

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

MSA-0686

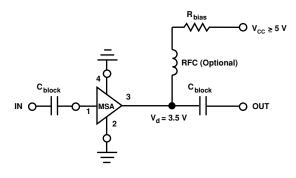
Cascadable Silicon Bipolar MMIC Amplifier

Data Sheet

Description

The MSA-0686 is a high performance silicon bipolar Monolithic Microwave Integrated Circuit (MMIC) housed in a low cost, surface mount plastic package. This MMIC is designed for use as a general purpose 50Ω gain block. Applications include narrow and broad band IF and RF amplifiers in commercial and industrial applications.

The MSA-series is fabricated using Avago's 10 GHz f_T , 25 GHz f_{MAX} , silicon bipolar MMIC process which uses nitride self-alignment, ion implantation, and gold metallization to achieve excellent performance, uniformity and reliability. The use of an external bias resistor for temperature and current stability also allows bias flexibility.


Features

- Cascadable 50Ω Gain Block
- Low Operating Voltage: 3.5 V Typical V_d
- · 3 dB Bandwidth: DC to 0.8 GHz
- · High Gain: 18.5 dB Typical at 0.5 GHz
- · Low Noise Figure: 3.0 dB Typical at 0.5 GHz
- Surface Mount Plastic Package
- · Tape-and-Reel Packaging Available
- · Lead-free Option Available

86 Plastic Package

Typical Biasing Configuration

MSA-0686 Absolute Maximum Ratings

Parameter	Absolute Maximum ^[1]					
Device Current	50 mA					
Power Dissipation ^[2,3]	200 mW					
RF Input Power	+13 dBm					
Junction Temperature	150°C					
Storage Temperature	−65 to 150°C					

Thermal Resistance ^[2] :
$\theta_{\rm jc}=120^{\circ}{ m C/W}$

Notes

- 1. Permanent damage may occur if any of these limits are exceeded.
- 2. $T_{CASE} = 25$ °C.
- 3. Derate at 8.3 mW/°C for $T_{\rm C} > 126 ^{\circ}{\rm C}.$

Electrical Specifications $^{[1]}$, ${\rm T_A}=25^{\circ}{\rm C}$

Symbol	Parameters and Test Conditions:	Units	Min.	Тур.	Max.	
GP	Power Gain (S ₂₁ ²)	f = 0.1 GHz	dB		20.0	
		f = 0.5 GHz		16.5	18.5	
$\Delta G_{ m P}$	Gain Flatness	f = 0.1 to 0.5 GHz	dB		±0.7	
f _{3 dB}	3 dB Bandwidth		GHz		0.8	
VSWR	Input VSWR	f = 0.1 to 1.5 GHz			1.7:1	
	Output VSWR	f = 0.1 to 1.5 GHz			1.7:1	
NF	$50~\Omega$ Noise Figure	f = 0.5 GHz	dB		3.0	
P _{1 dB}	Output Power at 1 dB Gain Compression	f = 0.5 GHz	dBm		2.0	
IP_3	Third Order Intercept Point	f = 0.5 GHz	dBm		14.5	
t_{D}	Group Delay	f = 0.5 GHz	psec		225	
V_{d}	Device Voltage		V	2.8	3.5	4.2
dV/dT	Device Voltage Temperature Coefficient		mV/°C		-8.0	

Notes:

Ordering Information

Part Numbers	No. of Devices	Comments
MSA-0686-BLK	100	Bulk
MSA-0686-BLKG	100	Bulk
MSA-0686-TR1	1000	7" Reel
MSA-0686-TR1G	1000	7" Reel
MSA-0686-TR2	4000	13" Reel
MSA-0686-TR2G	1000	13" Reel

Note: Order part number with a "G" suffix if lead-free option is desired.

^{1.} The recommended operating current range for this device is 12 to 20 mA. Typical performance as a function of current is on the following page.

Freq.	\mathbf{S}_1	1		S_{21}		S_{12}					
GHz	Mag	Ang	dB	Mag	Ang	dB	Mag	Ang	Mag	Ang	k
0.1	.06	-175	20.1	10.08	170	-23.3	.069	4	.04	-84	1.05
0.2	.06	-169	19.8	9.77	161	-23.2	.069	8	.07	-103	1.05
0.3	.07	-164	19.4	9.35	152	-22.5	.075	13	.10	-113	1.03
0.4	.08	-158	19.1	8.98	144	-22.2	.078	16	.13	-123	1.02
0.5	.08	-154	18.7	8.58	135	-21.6	.083	18	.15	-131	1.01
0.6	.09	-152	18.0	7.94	128	-21.1	.088	21	.18	-140	1.01
0.8	.12	-152	17.2	7.25	114	-20.3	.097	25	.21	-155	1.00
1.0	.15	-154	16.3	6.51	102	-19.5	.106	25	.24	-168	0.99
1.5	.25	-171	14.0	5.01	76	-17.6	.133	22	.27	165	0.99
2.0	.34	171	11.9	3.94	56	-16.1	.157	19	.27	147	1.01
2.5	.43	155	9.8	3.09	42	-15.9	.161	16	.27	134	1.06
3.0	.49	140	8.0	2.51	28	-15.3	.171	11	.26	124	1.10
3.5	.56	128	6.4	2.09	15	-15.1	.175	6	.25	118	1.13
4.0	.61	118	5.0	1.78	3	-14.9	.180	3	.24	115	1.15
5.0	.70	99	2.4	1.32	-18	-14.7	.185	-2	.24	118	1.16

Typical Performance, $T_A = 25^{\circ}C$

(unless otherwise noted)

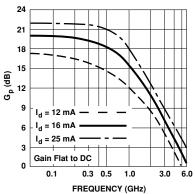


Figure 1. Typical Power Gain vs. Frequency, $T_A=25^{\circ}\mathrm{C}.$

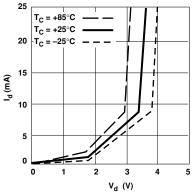
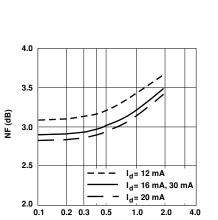



Figure 2. Device Current vs. Voltage.

FREQUENCY (GHz)

atput Power at 1 dB Gain Figure 5. Noise Figure vs. Frequency.

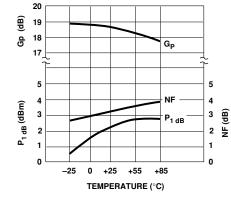


Figure 3. Output Power at 1 dB Gain Compression, NF and Power Gain vs. Case Temperature, f = 1.0 GHz, I_d = 16 mA.

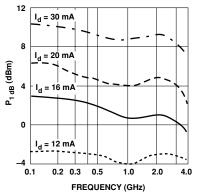
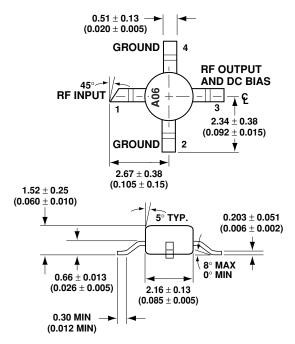



Figure 4. Output Power at 1 dB Gain Compression vs. Frequency.

86 Plastic Package Dimensions

DIMENSIONS ARE IN MILLIMETERS (INCHES)

For product information and a complete list of distributors, please go to our web site: **www.avagotech.com**

Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies, Limited in the United States and other countries.

Data subject to change. Copyright © 2006 Avago Technologies, Limited. All rights reserved. Obsoletes 5965-9588EN

