

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

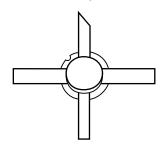
Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

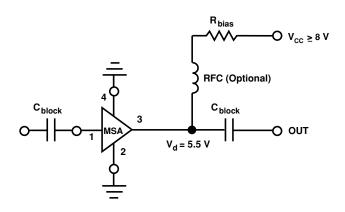
Cascadable Silicon Bipolar MMIC Amplifier

Data Sheet

Description


The MSA-1120 is a high performance silicon bipolar Monolithic Microwave Integrated Circuit (MMIC) housed in a hermetic BeO disk package for good thermal characteristics. This MMIC is designed for high dynamic range in either 50 or 75 Ω systems by combining low noise figure with high IP3. Typical applications include narrow and broadband linear amplifiers in industrial and military systems.

The MSA-series is fabricated using Avago's 10 GHz f_T , 25 GHz f_{MAX} silicon bipolar MMIC process which uses nitride self-alignment, ion implantation, and gold metallization to achieve excellent performance, uniformity and reliability. The use of an external bias resistor for temperature and current stability also allows bias flexibility.


Features

- High Dynamic Range Cascadable 50Ω or 75Ω Gain Block
- 3 dB Bandwidth: 50 MHz to 1.6 GHz
- 17.5 dBm Typical P1 dB at 0.5 GHz
- 12 dB Typical 50 Ω Gain at 0.5 GHz
- 3.5 dB Typical Noise Figure at 0.5 GHz
- Hermetic Metal/ Beryllia Microstrip Package

200 mil BeO Package

Typical Biasing Configuration

MSA-1120 Absolute Maximum Ratings

Parameter	Absolute Maximum ^[1]			
Device Current	100 mA			
Power Dissipation ^[2,3]	650 mW			
RF Input Power	+13 dBm			
Junction Temperature	200°C			
Storage Temperature	−65 to 200°C			

Thermal Resistance^[2,4]:

 $\theta_{ic} = 60^{\circ} \text{C/W}$

- 1. Permanent damage may occur if any of these limits are exceeded.
- 2. $T_{CASE} = 25$ °C.
- CASE 25 C.
 Derate at 16.7 mW/°C for T_C > 161°C.
 The small spot size of this technique results in a higher, though more accurate determination of θ_{jc} than do alternate methods.

Electrical Specifications^[1], $T_A = 25^{\circ}C$

Symbol	Parameters and Test Conditions: $I_d = 6$	Units	Min.	Тур.	Max.	
G _P	Power Gain (S ₂₁ ²)	f = 0.1 GHz	dB	11.5	12.5	13.5
ΔG_P	Gain Flatness	f = 0.1 to 1.0 GHz	dB		±0.7	±1.0
f _{3 dB}	3 dB Bandwidth ^[2]		GHz		1.6	
VSWR —	Input VSWR	f = 0.1 to 1.5 GHz			1.7:1	
	Output VSWR	f = 0.1 to 1.5 GHz			1.9:1	
NF	50 Ω Noise Figure	f = 0.5 GHz	dB		3.5	4.5
P_{1dB}	Output Power at 1 dB Gain Compression	f = 0.5 GHz	dBm	16.0	17.5	
IP ₃	Third Order Intercept Point	f = 0.5 GHz	dBm		30.0	
t _D	Group Delay	f = 0.5 GHz	psec		200	
V_{d}	Device Voltage		٧	4.5	5.5	6.5
dV/dT	Device Voltage Temperature Coefficient		mV/°C		-8.0	

Notes:

^{1.} The recommended operating current range for this device is 40 to 75 mA. Typical performance as a function of current is on the following page.

^{2.} Referenced from 50 MHz gain (GP).

MSA-1120 Typical Scattering Parameters $(Z_0 = 50 \Omega, T_A = 25^{\circ}C, I_d = 60 \text{ mA})$

Freq.	S	11		S ₂₁			S ₁₂		S	22	
GHz	Mag	Ang	dB	Mag	Ang	dB	Mag	Ang	Mag	Ang	k
.0005	.78	-21	19.6	9.53	168	-25.1	.057	50	.79	-21	0.51
.005	.19	-72	13.8	4.91	165	-16.8	.144	11	.19	-72	0.98
.025	.05	-56	12.9	4.44	174	-16.5	.149	3	.06	-75	1.08
.050	.04	-52	12.5	4.23	174	-16.1	.156	2	.04	-79	1.08
.100	.04	-56	12.5	4.22	172	-16.2	.155	1	.04	-78	1.09
.200	.05	-72	12.4	4.19	165	-16.1	.157	1	.06	-91	1.08
.300	.07	-84	12.4	4.15	158	-16.0	.159	2	.09	-101	1.07
.400	.09	-96	12.3	4.10	151	-15.9	.161	2	.11	-109	1.06
.500	.10	-105	12.1	4.04	144	-15.8	.163	3	.13	-117	1.05
.600	.12	-113	12.0	3.98	137	-15.6	.166	3	.16	-124	1.04
.700	.14	-120	11.8	3.89	131	-15.4	.169	2	.18	-130	1.03
.800	.15	-127	11.6	3.80	124	-15.2	.173	2	.20	-136	1.01
.900	.17	-134	11.4	3.71	118	-15.0	.178	1	.22	-142	1.00
1.000	.19	-140	11.1	3.60	112	-14.8	.181	2	.24	-148	0.99
1.500	.25	-167	9.8	3.10	83	-14.0	.200	-3	.31	-174	0.95
2.000	.31	171	8.4	2.64	58	-13.3	.216	-10	.35	163	0.95
2.500	.35	157	7.3	2.31	39	-12.8	.228	-16	.36	148	0.96
3.000	.40	140	6.1	2.02	19	-12.5	.236	-23	.36	134	0.99

Typical Performance, $T_A = 25^{\circ}C$, $Z_0 = 50~\Omega$

(unless otherwise noted)

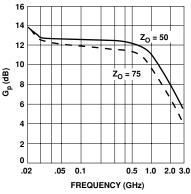


Figure 1. Typical Power Gain vs. Frequency,

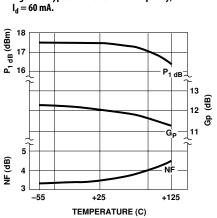


Figure 4. Output Power at 1 dB Gain Compression, Noise Figure and Power Gain vs. Case Temperature, $f=0.5~{\rm GHz}$, $I_d=60~{\rm mA}$.

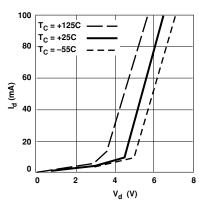


Figure 2. Device Current vs. Voltage.

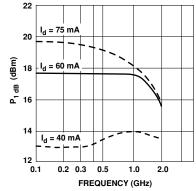


Figure 5. Output Power at 1 dB Gain Compression vs. Frequency.

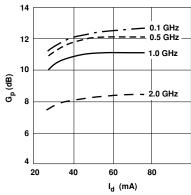


Figure 3. Power Gain vs. Current.

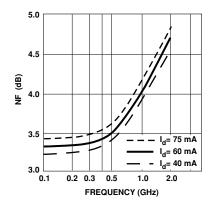
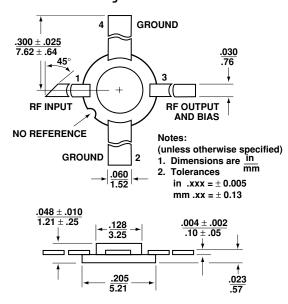



Figure 6. Noise Figure vs. Frequency.

Ordering Information

Part Numbers	No. of Devices	Comments		
MSA-1120	100	Bulk		

200 mil BeO Package Dimensions

