such products or in any separate agreement related to this document, MACOM assumes no liability whatsoever. MACOM assumes no responsibility for errors or omissions in these materials. MACOM may make changes to specifications and product descriptions at any time, without notice. MACOM makes no commitment to update the information and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to its specifications and product descriptions. No license, express or implied, by estoppels or otherwise, to any intellectual property rights is granted by this document.

THESE MATERIALS ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, CONSEQUENTIAL OR INCIDENTAL DAMAGES, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. MACOM FURTHER DOES NOT WARRANT THE ACCURACY OR COMPLETENESS OF THE INFORMATION, TEXT, GRAPHICS OR OTHER ITEMS CONTAINED WITHIN THESE MATERIALS. MACOM SHALL NOT BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUES OR LOST PROFITS, WHICH MAY RESULT FROM THE USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.