: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

MS2202

RF \& MICROWAVE TRANSISTORS AVIONICS APPLICATIONS

Features

- 1025-1150 MHz
- 35 VOLTS
- INPUT MATCHING
- $\mathrm{P}_{\text {out }}=$ 2.0 WATTS
- $\mathrm{G}_{\mathrm{P}}=9.0 \mathrm{~dB}$ MINIMUM
- LOW THERMAL RESISTANCE
- COMMON BASE CONFIGURATION

DESCRIPTION:

The MS2202 is a low power Class C NPN transistor specifically designed for avionics driver applications. This device is capable of withstanding an $\infty: 1$ load VSWR at any phase angle under full rated conditions. Low RF thermal resistance and semi-automatic bonding techniques ensure high reliability and product consistency.

ABSOLUTEMAXIMUM RATINGS (Tcase $\mathbf{=} \mathbf{2 5}^{\circ} \mathrm{C}$)

Svmbol	Parameter	Value	Unit
$\mathbf{P}_{\text {DISs }}$	Power Dissipation	10	W
I_{C}	Device Current	$\mathbf{2 5 0}$	mA
V_{cC}	Collector Supply Voltage	37	V
$\mathrm{~T}_{\mathrm{J}}$	Junction Temperature	$\mathbf{2 0 0}$	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {STG }}$	Storage Temperature	-65 to +200	${ }^{\circ} \mathrm{C}$

Thermal Data

$\mathbf{R}_{\text {TH(J-C) }}$	Junction-case Thermal Resistance	$\mathbf{1 0 . 0}$	${ }^{\circ} \mathbf{C} / \mathrm{W}$

MS2202

⽇ECTRICALSPECIFICATIONS (Tcase $=25^{\circ} \mathrm{C}$)

STATIC

Symbol	Test Conditions		Value			Unit
			Min.	Tvp.	Max.	
BV ${ }_{\text {cBo }}$	$\mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}$	$\mathrm{I}_{\mathrm{E}}=0 \mathrm{~mA}$	45	---	---	V
$\mathrm{BV}_{\text {EBO }}$	$\mathrm{I}_{\mathrm{E}}=1 \mathrm{~mA}$	$\mathrm{I}_{\mathrm{C}}=0 \mathrm{~mA}$	3.5	---	---	V
$\mathrm{BV}_{\text {cER }}$	$\mathrm{I}_{\mathrm{C}}=5 \mathrm{~mA}$	$\mathrm{R}_{\mathrm{BE}}=10 \Omega$	45	---	---	V
$\mathrm{I}_{\text {ces }}$	$\mathrm{V}_{\text {CE }}=35 \mathrm{~V}$		---	---	1.0	mA
HFE	$\mathrm{V}_{\text {CE }}=5 \mathrm{~V}$	$\mathrm{I}_{\mathrm{C}}=100 \mathrm{~mA}$	30	---	300	---

DYNAMIC

Symbol	Test Conditions			Value			Unit
			Min.	TVD.	Max.		
$\mathrm{P}_{\text {OUT }}$	$\mathrm{f}=1025-1150 \mathrm{MHz}$	$\mathrm{P}_{\mathrm{IN}}=0.25 \mathrm{~W}$	$\mathrm{~V}_{\mathrm{CC}}=35 \mathrm{~V}$	2.0	---	---	W
η_{C}	$\mathrm{f}=1025-1150 \mathrm{MHz}$	$\mathrm{P}_{\mathrm{IN}}=0.25 \mathrm{~W}$	$\mathrm{~V}_{\mathrm{cC}}=35 \mathrm{~V}$	35	---	---	$\%$
G_{P}	$\mathrm{f}=1025-1150 \mathrm{MHz}$	$\mathrm{P}_{\mathrm{IN}}=0.25 \mathrm{~W}$	$\mathrm{~V}_{\mathrm{CC}}=35 \mathrm{~V}$	9.0	---	---	dB

Conditions Pulse Width $=10 \mu \mathrm{Sec} \quad$ Duty Cycle $=1 \%$

IMPEDANCEDATA

FREQ	$Z_{\mathrm{IN}}(\Omega)$	$Z_{\mathrm{CL}}(\Omega)$
960 MHz	$10.7+\mathrm{j} 7.0$	$26.5+\mathrm{j} 41.0$
1025 MHz	$15.3+\mathrm{j} 10.0$	$26.0+\mathrm{j} 43.5$
1090 MHz	$17.8+\mathrm{j} 10.2$	$23.5+\mathrm{j} 44.0$
1150 MHz	$16.8+\mathrm{j} 15.0$	$20.5+\mathrm{j} 41.5$
1215 MHz	$14.4+\mathrm{j} 13.0$	$17.5+\mathrm{j} 37.5$

$\mathrm{P}_{\mathrm{IN}}=0.25 \mathrm{~W}$
$\mathrm{~V}_{\mathrm{CC}}=35 \mathrm{~V}$

MS2202

TYPICAL PERFROMANCE

BROADBAND POWER AMPLIFIER

NARROWBAND PEAK POWER OUTPUT vs FREQUENCY

RELATIVE PEAK POWER OUTPUT \& COLLECTOR EFFICIENCY vs COLLECTOR VOLTAGE

MS2202

TEST CIRCUIT

Ref.: Dwg. No. C127298

All dimensions are in inches.

PACKAGEMECHANICAL DATA

