

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!



# Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China



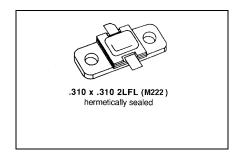






140 COMMERCE DRIVE **MONTGOMERYVILLE, PA** 

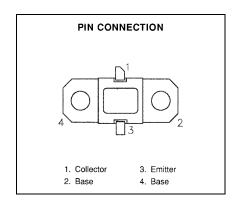
18936-1013


PHONE: (215) 631-9840 FAX: (215) 631-9855

# **MS2212**

## **RF & MICROWAVE TRANSISTORS AVIONICS APPLICATIONS**

#### Features


- 960-1215 MHz
- **GOLD METALLIZATION**
- **EMITTER SITE BALLASTED**
- **Pout = 15W**
- Gp = 8.1 dB MINIMUM
- **INTERNAL IMPEDANCE MATCHING**
- **INFINITE VSWR CAPABILITY @ RATED CONDITIONS**
- **COMMON BASE CONFIGURATION**



### **DESCRIPTION:**

The MS2212 is designed for specialized avionics applications, such as JTIDS, where maximum performance is required under a variety of pulse formats. Internal impedance matching provides superior broad band performance.

The MS2212 utilizes gold metallization and emitter ballasting to provide superior reliability and consistent performance under the most rugged pulse conditions.



#### $(Tcase = 25^{\circ}C)$ ABSOLUTE MAXIMUM RATINGS

| Symbol                | Parameter                 | Value         | Unit |
|-----------------------|---------------------------|---------------|------|
| V <sub>CC</sub>       | Collector-Supply Voltage* | 32            | V    |
| <b>I</b> <sub>C</sub> | Device Current*           | 1.8           | Α    |
| P <sub>DISS</sub>     | Power Dissipation*        | 50            | W    |
| T <sub>J</sub>        | Junction Temperature      | +250          | °C   |
| T <sub>STG</sub>      | Storage Temperature       | - 65 to + 200 | °C   |

### Thermal Data

| R <sub>TH(j-c)</sub> | Junction-Case Thermal Resistance* | 3.0 | °C/W |
|----------------------|-----------------------------------|-----|------|

<sup>\*</sup> Applies only to rated RF operation.



# MS2212

# ELECTRICAL SPECIFICATIONS (Tcase = 25°C)

# **STATIC**

| Symbol            | Test Conditions        |                        | Value |      |      |      |
|-------------------|------------------------|------------------------|-------|------|------|------|
| Symbol            | rest Conditions        |                        | Min.  | Тур. | Max. | Unit |
| BV <sub>CBO</sub> | I <sub>C</sub> = 10 mA | I <sub>E</sub> = 0 mA  | 55    |      |      | V    |
| BV <sub>CER</sub> | I <sub>C</sub> = 10 mA | $R_{BE} = 10 \Omega$   | 55    |      |      | V    |
| BV <sub>EBO</sub> | I <sub>E</sub> = 1 mA  | I <sub>C</sub> = 0 mA  | 3.5   |      |      | V    |
| I <sub>CES</sub>  | V <sub>CE</sub> = 28 V | $V_{BE} = 0 V$         |       |      | 2.0  | mA   |
| h <sub>FE</sub>   | V <sub>CE</sub> = 5 V  | I <sub>C</sub> = 500mA | 15    |      | 150  |      |

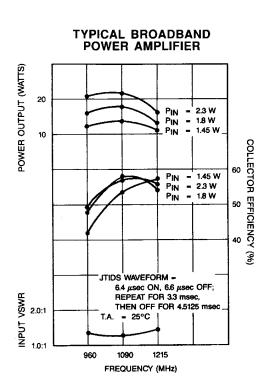
### **DYNAMIC**

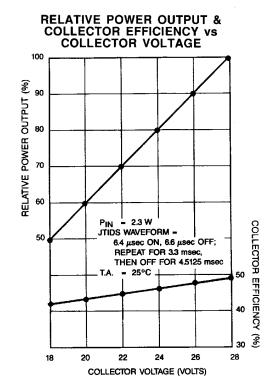
| Symbol           | Test Conditions    Value   Min.   Typ.   Maxeta   Min.   Min.   Typ.   Maxeta   Min.   Min.   Typ.   Maxeta   Min.   Min |     |      | Unit |       |
|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|------|------|-------|
| Syllibol         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     | Тур. | Max. | Offic |
| P <sub>OUT</sub> | f = 960 - 1215 MHz P <sub>IN</sub> = 2.3 W V <sub>CC</sub> = 28 V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 15  |      |      | W     |
| ης               | f = 960 - 1215 MHz P <sub>IN</sub> = 2.3 W V <sub>CC</sub> = 28 V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 45  | 49   |      | %     |
| G <sub>P</sub>   | f = 960 - 1215 MHz P <sub>IN</sub> = 2.3 W V <sub>CC</sub> = 28 V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8.1 | 8.9  |      | dB    |

Pulse Format:  $6.4 \mu S$  on  $6.6 \mu S$  off, repeat for 3.3 ms.

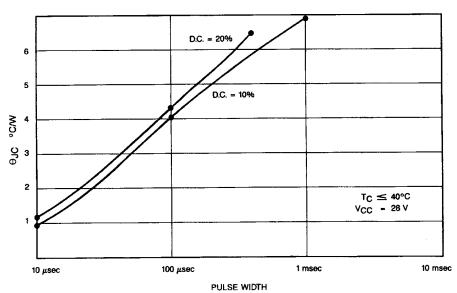
Note: Duty Cycle: Burst 49.2%, overall 20.8%

### **IMPEDANCE DATA:**


| =, (9=2,  |            |            |  |  |  |
|-----------|------------|------------|--|--|--|
| FREQUENCY | Zin        | Zcl        |  |  |  |
| 960 MHz   | 5.7 + j4.3 | 5.7 + j7.7 |  |  |  |
| 1090 MHz  | 5.8 + j2.5 | 4.3 + j6.5 |  |  |  |
| 1215 MHz  | 5.0 + j3.0 | 4.0 + j4.8 |  |  |  |


 $P_{IN} = 2.3W$   $V_{CC} = 28V$ 



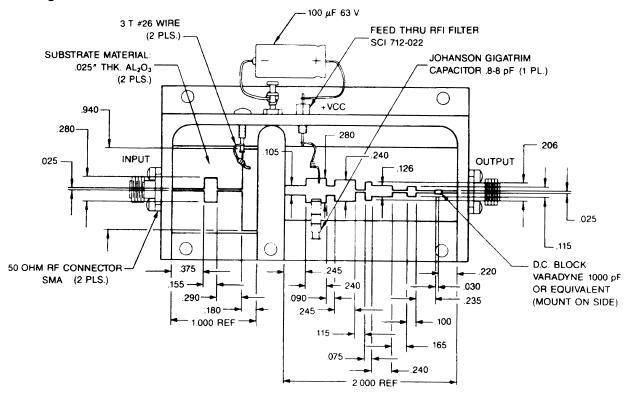



### TYPICAL PERFORMANCE





#### MAXIMUM THERMAL RESISTANCE vs PULSE WIDTH & DUTY CYCLE

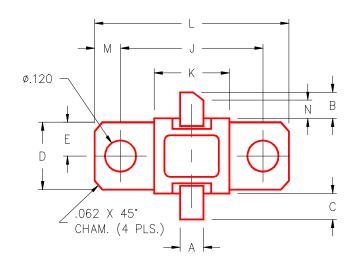


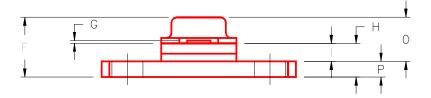





### **TEST CIRCUIT**

Ref.: Dwg. No. 104-000284






### PACKAGE MECHANICAL DATA

### PACKAGE STYLE M222





|   | MINIMUM   | MAXIMUM   |   | MINIMUM    | MAXIMUM   |
|---|-----------|-----------|---|------------|-----------|
|   | INCHES/MM | INCHES/MM |   | INCHES/MM  | INCHES/MM |
| А | .100      | /2,54     | J | .562/14,28 |           |
| В | .110/     | /2,80     | K | .310/7,87  |           |
| С | .110/2,80 |           | L | .800/20,32 |           |
| D | .296/7,52 |           | М | .119/3,02  |           |
| Е | .148,     | /3,76     | N | .050/1,27  |           |
| F |           | .230/5,84 | 0 |            | .170/4,32 |
| G | .003/0,08 | .006/0,15 | Р | .062/1,58  |           |
| Н | .118/3,00 | .131/3,33 |   |            |           |
|   | .059/1,50 |           |   |            |           |