

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

. reescale Semiconductor

Technical Data

RF Power Field Effect Transistor

N-Channel Enhancement-Mode Lateral MOSFET

Designed for broadband commercial and industrial applications with frequencies up to 1000 MHz. The high gain and broadband performance of this device make it ideal for large-signal, common-source amplifier applications in 28 volt base station equipment.

• Typical Performance at 945 MHz, 28 Volts

Output Power — 45 Watts PEP

Power Gain — 19 dB

Efficiency — 41% (Two Tones)

IMD - -31 dBc

- Integrated ESD Protection
- Guaranteed Ruggedness @ Load VSWR = 5:1, @ 28 Vdc, 945 MHz, 45 Watts CW Output Power

Features

- Excellent Thermal Stability
- Characterized with Series Equivalent Large-Signal Impedance Parameters
- Dual-Lead Boltdown Plastic Package Can Also Be Used As Surface Mount.
- 200°C Capable Plastic Package
- N Suffix Indicates Lead-Free Terminations. RoHS Compliant.
- TO-270-2 Available in Tape and Reel. R1 Suffix = 500 Units per 24 mm, 13 inch Reel.

Document Number: MRF9045N Rev. 12, 9/2008

)/Delic

MRF9045NR1

945 MHz, 45 W, 28 V LATERAL N-CHANNEL BROADBAND RF POWER MOSFET

CASE 1265-09, STYLE 1 TO-270-2 PLASTIC

Table 1. Maximum Ratings

Rating	Symbol	Value	Unit
Drain-Source Voltage	V_{DSS}	- 0.5, +65	Vdc
Gate-Source Voltage	V _{GS}	- 0.5, +15	Vdc
Total Device Dissipation @ T _C = 25°C Derate above 25°C	P _D	177 1.18	W W/°C
Storage Temperature Range	T _{stg}	- 65 to +150	°C
Operating Junction Temperature	TJ	200	°C

Table 2. Thermal Characteristics

	Characteristic	Symbol	Value ⁽¹⁾	Unit
1	Thermal Resistance, Junction to Case	$R_{ heta JC}$	0.85	°C/W

Table 3. ESD Protection Characteristics

Test Conditions	Class
Human Body Model	1 (Minimum)
Machine Model	M2 (Minimum)

Table 4. Moisture Sensitivity Level

Test Methodology	Rating	Package Peak Temperature	Unit
Per JESD 22-A113, IPC/JEDEC J-STD-020	3	260	°C

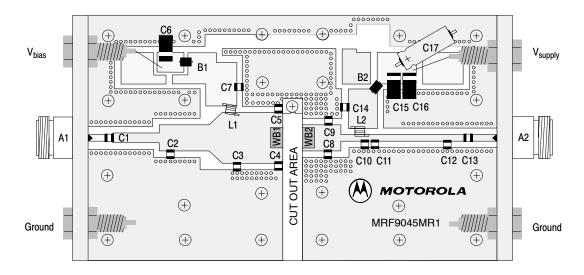
MTTF calculator available at http://www.freescale.com/rf. Select Software & Tools/Development Tools/Calculators to access MTTF calculators by product.

Characteristic	Symbol	Min	Тур	Max	Unit
Off Characteristics					
Zero Gate Voltage Drain Leakage Current (V _{DS} = 65 Vdc, V _{GS} = 0 Vdc)	I _{DSS}	_	_	10	μAdc
Zero Gate Voltage Drain Leakage Current (V _{DS} = 28 Vdc, V _{GS} = 0 Vdc)	I _{DSS}	_	_	1	μAdc
Gate-Source Leakage Current (V _{GS} = 5 Vdc, V _{DS} = 0 Vdc)	I _{GSS}	_	-	1	μAdc
On Characteristics	- 1	l l		·	ı
Gate Threshold Voltage $(V_{DS} = 10 \text{ Vdc}, I_D = 150 \mu \text{Adc})$	V _{GS(th)}	2	2.8	4	Vdc
Gate Quiescent Voltage (V _{DS} = 28 Vdc, I _D = 350 mAdc)	V _{GS(Q)}	3	3.7	5	Vdc
Drain-Source On-Voltage (V _{GS} = 10 Vdc, I _D = 1 Adc)	V _{DS(on)}	_	0.22	0.4	Vdc
Forward Transconductance (V _{DS} = 10 Vdc, I _D = 3 Adc)	9 _{fs}	_	4	_	S
Dynamic Characteristics		l			1
Input Capacitance (V _{DS} = 28 Vdc ± 30 mV(rms)ac @ 1 MHz, V _{GS} = 0 Vdc)	C _{iss}	_	70	_	pF
Output Capacitance (V _{DS} = 28 Vdc ± 30 mV(rms)ac @ 1 MHz, V _{GS} = 0 Vdc)	C _{oss}	_	38	_	pF
Reverse Transfer Capacitance (V _{DS} = 28 Vdc ± 30 mV(rms)ac @ 1 MHz, V _{GS} = 0 Vdc)	C _{rss}	_	1.7	_	pF
Functional Tests (In Freescale Test Fixture, 50 ohm system)		<u> </u>			
Two-Tone Common-Source Amplifier Power Gain (V_{DD} = 28 Vdc, P_{out} = 45 W PEP, I_{DQ} = 350 mA, f1 = 945.0 MHz, f2 = 945.1 MHz)	G _{ps}	17	19	_	dB
Two-Tone Drain Efficiency $(V_{DD} = 28 \text{ Vdc}, P_{out} = 45 \text{ W PEP}, I_{DQ} = 350 \text{ mA}, f1 = 945.0 \text{ MHz}, f2 = 945.1 \text{ MHz})$	η	38	41	_	%
3rd Order Intermodulation Distortion (V_{DD} = 28 Vdc, P_{out} = 45 W PEP, I_{DQ} = 350 mA, f1 = 945.0 MHz, f2 = 945.1 MHz)	IMD	_	-31	-28	dBc
Input Return Loss $(V_{DD} = 28 \text{ Vdc}, P_{out} = 45 \text{ W PEP}, I_{DQ} = 350 \text{ mA}, f1 = 945.0 \text{ MHz}, f2 = 945.1 \text{ MHz})$	IRL	_	-14	-9	dB
Two-Tone Common-Source Amplifier Power Gain (V_{DD} = 28 Vdc, P_{out} = 45 W PEP, I_{DQ} = 350 mA, f1 = 930.0 MHz, f2 = 930.1 MHz and f1 = 960.0 MHz, f2 = 960.1 MHz)	G _{ps}	_	19	_	dB
Two-Tone Drain Efficiency $(V_{DD}=28\ Vdc,\ P_{out}=45\ W\ PEP,\ I_{DQ}=350\ mA,\ f1=930.0\ MHz,\ f2=930.1\ MHz\ and\ f1=960.0\ MHz,\ f2=960.1\ MHz)$	η	_	41	_	%
3rd Order Intermodulation Distortion (V_{DD} = 28 Vdc, P_{out} = 45 W PEP, I_{DQ} = 350 mA, f1 = 930.0 MHz, f2 = 930.1 MHz and f1 = 960.0 MHz, f2 = 960.1 MHz)	IMD	_	-31	_	dBc
Input Return Loss (V _{DD} = 28 Vdc, P _{out} = 45 W PEP, I _{DQ} = 350 mA, f1 = 930.0 MHz, f2 = 930.1 MHz and f1 = 960.0 MHz,	IRL	_	-13	_	dB

MRF9045NR1

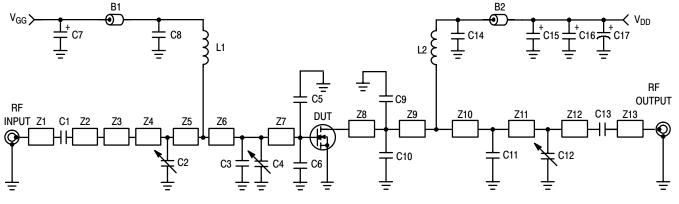
f2 = 960.1 MHz

NOT RECOMMENDED FOR NEW DESIG


Z2

B1. B2	Short Ferrite Beads, Surface Mount	Z3	0.14" x 0.32" Microstrip
C1, C7, C13, C14	47 pF Chip Capacitors	Z4	0.47" x 0.32" Microstrip
C2, C8	2.7 pF Chip Capacitors	Z 5	0.16" x 0.32" x 0.62" Taper
C3	3.9 pF Chip Capacitor	Z6	0.18" x 0.62" Microstrip
C4, C5, C8, C9	10 pF Chip Capacitors	Z 7	0.56" x 0.62" Microstrip
C6, C15, C16	10 μF, 35 V Tantalum Surface Mount Capacitors	Z8	0.33" x 0.32" Microstrip
C10	2.2 pF Chip Capacitor	Z9	0.14" x 0.32" Microstrip
C11	4.7 pF Chip Capacitor	Z10	0.36" x 0.08" Microstrip
C12	1.2 pF Chip Capacitor	Z11	1.01" x 0.08" Microstrip
C17	220 μF, 50 V Electrolytic Capacitor	Z12	0.15" x 0.08" Microstrip
L1, L2	12.5 nH Inductors	Z13	0.29" x 0.08" Microstrip
Z1	0.20" x 0.08" Microstrip		•

0.57" x 0.12" Microstrip


Figure 1. MRF9045NR1 930-960 MHz Broadband Test Circuit Schematic

Freescale has begun the transition of marking Printed Circuit Boards (PCBs) with the Freescale Semiconductor signature/logo. PCBs may have either Motorola or Freescale markings during the transition period. These changes will have no impact on form, fit or function of the current product.

Figure 2. MRF9045NR1 930-960 MHz Broadband Test Circuit Component Layout

NOT RECOMMENDED FOR NEW DESIG

B1	Short Ferrite Bead	Z 1	0.260" x 0.060" Microstrip
B2	Long Ferrite Bead	Z2	0.240" x 0.060" Microstrip
C1, C8, C13, C14	47 pF Chip Capacitors	Z3	0.500" x 0.100" Microstrip
C2	0.4-2.5 pF Variable Capacitor, Johanson Gigatrim	Z4	0.215" x 0.270" Microstrip
C3	3.6 pF Chip Capacitor	Z 5	0.315" x 0.270" Microstrip
C4	0.8-8.0 pF Variable Capacitor, Johanson Gigatrim	Z6	0.160" x 0.270" x 0.520" Taper
C5, C6, C9, C10	10 pF Chip Capacitors	Z 7	0.285" x 0.520" Microstrip
C7, C15, C16	10 μF, 35 V Tantalum Chip Capacitors	Z8	0.140" x 0.270" Microstrip
C11	7.5 pF Chip Capacitor	Z9	0.450" x 0.270" Microstrip
C12	0.6-4.5 pF Variable Capacitor, Johanson Gigatrim	Z10	0.250" x 0.060" Microstrip
C17	220 μF Electrolytic Chip Capacitor	Z11	0.720" x 0.060" Microstrip
L1, L2	12.5 nH Surface Mount Inductors	Z12	0.490" x 0.060" Microstrip
WB1, WB2	10 mil Brass Wear Blocks	Z13	0.290" x 0.060" Microstrip
		Board	Taconic RF-35-0300. $\varepsilon_r = 3.5$

Freescale has begun the transition of marking Printed Circuit Boards (PCBs) with the Freescale Semiconductor signature/logo. PCBs may have either Motorola or Freescale markings during the transition period. These changes will have no impact on form, fit or function of the current product.

Figure 4. MRF9045NR1 930-960 MHz Broadband Test Circuit Component Layout

TYPICAL CHARACTERISTICS

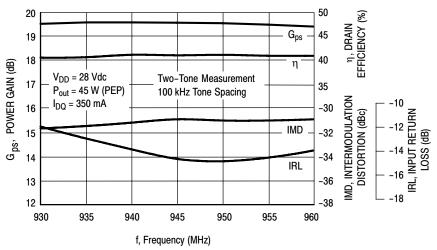


Figure 5. Class AB Broadband Circuit Performance

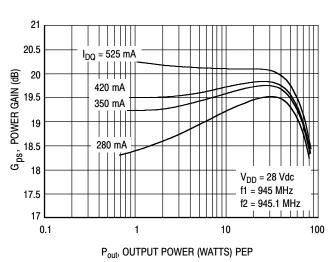


Figure 6. Power Gain versus Output Power

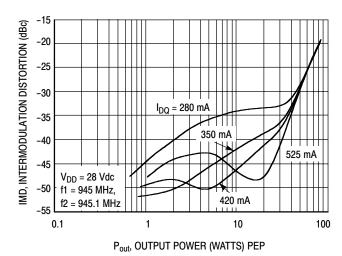


Figure 7. Intermodulation Distortion versus Output Power

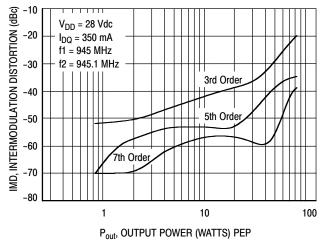


Figure 8. Intermodulation Distortion Products versus Output Power

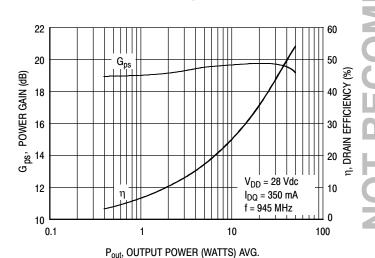


Figure 9. Power Gain and Efficiency versus
Output Power

MRF9045NR1

TYPICAL CHARACTERISTICS

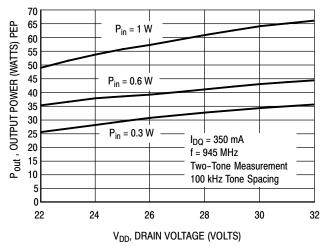
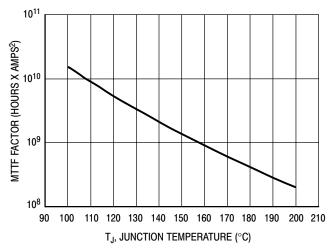
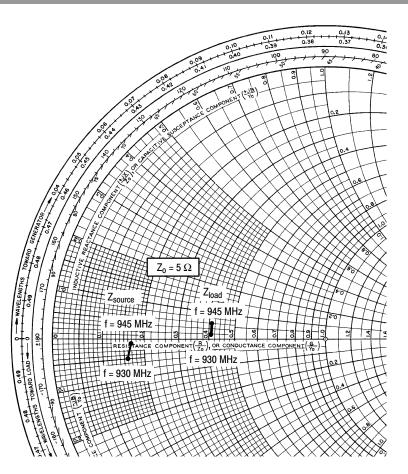



Figure 10. Output Voltage versus Supply Voltage



This above graph displays calculated MTTF in hours x ampere 2 drain current. Life tests at elevated temperatures have correlated to better than $\pm 10\%$ of the theoretical prediction for metal failure. Divide MTTF factor by $I_D{}^2$ for MTTF in a particular application.

Figure 11. MTTF Factor versus Junction Temperature

NOT RECOMMENDED FOR NEW DESIGN

 $V_{DD} = 28 \text{ V}, I_{DQ} = 350 \text{ mA}, P_{out} = 45 \text{ W} (PEP)$

f MHz	$\mathbf{Z_{source}}_{\Omega}$	$oldsymbol{Z_{load}}{\Omega}$
930	0.81 - j0.25	2.03 + j0.09
945	0.85 - j0.05	2.03 + j0.28

 Z_{source} = Test circuit impedance as measured from gate to ground.

Z_{load} = Test circuit impedance as measured from drain to ground.

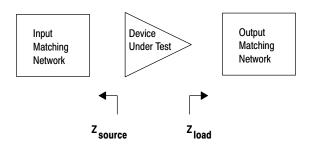
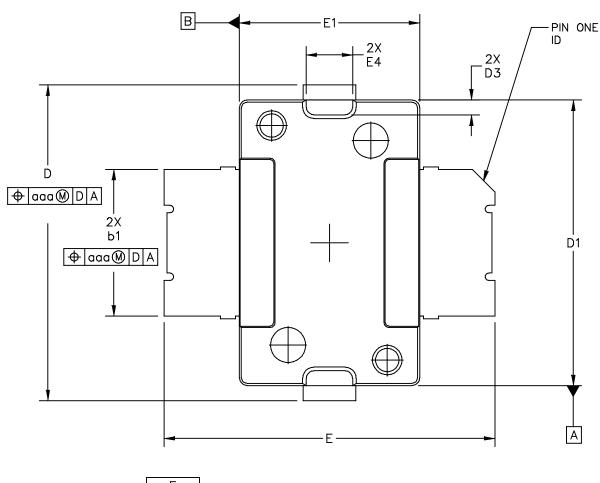
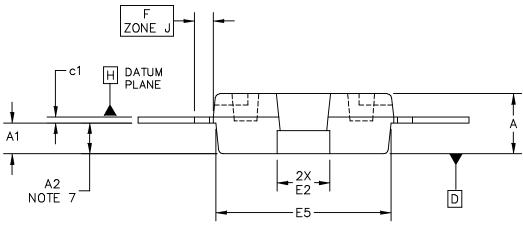
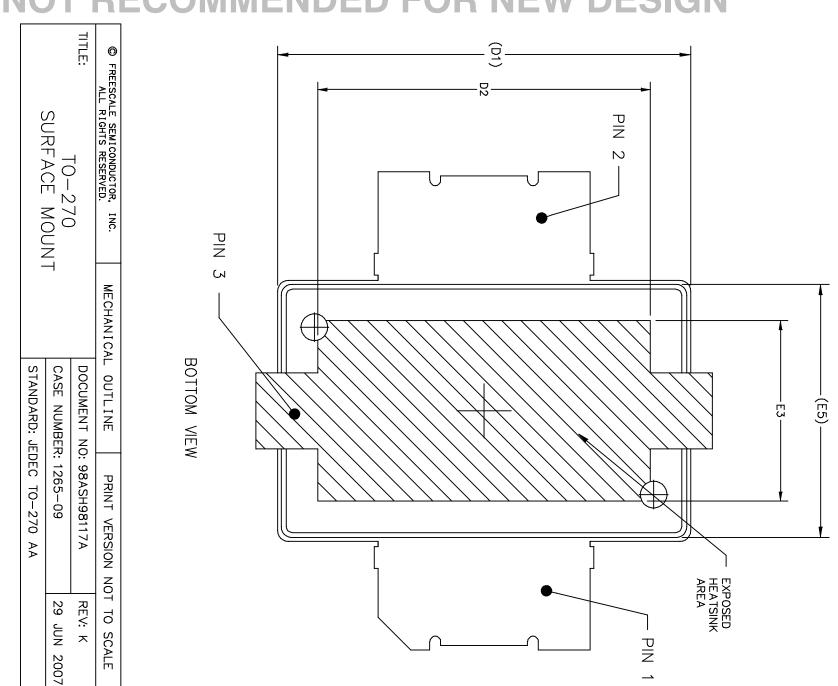




Figure 12. Series Equivalent Source and Load Impedance

PACKAGE DIMENSIONS



© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	MECHANICA	L OUTLINE	PRINT VERSION NO	T TO SCALE
TITLE:		DOCUMENT NO): 98ASH98117A	REV: K
TO-270 SURFACE MOUN	Т	CASE NUMBER	29 JUN 2007	
SON ACE MOON	ı	STANDARD: JE	DEC TO-270 AA	

Z

NOT RECOMMENDED FOR NEW DESIGN

MRF9045NR1

NOT RECOMMENDED FOR NEW DESIGN

- NOTES:
 1. CONTROLLING DIMENSION: INCH
- 2. INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M-1994.
- Ņ DATUM PLANE -H- IS LOCATED AT TOP OF LEAD AND IS COINCIDENT WITH THE WHERE THE LEAD EXITS THE PLASTIC BODY AT THE TOP OF THE PARTING LINE. LEAD
- 4. DIMENSIONS "D1" AND "E1" DO NOT INCLUDE MOLD PROTRUSION. ALLOWABLE PROTRUSION IS .006 PER SIDE. DIMENSIONS "D1 AND "E1" DO INCLUDE MOLD MISMATCH AND ARE DETERMINED AT DATUM PLANE -H-.
- Ò DIMENSION "b1" DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE .005 TOTAL IN EXCESS OF THE "b1" DIMENSION AT MAXIMUM MATERIAL CONDITION.
- ġ DATUMS -A- AND -B-TO BE DETERMINED AT DATUM PLANE -H-
- 7. DIMENSION "A2" APPLIES WITHIN ZONE "J" ONLY.
- œ DIMENSIONS "D" DIMENSIONS "D" AND "E2" DO NOT INCLUDE MOLD PROTRUSION. OVERALL MOLD PROTRUSION SHOULD NOT EXCEED 0.430 INCH FOR DIMENSION "D" DIMENSION "E2". DIMENSIONS "D" AND "E2" DO INCLUDE MOLD MISMATCH AT DATUM PLANE -D-. LENGTH INCLUDING AND ARE DETERMINED AND 0.080 INCH FOR

STYLE 1:
PIN 1 — DRAIN
PIN 2 — GATE
PIN 3 — SOURCE

		TITLE:	© FREESO	E5	E4 .(E3 .1	E2 .(E	т -	D3 .(D2 .2	D1 ::		A2 .(A1 .(A	DIM		
	SURFACE MOUNT	10 10	FREESCALE SEMICONDUCTOR, ALL RIGHTS RESERVED.	.231 .235	.058 .066	.150	.066 .074	.238 .242	.436 .444	.016 .024	.290	.378 .382	.416 .424	.040 .042	.039 .043	.078 .082	MIN MAX	INCH	
(MOLINI Notice	7	INC.	5.87	1.47	3.81	1.68	6.04	11.07	0.41	7.37	9.60	10.57	1.02	0.99	1.98	M N	MILLI	
			MECHANICAL OUTLINE	5.97	1.68		1.88	6.15	11.28	0.61		9.70	10.77	1.07	1.09	2.08	MAX	MILLIMETER	0 000,00
STANI	CASE	DOCU	^L OUT										000	<u>c</u>	<u>5</u>	Т	DIM		7
DARD: JEDE	CASE NUMBER: 1265-09	MENT NO: 9	LINE).	.007	.193	.025	MIN	7	
STANDARD: JEDEC TO-270 AA	265-09	DOCUMENT NO: 98ASH98117A	PRINT VERSION NOT TO SCALE										.004	.011	.199	.025 BSC	MAX	INCH	
Ä	25		SION NOT										0	0.18	4.90	0.6	MN	MILL	
	29 JUN 2007	REV: K	TO SCALE										0.10	0.28	5.06	0.64 BSC	MAX	MILLIMETER	

MMENDED

PRODUCT DOCUMENTATION

Refer to the following documents to aid your design process.

Application Notes

• AN1955: Thermal Measurement Methodology of RF Power Amplifiers

Engineering Bulletins

EB212: Using Data Sheet Impedances for RF LDMOS Devices

REVISION HISTORY

The following table summarizes revisions to this document.

Revision	Date	Description
12	Sept. 2008	 Data sheet revised to reflect part status change, including use of applicable overlay. Replaced Case Outline 1265-08 with 1265-09, Issue K, p. 1, 8-10. Corrected cross hatch pattern in bottom view and changed its dimensions (D2 and E3) to minimum value on source contact (D2 changed from Min-Max .290320 to .290 Min; E3 changed from Min-Max .150180 to .150 Min). Added JEDEC Standard Package Number. Added Product Documentation and Revision History, p. 11

MRF9045NR1

How to Reach Us:

Home Page:

www.freescale.com

Web Support:

FOR NEW DES

http://www.freescale.com/support

USA/Europe or Locations Not Listed:

Freescale Semiconductor, Inc.
Technical Information Center, EL516
2100 East Elliot Road
Tempe, Arizona 85284
1-800-521-6274 or +1-480-768-2130
www.freescale.com/support

Europe, Middle East, and Africa:

Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) www.freescale.com/support

Japan:

Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku, Tokyo 153-0064 Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com

Asia/Pacific:

RECOMMEND

Freescale Semiconductor China Ltd. Exchange Building 23F No. 118 Jianguo Road Chaoyang District Beijing 100022 China +86 10 5879 8000 support.asia@freescale.com

For Literature Requests Only:

Freescale Semiconductor Literature Distribution Center P.O. Box 5405
Denver, Colorado 80217
1-800-441-2447 or +1-303-675-2140
Fax: +1-303-675-2150

LDCForFreescaleSemiconductor@hibbertgroup.com

Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or quarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals", must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

Freescale [™] and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. © Freescale Semiconductor, Inc. 2008. All rights reserved.

RoHS-compliant and/or Pb-free versions of Freescale products have the functionality and electrical characteristics of their non-RoHS-compliant and/or non-Pb-free counterparts. For further information, see http://www.freescale.com or contact your Freescale sales representative.

For information on Freescale's Environmental Products program, go to http://www.freescale.com/epp.

Document Number: MRF9045N

Rev. 12, 9/2008