

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

MSA-0486

Cascadable Silicon Bipolar MMIC Amplifier

AVAGO

Data Sheet

Description

The MSA-0486 is a high performance silicon bipolar Monolithic Microwave Integrated Circuit (MMIC) housed in a low cost, surface mount plastic package. This MMIC is designed for use as a general purpose 50 Ω gain block. Typical applications include narrow and broad band IF and RF amplifiers in commercial and industrial applications.

The MSA-series is fabricated using Avago's 10 GHz f_T , 25 GHz f_{MAX} , silicon bipolar MMIC process which uses nitride self-alignment, ion implantation, and gold metalization to achieve excellent performance, uniformity and reliability. The use of an external bias resistor for temperature and current stability also allows bias flexibility.

86 Plastic Package

Typical Biasing Configuration

Features

- Lead-free Option Available
- Cascadable 50 Ω Gain Block
- 3 dB Bandwidth: DC to 3.2 GHz
- 8 dB Typical Gain at 1.0 GHz
- 12.5 dBm Typical P_{1 dB} at 1.0 GHz
- Unconditionally Stable (k>1)
- Surface Mount Plastic Package
- Tape-and-Reel Packaging Option Available

MSA-0486 Absolute Maximum Ratings

Parameter	Absolute Maximum [1]
Device Current	85 mA
Power Dissipation [2, 3]	500 mW
RF Input Power	+13 dBm
Junction Temperature	150° C
Storage Temperature	-65 to 150° C

Thermal Resistance [2, 4]:	
$\theta_{jc} = 100^{\circ}\text{C/W}$	

- 1. Permanent damage may occur if any of these limits are exceeded.
- T_{CASE} = 25° C.
 Derate at 9.5 mW/°C for T_C > 100° C.

Electrical Specifications^[1], $T_A = 25^{\circ}$ C

Symbol	Parameters and Test Conditions: I _d = 50 mA, Z ₀ = 50 Ω			Min.	Typ.	Max.
G _P	Power Gain (S ₂₁ ²)	f = 0.1 GHz	dB		8.3	
		f = 1.0 GHz		7.0	8.0	
ΔG_P	Gain Flatness	f = 0.1 to 2.0 GHz	dB		+0.6	
f _{3 dB}	3 dB Bandwidth ^[2]		GHz		3.2	
VSWR	Input VSWR	f = 0.1 to 3.0 GHz			1.5:1	
	Output VSWR	f = 0.1 to 3.0 GHz			1.9:1	
NF	50 Ω Noise Figure	f = 1.0 GHz	dB		7.0	
P _{1dB}	Output Power at 1 dB Gain Compression	f = 1.0 GHz	dBm		12.5	
IP ₃	Third Order Intercept Point	f = 1.0 GHz	dBm	dBm		
t _D	Group Delay	f = 1.0 GHz	psec		140	
V _d	Device Voltage		V	4.2	5.25	6.3
dV/dT	Device Voltage Temperature Coefficient		mV/°C		-8.0	

Notes:

Ordering Information

Part Numbers	No. of Devices	Comments
MSA-0486-BLK	100	Bulk
MSA-0486-BLKG	100	Bulk
MSA-0486-TR1	1000	7" Reel
MSA-0486-TR1G	1000	7" Reel
MSA-0486-TR2	4000	13" Reel
MSA-0486-TR2G	4000	13" Reel

Note: Order part number with a "G" suffix if lead-free option is desired.

^{1.} The recommended operating current range for this device is 30 to 70 mA. Typical performance as a function of current is on the following page.

MSA-0486 Typical Scattering Parameters (Z $_0$ = 50 Ω , T $_{\rm A}$ = 25° C, I $_{\rm d}$ = 50 mA)

Freq. GHz	S ₁₁		S ₂₁			S ₁₂	S ₁₂			S ₂₂	
	Mag	Ang	dB	Mag	Ang	dB	Mag	Ang	Mag	Ang	
0.1	0.14	178	8.4	2.62	175	-16.2	0.154	1	0.16	-10	
0.2	0.14	175	8.3	2.61	170	-16.3	0.153	2	0.16	-20	
0.4	0.14	171	8.2	2.57	161	-16.2-3	0.154	3	0.16-7	-39	
0.6	0.13	168	8.1	2.54	151	-16.0	0.158	4	0.18	-57	
0.8	0.13	166	8.0	2.52	141	-5.9	0.161	5	0.20	-74	
1.0	0.13	165	7.9	2.48	131	-15.7	0.165	6	0.18	-88	
1.5	0.15	168	7.7	2.42	108	-14.8	0.182	8	0.27	-121	
2.0	0.21	168	7.3	2.32	84	-14.0	0.199	7	0.32	-149	
2.5	0.18	165	6.8	2.18	65	-13.1	0.222	4	0.38	-168	
3.0	0.37	153	5.9	1.97	43	-12.7	0.231	-1	0.40	173	
3.5	0.44	142	4.8	1.74	24	-12.5	0.238	-5	0.41	157	
4.0	0.50	130	3.6	1.52	7	-12.5	0.238	-10	0.41	145	
5.0	0.61	109	1.3	1.16	-21	-12.7	0.231	-17	0.43	132	

Typical Performance, $T_A = 25^{\circ} C$

(unless otherwise noted)

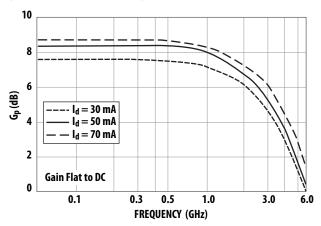


Figure 1. Typical Power Gain vs Frequency, $T_A = 25^{\circ}$ C.

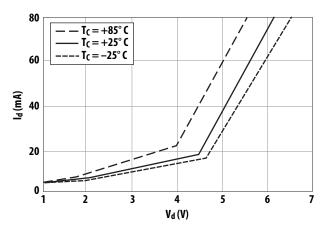


Figure 2. Device Current vs. Voltage.

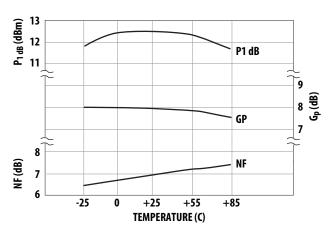


Figure 3. Output Power at 1 dB Gain Compression, NF and Power Gain vs. Case Temperature, $f=1.0~{\rm GHz}$, $I_d=50~{\rm mA}$.

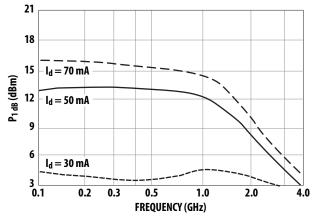


Figure 4. Output Power at 1 dB Gain Compression vs. Frequency.

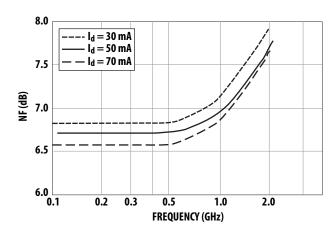
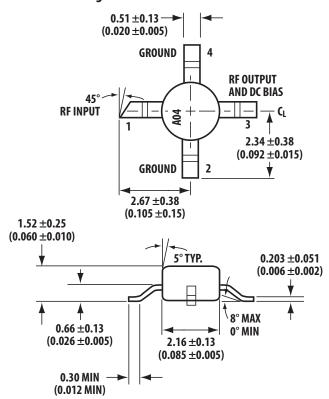



Figure 5. Noise Figure vs. Frequency.

86 Plastic Package Dimensions

Dimensions are in millimeters (inches)

For product information and a complete list of distributors, please go to our web site: **www.avagotech.com**

