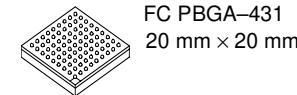


Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!


Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

MSC8126

Quad Digital Signal Processor

- Four StarCore™ SC140 DSP extended cores, each with an SC140 DSP core, 224 Kbyte of internal SRAM M1 memory (1436 Kbyte total), 16 way 16 Kbyte instruction cache (ICache), four-entry write buffer, external cache support, programmable interrupt controller (PIC), local interrupt controller (LIC), and low-power Wait and Stop processing modes.
- 475 Kbyte M2 memory for critical data/temporary data buffering.
- 4 Kbyte boot ROM.
- M2-accessible multi-core MQBus connecting the M2 memory with all four cores, operating at the core frequency, with data bus access of up to 128-bit reads and up to 64-bit writes, central efficient round-robin arbiter for core access to the bus, and atomic control of M2 memory access by the cores and local bus.
- Internal PLL configured are reset by configuration signal values.
- 60x-compatible system bus with 64 or 32 bit data and 32-bit address bus, support for multi-master designs, four-beat burst transfers (eight-beat in 32-bit data mode), port size of 64/32/16/8 bits controlled by the internal memory controller, access to external memory or peripherals, access by an external host to internal resources, slave support with direct access to internal resources including M1 and M2 memories, and on-device arbitration for up to four master devices.
- Direct slave interface (DSI) using a 32/64-bit slave interface with 21–25 bit addressing and 32/64-bit data transfers, direct access by an external host to internal/external resources, synchronous or asynchronous accesses with burst capability in synchronous mode, dual or single strobe mode, write and read buffers to improve host bandwidth, byte enable signals for 1/2/4/8-byte write granularity, sliding window mode for access using a reduced number of address pins, chip ID decoding to allow one CS signal to control multiple DSPs, broadcast mode to write to multiple DSPs, and big-endian/little-endian/munged support.
- Three mode signal multiplexing: 64-bit DSI/32-bit system bus, 32-bit DSI/64-bit system bus, or 32-bit DSI/32-bit system bus.
- Flexible memory controller with three UPMs, a GPCM, a page-mode SDRAM machine, glueless interface to a variety of memories and devices, byte enables for 64-/32-bit bus widths, 8 memory banks for external memories, and 2 memory banks for IPBus peripherals and internal memories.
- Multi-channel DMA controller with 16 time-multiplexed single channels, up to four external peripherals, DONE or DRACK protocol for two external peripherals, service for up to 16 internal requests from up to 8 internal FIFOs per channel, FIFO generated watermarks and hungry requests, priority-based time-multiplexing between channels using 16 internal priority

- levels or round-robin time-multiplexing between channels, flexible channel configuration with connection to local bus or system bus, and flyby transfer support that bypasses the FIFO.
- Up to four independent TDM modules with programmable word size (2, 4, 8, or 16-bit), hardware-base A-law/μ-law conversion, up to 128 Mbps data rate for all channels, with glueless interface to E1 or T1 framers, and can interface with H-MVIP/H.110 devices, TSI, and codecs such as AC-97.
- Ethernet controller: support for 10/100 Mbps MII/RMII/SMII including full- and half-duplex operation, full-duplex flow controls, out-of-sequence transmit queues, programmable maximum frame length including jumbo frames and VLAN tags and priority, retransmission after collision, CRC generation and verification of inbound/outbound packets, address recognition (including exact match, broadcast address, individual hash check, group hash check, and promiscuous mode), pattern matching, insertion with expansion or replacement for transmit frames, VLAN tag insertion, RMON statistics, local bus master DMA for descriptor fetching and buffer access, and optional multiplexing with GPIO (MII/RMII/SMII) or DSI/system bus signals lines (MII/RMII).
- UART with full-duplex operation up to 6.25 Mbps.
- Up to 32 general-purpose input/output (GPIO) ports.
- I²C interface that allows booting from EEPROM devices.
- Two timer modules, each with sixteen configurable 16-bit timers.
- Eight programmable hardware semaphores.
- Global interrupt controller (GIC) with interrupt consolidation and routing to INT_OUT, NMI_OUT, and the cores; thirty-two virtual maskable interrupts (8 per core) and four virtual NMI (one per core) that can be generated by a simple write access.
- Boot options: external memory, external host, UART, TDM, or I²C.
- VCOP with fully programmable feed-forward channel decoding, feed-forward channel equalization and traceback sessions. Up to 400 3GPP 12.2 kbps AMR channels (channel decoding, number of channels linear to frequency). Up to 200 blind transport format detect (BTFD) channels according to the 3GPP standard. Number of channels linear to frequency.
- TCOP with full support for 3GPP and CDMA2000 standards in Turbo decode; up to 20 turbo-coding 384 kbps channels; 8 state PCCC with polynomial as supported by the 3G standards; iterative decoding structure based on Maximum A-Posteriori probability (MAP), with calculations performed in the LOG domain.

Table of Contents

1	Pin Assignments.....	4
1.1	FC-PBGA Ball Layout Diagrams.....	4
1.2	Signal List By Ball Location.....	7
2	Electrical Characteristics	13
2.1	Maximum Ratings	13
2.2	Recommended Operating Conditions.....	14
2.3	Thermal Characteristics	14
2.4	DC Electrical Characteristics	15
2.5	AC Timings	16
3	Hardware Design Considerations.....	40
3.1	Start-up Sequencing Recommendations	40
3.2	Power Supply Design Considerations.....	40
3.3	Connectivity Guidelines	42
3.4	External SDRAM Selection.....	43
3.5	Thermal Considerations	44
4	Ordering Information.....	44
5	Package Information.....	45
6	Product Documentation	45
7	Revision History	46
List of Figures		
Figure 1.	MSC8126 Block Diagram	3
Figure 2.	StarCore SC140 DSP Extended Core Block Diagram ..	3
Figure 3.	MSC8126 Package, Top View	5
Figure 4.	MSC8126 Package, Bottom View.....	6
Figure 5.	Overshoot/Undershoot Voltage for V_{IH} and V_{IL}	16
Figure 6.	Start-Up Sequence: V_{DD} and V_{DDH} Raised Together..	17
Figure 7.	Start-Up Sequence: V_{DD} Raised Before V_{DDH} with CLKIN Started with V_{DDH}	17
Figure 8.	Power-Up Sequence for V_{DDH} and V_{DD}/V_{CCSYN}	18
Figure 9.	Timing Diagram for a Reset Configuration Write.....	21
Figure 10.	Internal Tick Spacing for Memory Controller Signals.....	22
Figure 11.	SIU Timing Diagram	25
Figure 12.	CLKOUT and CLKIN Signals	26
Figure 13.	DMA Signals	27
Figure 14.	Asynchronous Single- and Dual-Strobe Modes Read Timing Diagram	29
Figure 15.	Asynchronous Single- and Dual-Strobe Modes Write Timing Diagram	30
Figure 16.	Asynchronous Broadcast Write Timing Diagram.....	30
Figure 17.	DSI Synchronous Mode Signals Timing Diagram	31
Figure 18.	TDM Inputs Signals	32
Figure 19.	TDM Output Signals	32
Figure 20.	UART Input Timing	33
Figure 21.	UART Output Timing	33
Figure 22.	Timer Timing	34
Figure 23.	MDIO Timing Relationship to MDC	34
Figure 24.	MII Mode Signal Timing	35
Figure 26.	SMII Mode Signal Timing	36
Figure 27.	GPIO Timing	37
Figure 28.	EE Pin Timing	37
Figure 29.	Test Clock Input Timing Diagram.....	38
Figure 30.	Boundary Scan (JTAG) Timing Diagram	38
Figure 31.	Test Access Port Timing Diagram	39
Figure 32.	TRST Timing Diagram	39
Figure 33.	Core Power Supply Decoupling.....	41
Figure 34.	V_{CCSYN} Bypass	41
Figure 35.	MSC8126 Mechanical Information, 431-pin FC-PBGA Package.....	45

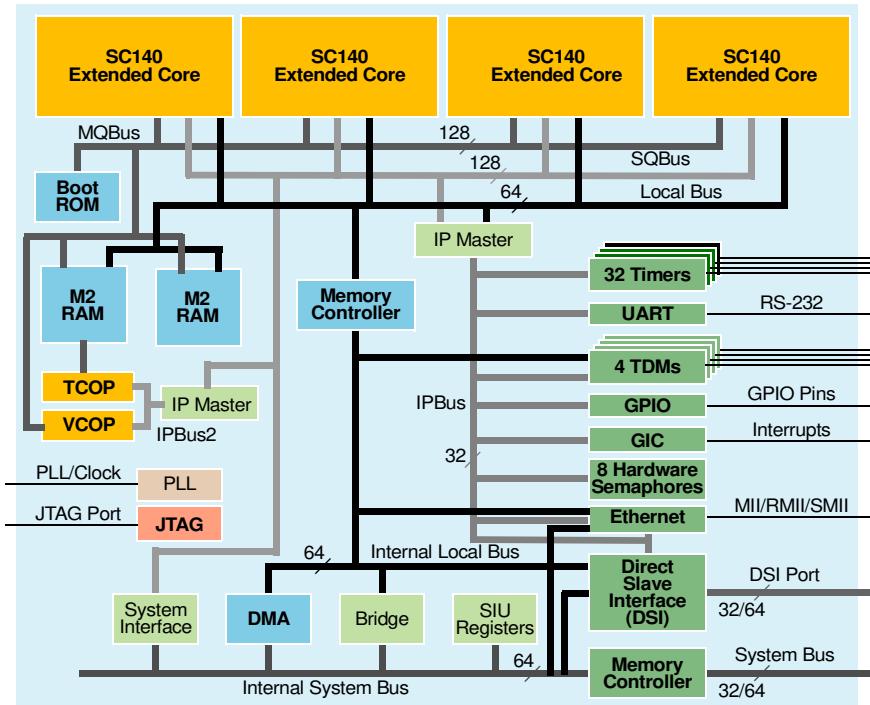
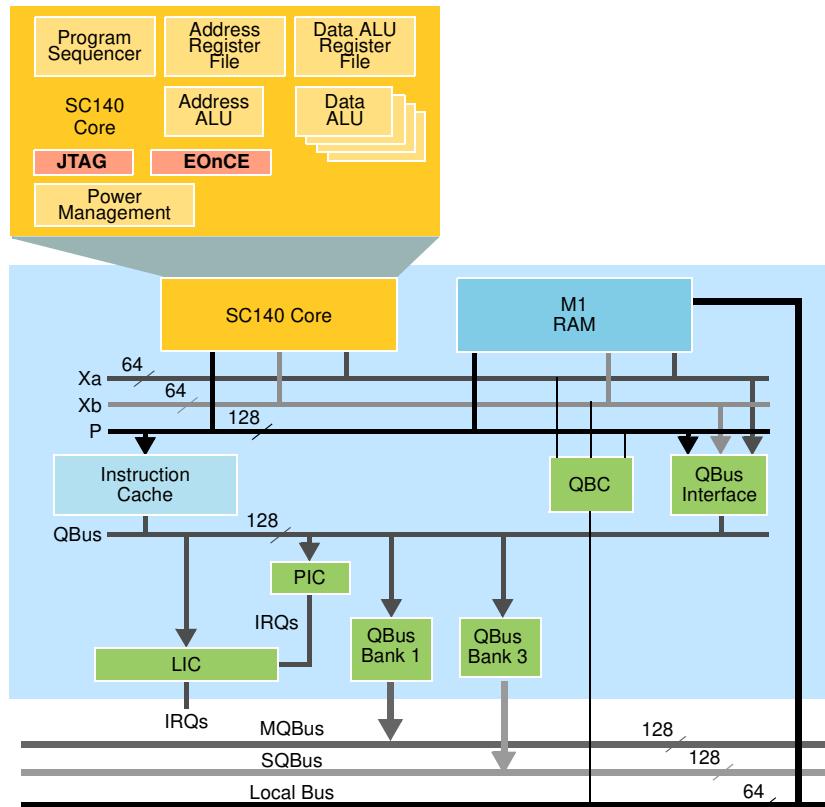
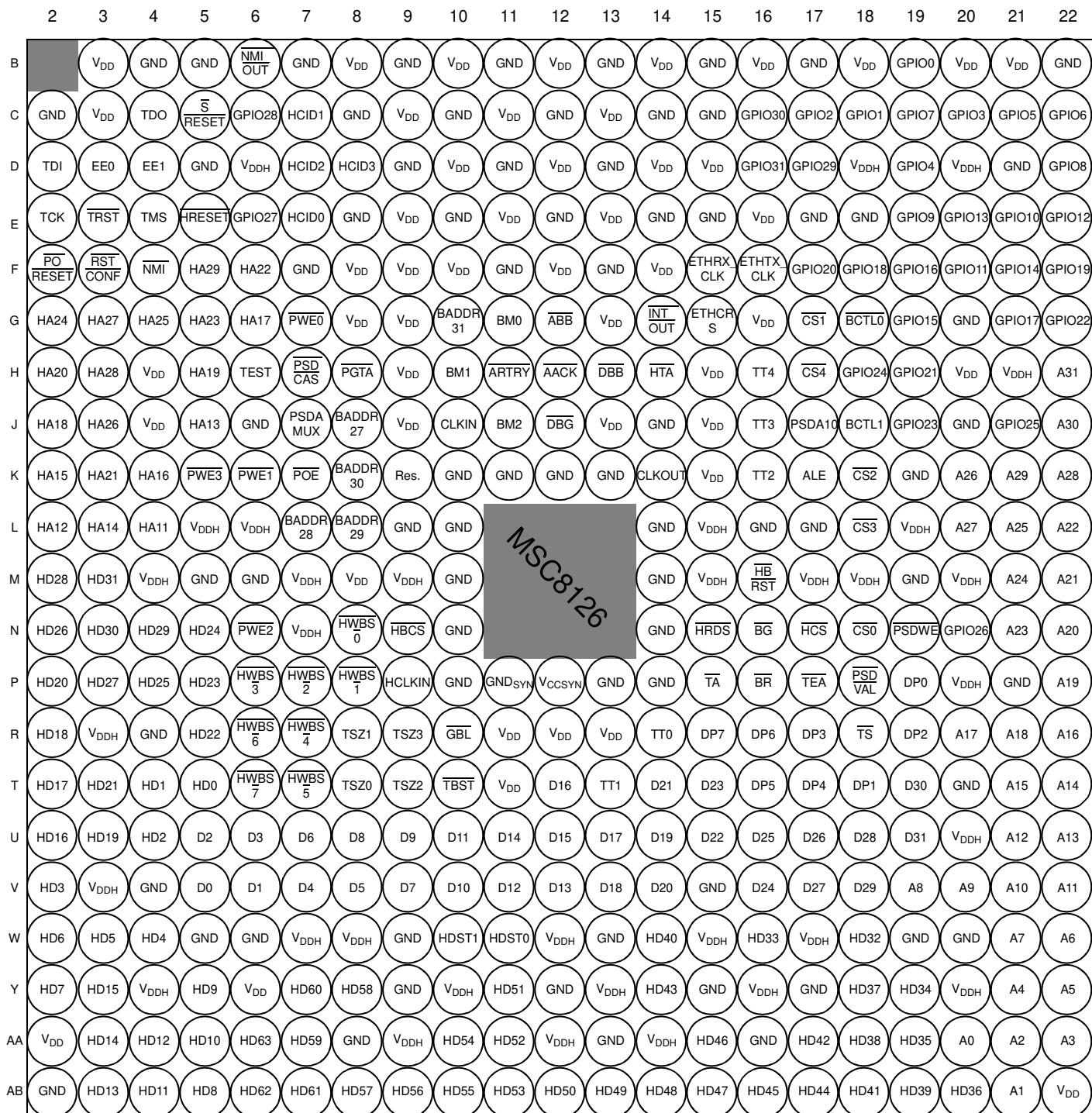



Figure 1. MSC8126 Block Diagram

Notes:

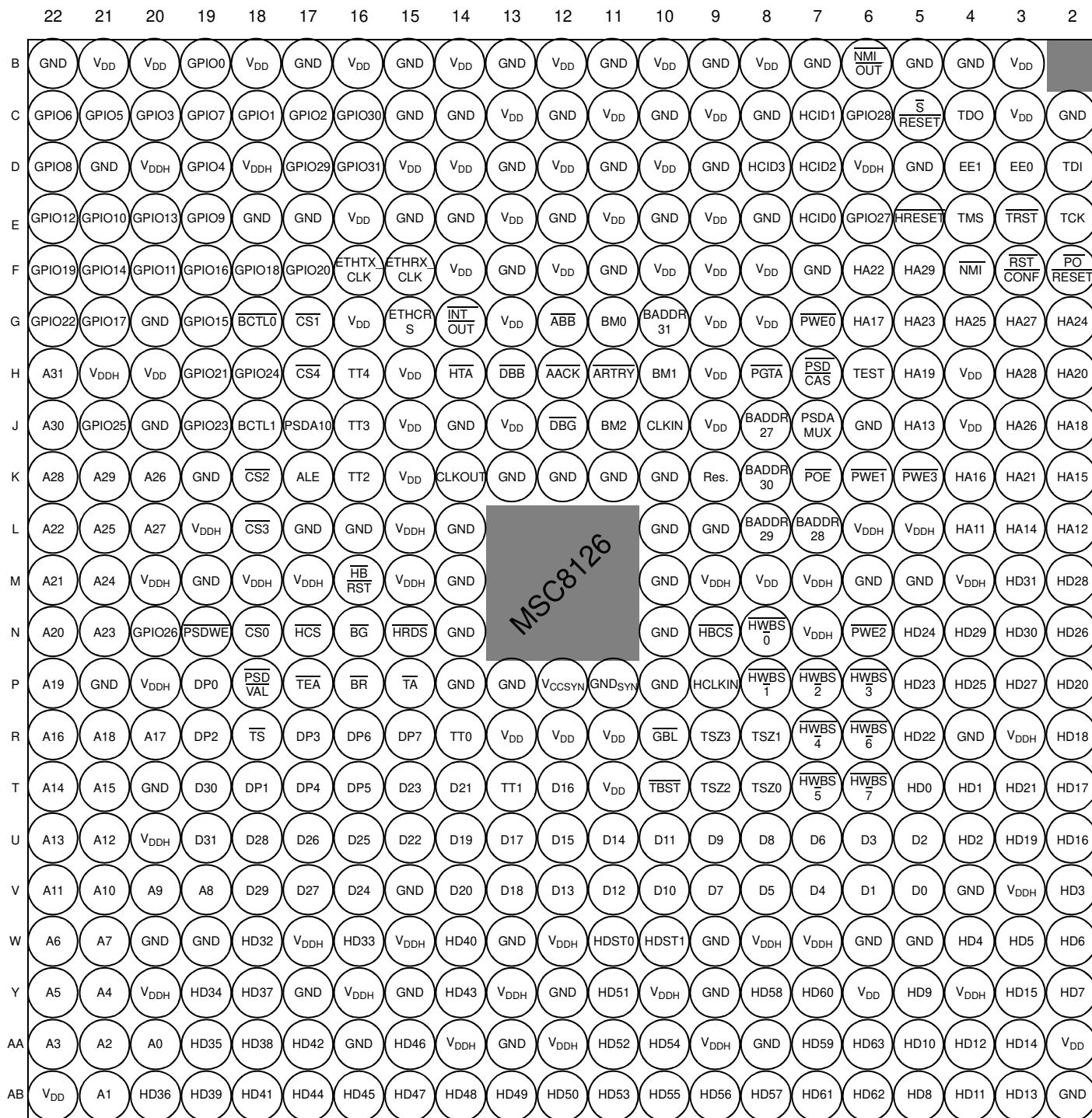
1. The arrows show the data transfer direction.
2. The QBus interface includes a bus switch, write buffer, fetch unit, and a control unit that defines four QBus banks. In addition, the QBC handles internal memory contentions.

Figure 2. StarCore SC140 DSP Extended Core Block Diagram


1 Pin Assignments

This section includes diagrams of the MSC8126 package ball grid array layouts and pinout allocation tables.

1.1 FC-PBGA Ball Layout Diagrams


Top and bottom views of the FC-PBGA package are shown in **Figure 3** and **Figure 4** with their ball location index numbers.

Top View

Figure 3. MSC8126 Package, Top View

Bottom View

Figure 4. MSC8126 Package, Bottom View

1.2 Signal List By Ball Location

Table 1 presents signal list sorted by ball number. -

Table 1. MSC8126 Signal Listing by Ball Designator

Des.	Signal Name	Des.	Signal Name
B3	V _{DD}	C18	GPIO1/TIMER0/CHIP_ID1/IRQ5/ETHTXD1
B4	GND	C19	GPIO7/TDM3RCLK/IRQ5/ETHTXD3
B5	GND	C20	GPIO3/TDM3TSYN/IRQ1/ETHTXD2
B6	NMI_OUT	C21	GPIO5/TDM3TDAT/IRQ3/ETHRXD3
B7	GND	C22	GPIO6/TDM3RSYN/IRQ4/ETHRXD2
B8	V _{DD}	D2	TDI
B9	GND	D3	EE0
B10	V _{DD}	D4	EE1
B11	GND	D5	GND
B12	V _{DD}	D6	V _{DDH}
B13	GND	D7	HCID2
B14	V _{DD}	D8	HCID3/HA8
B15	GND	D9	GND
B16	V _{DD}	D10	V _{DD}
B17	GND	D11	GND
B18	V _{DD}	D12	V _{DD}
B19	GPIO0/CHIP_ID0/IRQ4/ETHTXD0	D13	GND
B20	V _{DD}	D14	V _{DD}
B21	V _{DD}	D15	V _{DD}
B22	GND	D16	GPIO31/TIMER3/SCL
C2	GND	D17	GPIO29/CHIP_ID3/ETHTX_EN
C3	V _{DD}	D18	V _{DDH}
C4	TDO	D19	GPIO4/TDM3TCLK/IRQ2/ETHTX_ER
C5	SRESET	D20	V _{DDH}
C6	GPIO28/DREQ2/UTXD	D21	GND
C7	HCID1	D22	GPIO8/TDM3RDAT/IRQ6/ETHCOL
C8	GND	E2	TCK
C9	V _{DD}	E3	TRST
C10	GND	E4	TMS
C11	V _{DD}	E5	HRESET
C12	GND	E6	GPIO27/DREQ1/URXD
C13	V _{DD}	E7	HCID0
C14	GND	E8	GND
C15	GND	E9	V _{DD}
C16	GPIO30/TIMER2/TMCLK/SDA	E10	GND
C17	GPIO2/TIMER1/CHIP_ID2/IRQ6	E11	V _{DD}

Table 1. MSC8126 Signal Listing by Ball Designator (continued)

Des.	Signal Name	Des.	Signal Name
E12	GND	G6	HA17
E13	V _{DD}	G7	<u>PWE0/PSDDQM0/PBS0</u>
E14	GND	G8	V _{DD}
E15	GND	G9	V _{DD}
E16	V _{DD}	G10	<u>IRQ3/BADDR31</u>
E17	GND	G11	BM0/TC0/BNKSEL0
E18	GND	G12	<u>ABB/IRQ4</u>
E19	GPIO9/TDM2TSYN/IRQ7/ETHMDIO	G13	V _{DD}
E20	GPIO13/TDM2RCLK/IRQ11/ETHMDC	G14	<u>IRQ7/INT_OUT</u>
E21	GPIO10/TDM2TCLK/IRQ8/ETHRX_DV/ETHCRS_DV/NC	G15	ETHCRS/ETHRXD
E22	GPIO12/TDM2RSYN/IRQ10/ETHRXD1/ETHSYNC	G16	V _{DD}
F2	<u>PORESET</u>	G17	<u>CS1</u>
F3	<u>RSTCONF</u>	G18	<u>BCTL0</u>
F4	<u>NMI</u>	G19	GPIO15/TDM1TSYN/DREQ1
F5	HA29	G20	GND
F6	HA22	G21	GPIO17/TDM1TDAT/DACK1
F7	GND	G22	GPIO22/TDM0TCLK/DONE2/DRACK2
F8	V _{DD}	H2	HA20
F9	V _{DD}	H3	HA28
F10	V _{DD}	H4	V _{DD}
F11	GND	H5	HA19
F12	V _{DD}	H6	TEST
F13	GND	H7	<u>PSDCAS/PGPL3</u>
F14	V _{DD}	H8	<u>PGTA/PUPMWAIT/PGPL4/PPBS</u>
F15	ETHRX_CLK/ETHSYNC_IN	H9	V _{DD}
F16	ETHTX_CLK/ETHREF_CLK/ETHCLOCK	H10	BM1/TC1/BNKSEL1
F17	GPIO20/TDM1RDATA	H11	<u>ARTRY</u>
F18	GPIO18/TDM1RSYN/DREQ2	H12	<u>AACK</u>
F19	GPIO16/TDM1TCLK/DONE1/DRACK1	H13	<u>DBB/IRQ5</u>
F20	GPIO11/TDM2TDAT/IRQ9/ETHRX_ER/ETHTXD	H14	<u>HTA</u>
F21	GPIO14/TDM2RDATA/IRQ12/ETHRXD0/NC	H15	V _{DD}
F22	GPIO19/TDM1RCLK/DACK2	H16	TT4/CS7
G2	HA24	H17	<u>CS4</u>
G3	HA27	H18	GPIO24/TDM0RSYN/IRQ14
G4	HA25	H19	GPIO21/TDM0TSYN
G5	HA23	H20	V _{DD}
H21	V _{DDH}	K15	V _{DD}
H22	A31	K16	TT2/CS5
J2	HA18	K17	ALE

Table 1. MSC8126 Signal Listing by Ball Designator (continued)

Des.	Signal Name	Des.	Signal Name
J3	HA26	K18	$\overline{\text{CS2}}$
J4	V_{DD}	K19	GND
J5	HA13	K20	A26
J6	GND	K21	A29
J7	PSDAMUX/PGPL5	K22	A28
J8	BADDR27	L2	HA12
J9	V_{DD}	L3	HA14
J10	CLKIN	L4	HA11
J11	BM2/TC2/BNKSEL2	L5	V_{DDH}
J12	$\overline{\text{DBG}}$	L6	V_{DDH}
J13	V_{DD}	L7	BADDR28
J14	GND	L8	$\overline{\text{IRQ5}}/\text{BADDR29}$
J15	V_{DD}	L9	GND
J16	TT3/ $\overline{\text{CS6}}$	L10	GND
J17	PSDA10/PGPL0	L14	GND
J18	$\overline{\text{BCTL1}}/\overline{\text{CS5}}$	L15	V_{DDH}
J19	GPIO23/TDM0TDAT/ $\overline{\text{IRQ13}}$	L16	GND
J20	GND	L17	GND
J21	GPIO25/TDM0RCLK/ $\overline{\text{IRQ15}}$	L18	$\overline{\text{CS3}}$
J22	A30	L19	V_{DDH}
K2	HA15	L20	A27
K3	HA21	L21	A25
K4	HA16	L22	A22
K5	$\overline{\text{PWE3}}/\overline{\text{PSDDQM3}}/\overline{\text{PBS3}}$	M2	HD28
K6	$\overline{\text{PWE1}}/\overline{\text{PSDDQM1}}/\overline{\text{PBS1}}$	M3	HD31
K7	$\overline{\text{POE}}/\overline{\text{PSDRAS}}/\overline{\text{GPL2}}$	M4	V_{DDH}
K8	$\overline{\text{IRQ2}}/\text{BADDR30}$	M5	GND
K9	Reserved	M6	GND
K10	GND	M7	V_{DDH}
K11	GND	M8	V_{DD}
K12	GND	M9	V_{DDH}
K13	GND	M10	GND
K14	CLKOUT	M14	GND
M15	V_{DDH}	P12	V_{CCSYN}
M16	$\overline{\text{HBRST}}$	P13	GND
M17	V_{DDH}	P14	GND
M18	V_{DDH}	P15	$\overline{\text{T}}$
M19	GND	P16	$\overline{\text{BR}}$
M20	V_{DDH}	P17	$\overline{\text{TEA}}$

Table 1. MSC8126 Signal Listing by Ball Designator (continued)

Des.	Signal Name	Des.	Signal Name
M21	A24	P18	<u>PSDVAL</u>
M22	A21	P19	DP0/DREQ1/ <u>EXT_BR2</u>
N2	HD26	P20	<u>V_{DDH}</u>
N3	HD30	P21	GND
N4	HD29	P22	A19
N5	HD24	R2	HD18
N6	<u>PWE2/PSDDQM2/PBS2</u>	R3	<u>V_{DDH}</u>
N7	<u>V_{DDH}</u>	R4	GND
N8	<u>HWBS0/HDBS0/HWBE0/HDBE0</u>	R5	HD22
N9	<u>HBCS</u>	R6	<u>HWBS6/HDBS6/HWBE6/HDBE6/PWE6/PSDDQM6/PBS6</u>
N10	GND	R7	<u>HWBS4/HDBS4/HWBE4/HDBE4/PWE4/PSDDQM4/PBS4</u>
N14	GND	R8	TSZ1
N15	<u>HRDS/HRW/HRDE</u>	R9	TSZ3
N16	<u>BG</u>	R10	<u>IRQ1/GBL</u>
N17	<u>HCS</u>	R11	<u>V_{DD}</u>
N18	<u>CS0</u>	R12	<u>V_{DD}</u>
N19	<u>PSDW_E/PGPL1</u>	R13	<u>V_{DD}</u>
N20	GPIO26/TDM0RDAT	R14	TT0/HA7
N21	A23	R15	<u>IRQ7/DP7/DREQ4</u>
N22	A20	R16	<u>IRQ6/DP6/DREQ3</u>
P2	HD20	R17	<u>IRQ3/DP3/DREQ2/EXT_BR3</u>
P3	HD27	R18	<u>TS</u>
P4	HD25	R19	<u>IRQ2/DP2/DACK2/EXT_DBG2</u>
P5	HD23	R20	A17
P6	<u>HWBS3/HDBS3/HWBE3/HDBE3</u>	R21	A18
P7	<u>HWBS2/HDBS2/HWBE2/HDBE2</u>	R22	A16
P8	<u>HWBS1/HDBS1/HWBE1/HDBE1</u>	T2	HD17
P9	HCLKIN	T3	HD21
P10	GND	T4	HD1/DSISYNC
P11	GND _{SYN}	T5	HD0/SWTE
T6	<u>HWBS7/HDBS7/HWBE7/HDBE7/PWE7/PSDDQM7/PBS7</u>	U21	A12
T7	<u>HWBS5/HDBS5/HWBE5/HDBE5/PWE5/PSDDQM5/PBS5</u>	U22	A13
T8	TSZ0	V2	HD3/MODCK1
T9	TSZ2	V3	<u>V_{DDH}</u>
T10	<u>TBST</u>	V4	GND
T11	<u>V_{DD}</u>	V5	D0
T12	D16	V6	D1
T13	TT1	V7	D4
T14	D21	V8	D5

Table 1. MSC8126 Signal Listing by Ball Designator (continued)

Des.	Signal Name	Des.	Signal Name
T15	D23	V9	D7
T16	<u>IRQ5/DP5/DACK4/EXT_BG3</u>	V10	D10
T17	<u>IRQ4/DP4/DACK3/EXT_DBG3</u>	V11	D12
T18	<u>IRQ1/DP1/DACK1/EXT_BG2</u>	V12	D13
T19	D30	V13	D18
T20	GND	V14	D20
T21	A15	V15	GND
T22	A14	V16	D24
U2	HD16	V17	D27
U3	HD19	V18	D29
U4	HD2/DSI64	V19	A8
U5	D2	V20	A9
U6	D3	V21	A10
U7	D6	V22	A11
U8	D8	W2	HD6
U9	D9	W3	HD5/CNFGS
U10	D11	W4	HD4/MODCK2
U11	D14	W5	GND
U12	D15	W6	GND
U13	D17	W7	V_{DDH}
U14	D19	W8	V_{DDH}
U15	D22	W9	GND
U16	D25	W10	HDST1/HA10
U17	D26	W11	HDST0/HA9
U18	D28	W12	V_{DDH}
U19	D31	W13	GND
U20	V_{DDH}	W14	HD40/D40/ETHRXD0
W15	V_{DDH}	AA9	V_{DDH}
W16	HD33/D33/reserved	AA10	HD54/D54/ETHTX_EN
W17	V_{DDH}	AA11	HD52/D52
W18	HD32/D32/reserved	AA12	V_{DDH}
W19	GND	AA13	GND
W20	GND	AA14	V_{DDH}
W21	A7	AA15	HD46/D46/ETHXT0
W22	A6	AA16	GND
Y2	HD7	AA17	HD42/D42/ETHRXD2/reserved
Y3	HD15	AA18	HD38/D38/reserved
Y4	V_{DDH}	AA19	HD35/D35/reserved
Y5	HD9	AA20	A0

Table 1. MSC8126 Signal Listing by Ball Designator (continued)

Des.	Signal Name	Des.	Signal Name
Y6	V _{DD}	AA21	A2
Y7	HD60/D60/ETHCOL/reserved	AA22	A3
Y8	HD58/D58/ETHMDC	AB2	GND
Y9	GND	AB3	HD13
Y10	V _{DDH}	AB4	HD11
Y11	HD51/D51	AB5	HD8
Y12	GND	AB6	HD62/D62
Y13	V _{DDH}	AB7	HD61/D61
Y14	HD43/D43/ETHRXD3/reserved	AB8	HD57/D57/ETHRX_ER
Y15	GND	AB9	HD56/D56/ETHRX_DV/ETHCRS_DV
Y16	V _{DDH}	AB10	HD55/D55/ETHTX_ER/reserved
Y17	GND	AB11	HD53/D53
Y18	HD37/D37/reserved	AB12	HD50/D50
Y19	HD34/D34/reserved	AB13	HD49/D49/ETHTXD3/reserved
Y20	V _{DDH}	AB14	HD48/D48/ETHTXD2/reserved
Y21	A4	AB15	HD47/D47/ETHTXD1
Y22	A5	AB16	HD45/D45
AA2	V _{DD}	AB17	HD44/D44
AA3	HD14	AB18	HD41/D41/ETHRXD1
AA4	HD12	AB19	HD39/D39/reserved
AA5	HD10	AB20	HD36/D36/reserved
AA6	HD63/D63	AB21	A1
AA7	HD59/D59/ETHMDIO	AB22	V _{DD}
AA8	GND		

2 Electrical Characteristics

This document contains detailed information on power considerations, DC/AC electrical characteristics, and AC timing specifications. For additional information, see the *MSC8126 Reference Manual*.

2.1 Maximum Ratings

CAUTION

This device contains circuitry protecting against damage due to high static voltage or electrical fields; however, normal precautions should be taken to avoid exceeding maximum voltage ratings. Reliability is enhanced if unused inputs are tied to an appropriate logic voltage level (for example, either GND or V_{DD}).

In calculating timing requirements, adding a maximum value of one specification to a minimum value of another specification does not yield a reasonable sum. A maximum specification is calculated using a worst case variation of process parameter values in one direction. The minimum specification is calculated using the worst case for the same parameters in the opposite direction. Therefore, a “maximum” value for a specification never occurs in the same device with a “minimum” value for another specification; adding a maximum to a minimum represents a condition that can never exist.

Table 2 describes the maximum electrical ratings for the MSC8126.

Table 2. Absolute Maximum Ratings

Rating	Symbol	Value	Unit
Core and PLL supply voltage	V_{DD}	-0.2 to 1.6	V
I/O supply voltage	V_{DDH}	-0.2 to 4.0	V
Input voltage	V_{IN}	-0.2 to 4.0	V
Maximum operating temperature: • 400 MHz • 500 MHz	T_J	105 90	°C
Minimum operating temperature • 400 MHz • 500 MHz	T_J	-40 0	°C
Storage temperature range	T_{STG}	-55 to +150	°C
Notes:	<ol style="list-style-type: none">Functional operating conditions are given in Table 3.Absolute maximum ratings are stress ratings only, and functional operation at the maximum is not guaranteed. Stress beyond the listed limits may affect device reliability or cause permanent damage.Section 3.5, Thermal Considerations includes a formula for computing the chip junction temperature (T_J).		

2.2 Recommended Operating Conditions

Table 3 lists recommended operating conditions. Proper device operation outside of these conditions is not guaranteed.

Table 3. Recommended Operating Conditions

Rating	Symbol	Value	Unit
Core and PLL supply voltage: • Standard — 400 MHz — 500 MHz • Reduced (300 and 400 MHz)	V_{DD} V_{CCSYN}	1.14 to 1.26 1.16 to 1.24 1.07 to 1.13	V
I/O supply voltage	V_{DDH}	3.135 to 3.465	V
Input voltage	V_{IN}	-0.2 to $V_{DDH}+0.2$	V
Operating temperature range: • Standard • Extended	T_J T_J	0 to 90 -40 to 105	°C

2.3 Thermal Characteristics

Table 4 describes thermal characteristics of the MSC8126 for the FC-PBGA packages.

Table 4. Thermal Characteristics for the MSC8126

Characteristic	Symbol	FC-PBGA 20 × 20 mm ⁵		Unit
		Natural Convection	200 ft/min (1 m/s) airflow	
Junction-to-ambient ^{1, 2}	$R_{\theta JA}$	26	21	°C/W
Junction-to-ambient, four-layer board ^{1, 3}	$R_{\theta JA}$	19	15	°C/W
Junction-to-board (bottom) ⁴	$R_{\theta JB}$	9		°C/W
Junction-to-case ⁵	$R_{\theta JC}$	0.9		°C/W
Junction-to-package-top ⁶	Ψ_{JT}	1		°C/W

Notes:

1. Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance.
2. Per SEMI G38-87 and JEDEC JESD51-2 with the single layer board horizontal.
3. Per JEDEC JESD51-6 with the board horizontal.
4. Thermal resistance between the die and the printed circuit board per JEDEC JESD 51-8. Board temperature is measured on the top surface of the board near the package.
5. Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method 1012.1).
6. Thermal characterization parameter indicating the temperature difference between package top and the junction temperature per JEDEC JESD51-2.

Section 3.5, *Thermal Considerations* provides a detailed explanation of these characteristics.

2.4 DC Electrical Characteristics

This section describes the DC electrical characteristics for the MSC8126. The measurements in **Table 5** assume the following system conditions:

- $T_A = 25^\circ\text{C}$
- $V_{DD} =$
 - 400 MHz = 1.14–1.26 V_{DC}
 - 500 MHz = 1.16–1.24 V_{DC}
- $V_{DDH} = 3.3 \text{ V} \pm 5\% \text{ V}_{DC}$
- $\text{GND} = 0 \text{ V}_{DC}$

Note: The leakage current is measured for nominal V_{DDH} and V_{DD} .

Table 5. DC Electrical Characteristics

Characteristic	Symbol	Min	Typical	Max	Unit
Input high voltage ¹ , all inputs except CLKIN	V_{IH}	2.0	—	3.465	V
Input low voltage ¹	V_{IL}	GND	0	0.8	V
CLKIN input high voltage	V_{IHC}	2.4	3.0	3.465	V
CLKIN input low voltage	V_{ILC}	GND	0	0.8	V
Input leakage current, $V_{IN} = V_{DDH}$	I_{IN}	–1.0	0.09	1	μA
Tri-state (high impedance off state) leakage current, $V_{IN} = V_{DDH}$	I_{OZ}	–1.0	0.09	1	μA
Signal low input current, $V_{IL} = 0.8 \text{ V}^2$	I_L	–1.0	0.09	1	μA
Signal high input current, $V_{IH} = 2.0 \text{ V}^2$	I_H	–1.0	0.09	1	μA
Output high voltage, $I_{OH} = –2 \text{ mA}$, except open drain pins	V_{OH}	2.0	3.0	—	V
Output low voltage, $I_{OL} = 3.2 \text{ mA}$	V_{OL}	—	0	0.4	V
V_{CCSYN} PLL supply current	I_{VCCSYN}	—	2	4	mA
Internal supply current: • Wait mode • Stop mode	I_{DDW} I_{DDS}	— —	375 ³ 290 ³	— —	mA mA
Typical power 400 MHz at 1.2 V ⁴	P	—	1.15	—	W
Notes:	<ol style="list-style-type: none"> 1. See Figure 5 for undershoot and overshoot voltages. 2. Not tested. Guaranteed by design. 3. Measured for 1.2 V core at 25°C junction temperature. 4. The typical power values were measured using an EFR code with the device running at a junction temperature of 25°C. No peripherals were enabled and the ICache was not enabled. The source code was optimized to use all the ALUs and AGUs and all four cores. It was created using CodeWarrior® 2.5. These values are provided as examples only. Power consumption is application dependent and varies widely. To assure proper board design with regard to thermal dissipation and maintaining proper operating temperatures, evaluate power consumption for your application and use the design guidelines in Chapter 4 of this document and in <i>MSC8102, MSC8122, and MSC8126 Thermal Management Design Guidelines</i> (AN2601). 				

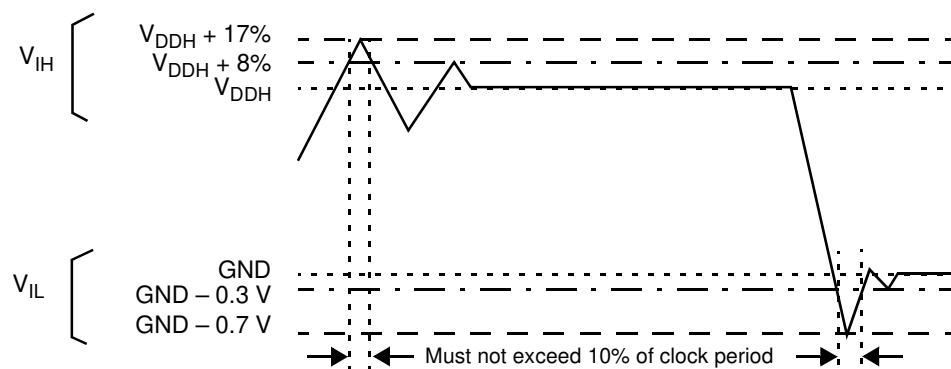


Figure 5. Overshoot/Uncertain Voltage for V_{IH} and V_{IL}

2.5 AC Timings

The following sections include illustrations and tables of clock diagrams, signals, and parallel I/O outputs and inputs. When systems such as DSP farms are developed using the DSI, use a device loading of 4 pF per pin. AC timings are based on a 20 pF load, except where noted otherwise, and a 50 Ω transmission line. For loads smaller than 20 pF, subtract 0.06 ns per pF down to 10 pF load. For loads larger than 20 pF, add 0.06 ns for SIU/Ethernet/DSI delay and 0.07 ns for GPIO/TDM/timer delay. When calculating overall loading, also consider additional RC delay.

2.5.1 Output Buffer Impedances

Table 6. Output Buffer Impedances

Output Buffers	Typical Impedance (Ω)
System bus	50
Memory controller	50
Parallel I/O	50

Note: These are typical values at 65°C. The impedance may vary by $\pm 25\%$ depending on device process and operating temperature.

2.5.2 Start-Up Timing

Starting the device requires coordination among several input sequences including clocking, reset, and power. **Section 2.5.3** describes the clocking characteristics. **Section 2.5.4** describes the reset and power-up characteristics. You must use the following guidelines when starting up an MSC8126 device:

- $\overline{PORESET}$ and \overline{TRST} must be asserted externally for the duration of the power-up sequence. See **Table 11** for timing.
- If possible, bring up the V_{DD} and V_{DDH} levels together. For designs with separate power supplies, bring up the V_{DD} levels and then the V_{DDH} levels (see **Figure 7**).
- $CLKIN$ should start toggling at least 16 cycles (starting after V_{DDH} reaches its nominal level) before $\overline{PORESET}$ deassertion to guarantee correct device operation (see **Figure 6** and **Figure 7**).
- $CLKIN$ must not be pulled high during V_{DDH} power-up. $CLKIN$ can toggle during this period.

Note: See **Section 3.1** for start-up sequencing recommendations and **Section 3.2** for power supply design recommendations.

The following figures show acceptable start-up sequence examples. **Figure 6** shows a sequence in which V_{DD} and V_{DDH} are raised together. **Figure 7** shows a sequence in which V_{DDH} is raised after V_{DD} and $CLKIN$ begins to toggle as V_{DDH} rises.

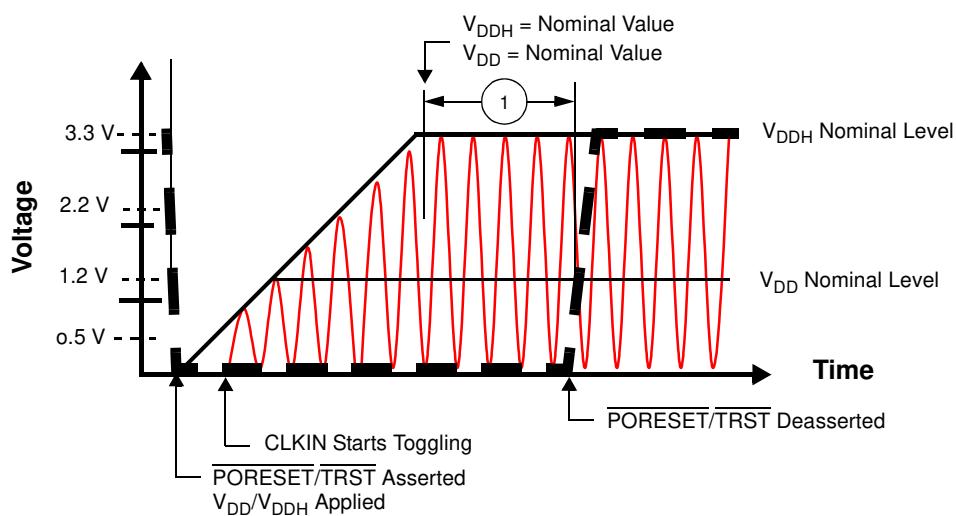


Figure 6. Start-Up Sequence: V_{DD} and V_{DDH} Raised Together

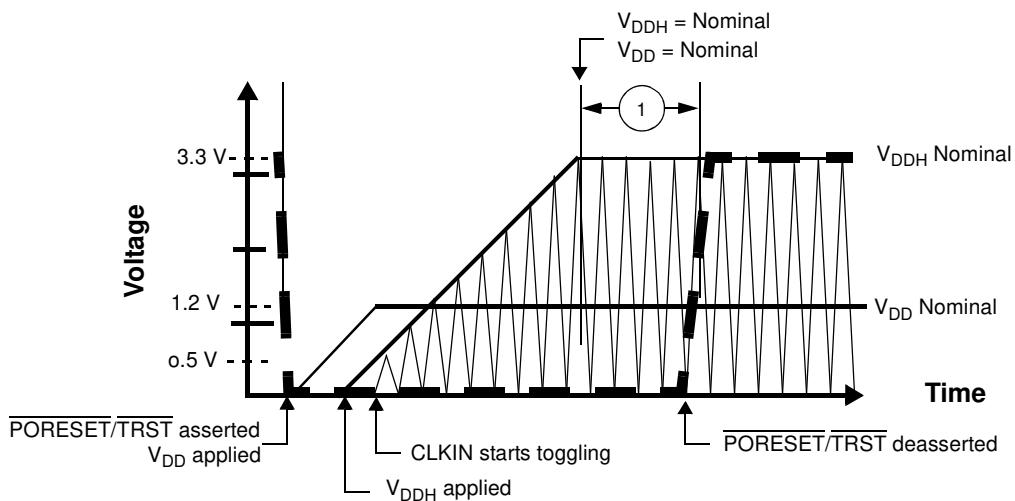
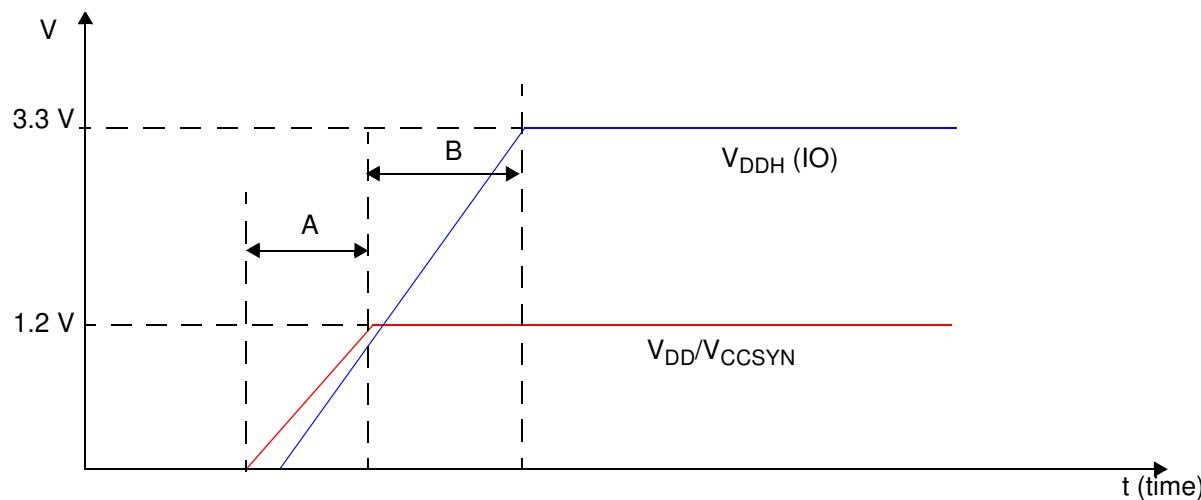



Figure 7. Start-Up Sequence: V_{DD} Raised Before V_{DDH} with CLKIN Started with V_{DDH}

In all cases, the power-up sequence must follow the guidelines shown in **Figure 8**.

Figure 8. Power-Up Sequence for V_{DDH} and V_{DD}/V_{CCSYN}

The following rules apply:

1. During time interval A, V_{DDH} should always be equal to or less than the V_{DD}/V_{CCSYN} voltage level. The duration of interval A should be kept below 10 ms.
2. The duration of timing interval B should be kept as small as possible and less than 10 ms.

2.5.3 Clock and Timing Signals

The following sections include a description of clock signal characteristics. **Table 7** shows the maximum frequency values for internal (Core, Reference, Bus, and DSI) and external (CLKIN and CLKOUT) clocks. The user must ensure that maximum frequency values are not exceeded.

Table 7. Maximum Frequencies

Characteristic	Maximum in MHz
Core frequency	400/500
Reference frequency (REFCLK)	133/166
Internal bus frequency (BLCK)	133/166
DSI clock frequency (HCLKIN)	$HCLKIN \leq (\min\{100 \text{ MHz}, CLKOUT\})$
External clock frequency (CLKIN or CLKOUT)	133/166

Table 8. Clock Frequencies

Characteristics	Symbol	400 MHz Device		500 MHz Device	
		Min	Max	Min	Max
CLKIN frequency	F_{CLKIN}	20	133.3	20	166.7
BCLK frequency	F_{BCLK}	40	133.3	40	166.7
Reference clock (REFCLK) frequency	F_{REFCLK}	40	133.3	40	166.7
Output clock (CLKOUT) frequency	F_{CLKOUT}	40	133.3	40	166.7
SC140 core clock frequency	F_{CORE}	200	400	200	500

Note: The rise and fall time of external clocks should be 5 ns maximum

Table 9. System Clock Parameters

Characteristic	Min	Max	Unit
Phase jitter between BCLK and CLKIN	—	0.3	ns
CLKIN frequency	20	see Table 8	MHz
CLKIN slope	—	3	ns
PLL input clock (after predivider)	20	100	MHz
PLL output frequency (VCO output)	800		MHz
• 400 MHz core		1600	MHz
• 500 MHz core		2000	MHz
CLKOUT frequency jitter ¹	—	200	ps
CLKOUT phase jitter ¹ with CLKIN phase jitter of ± 100 ps	—	500	ps
Notes:	<ol style="list-style-type: none"> 1. Peak-to-peak. 2. Not tested. Guaranteed by design. 		

2.5.4 Reset Timing

The MSC8126 has several inputs to the reset logic:

- Power-on reset (PORESET)
- External hard reset (HRESET)
- External soft reset (SRESET)
- Software watchdog reset
- Bus monitor reset
- Host reset command through JTAG

All MSC8126 reset sources are fed into the reset controller, which takes different actions depending on the source of the reset. The reset status register indicates the most recent sources to cause a reset. **Table 10** describes the reset sources.

Table 10. Reset Sources

Name	Direction	Description
Power-on reset (PORESET)	Input	Initiates the power-on reset flow that resets the MSC8126 and configures various attributes of the MSC8126. On PORESET, the entire MSC8126 device is reset. SPLL states is reset, HRESET and SRESET are driven, the SC140 extended cores are reset, and system configuration is sampled. The clock mode (MODCK bits), reset configuration mode, boot mode, Chip ID, and use of either a DSI 64 bits port or a System Bus 64 bits port are configured only when PORESET is asserted.
External hard reset (HRESET)	Input/ Output	Initiates the hard reset flow that configures various attributes of the MSC8126. While HRESET is asserted, SRESET is also asserted. HRESET is an open-drain pin. Upon hard reset, HRESET and SRESET are driven, the SC140 extended cores are reset, and system configuration is sampled. The most configurable features are reconfigured. These features are defined in the 32-bit hard reset configuration word described in <i>Hard Reset Configuration Word</i> section of the <i>Reset</i> chapter in the <i>MSC8126 Reference Manual</i> .
External soft reset (SRESET)	Input/ Output	Initiates the soft reset flow. The MSC8126 detects an external assertion of SRESET only if it occurs while the MSC8126 is not asserting reset. SRESET is an open-drain pin. Upon soft reset, SRESET is driven, the SC140 extended cores are reset, and system configuration is maintained.
Software watchdog reset	Internal	When the MSC8126 watchdog count reaches zero, a software watchdog reset is signalled. The enabled software watchdog event then generates an internal hard reset sequence.
Bus monitor reset	Internal	When the MSC8126 bus monitor count reaches zero, a bus monitor hard reset is asserted. The enabled bus monitor event then generates an internal hard reset sequence.
Host reset command through the TAP	Internal	When a host reset command is written through the Test Access Port (TAP), the TAP logic asserts the soft reset signal and an internal soft reset sequence is generated.

Table 11 summarizes the reset actions that occur as a result of the different reset sources.

Table 11. Reset Actions for Each Reset Source

Reset Action/Reset Source	Power-On Reset (<u>PORESET</u>)	Hard Reset (<u>HRESET</u>)	Soft Reset (<u>SRESET</u>)	
	External only	External or Internal (Software Watchdog or Bus Monitor)	External	JTAG Command: EXTEST, CLAMP, or HIGHZ
Configuration pins sampled (Refer to Section 2.5.4.1 for details).	Yes	No	No	No
SPLL state reset	Yes	No	No	No
System reset configuration write through the DSI	Yes	No	No	No
System reset configuration write through the system bus	Yes	Yes	No	No
HRESET driven	Yes	Yes	No	No
SIU registers reset	Yes	Yes	No	No
IPBus modules reset (TDM, UART, Timers, DSI, IPBus master, GIC, HS, and GPIO)	Yes	Yes	Yes	Yes
SRESET driven	Yes	Yes	Yes	Depends on command
SC140 extended cores reset	Yes	Yes	Yes	Yes
MQBS reset	Yes	Yes	Yes	Yes

2.5.4.1 Power-On Reset (PORESET) Pin

Asserting PORESET initiates the power-on reset flow. PORESET must be asserted externally for at least 16 CLKIN cycles after V_{DD} and V_{DDH} are both at their nominal levels.

2.5.4.2 Reset Configuration

The MSC8126 has two mechanisms for writing the reset configuration:

- Through the direct slave interface (DSI)
- Through the system bus. When the reset configuration is written through the system bus, the MSC8126 acts as a configuration master or a configuration slave. If configuration slave is selected, but no special configuration word is written, a default configuration word is applied.

Fourteen signal levels (see **Chapter 1** for signal description details) are sampled on PORESET deassertion to define the Reset Configuration Mode and boot and operating conditions:

- RSTCONF
- CNFGS
- DSISYNC
- DSI64
- CHIP_ID[0-3]
- BM[0-2]
- SWTE
- MODCK[1-2]

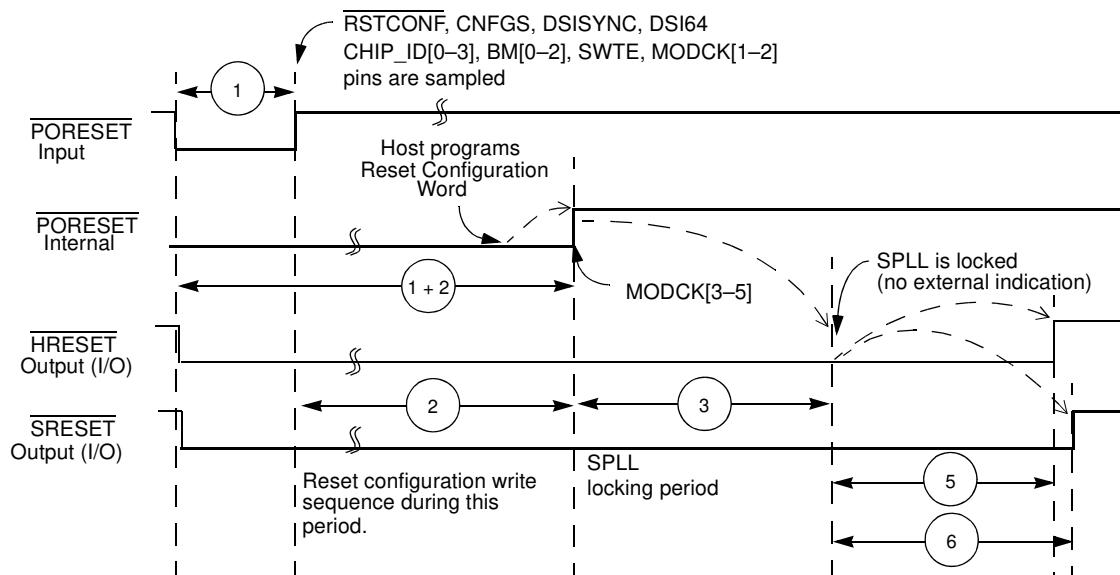

2.5.4.3 Reset Timing Tables

Table 12 and Figure 9 describe the reset timing for a reset configuration write through the direct slave interface (DSI) or through the system bus.

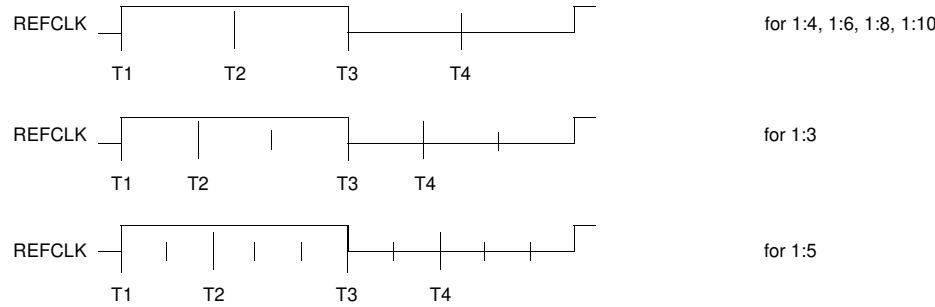
Table 12. Timing for a Reset Configuration Write through the DSI or System Bus

No.	Characteristics	Expression	Min	Max	Unit
1	Required external <u>PORESET</u> duration minimum <ul style="list-style-type: none"> • CLKIN = 20 MHz • CLKIN = 133 MHz (400 MHz core) • CLKIN = 166 MHz (500 MHz core) 	16/CLKIN	800 120 96	800 — —	ns ns ns
2	Delay from deassertion of external <u>PORESET</u> to deassertion of internal <u>PORESET</u> <ul style="list-style-type: none"> • CLKIN = 20 MHz to 166 MHz 	1024/CLKIN		6.17	51.2 μ s
3	Delay from de-assertion of internal <u>PORESET</u> to SPLL lock <ul style="list-style-type: none"> • CLKIN = 20 MHz (RDF = 1) • CLKIN = 133 MHz (RDF = 2) (400 MHz core) • CLKIN = 166 MHz (RDF = 2) (500 MHz core) 	6400/(CLKIN/RDF) (PLL reference clock-division factor)	320 96 77	320 96 77	μ s μ s μ s
5	Delay from SPLL to <u>HRESET</u> deassertion <ul style="list-style-type: none"> • REFCLK = 40 MHz to 166 MHz 	512/REFCLK	3.08	12.8	μ s
6	Delay from SPLL lock to <u>SRESET</u> deassertion <ul style="list-style-type: none"> • REFCLK = 40 MHz to 166 MHz 	515/REFCLK	3.10	12.88	μ s
7	Setup time from assertion of <u>RSTCONF</u> , CNFGS, DSISYNC, DS164, CHIP_ID[0-3], BM[0-2], SWTE, and MODCK[1-2] before deassertion of <u>PORESET</u>		3	—	ns
8	Hold time from deassertion of <u>PORESET</u> to deassertion of <u>RSTCONF</u> , CNFGS, DSISYNC, DS164, CHIP_ID[0-3], BM[0-2], SWTE, and MODCK[1-2]		5	—	ns

Note: Timings are not tested, but are guaranteed by design.

Figure 9. Timing Diagram for a Reset Configuration Write

2.5.5 System Bus Access Timing


2.5.5.1 Core Data Transfers

Generally, all MSC8126 bus and system output signals are driven from the rising edge of the reference clock (REFCLK). The REFCLK is the CCLKIN signal. Memory controller signals, however, trigger on four points within a REFCLK cycle. Each cycle is divided by four internal ticks: T1, T2, T3, and T4. T1 always occurs at the rising edge of REFCLK (and T3 at the falling edge), but the spacing of T2 and T4 depends on the PLL clock ratio selected, as **Table 13** shows.

Table 13. Tick Spacing for Memory Controller Signals

BCLK/SC140 clock	Tick Spacing (T1 Occurs at the Rising Edge of REFCLK)		
	T2	T3	T4
1:4, 1:6, 1:8, 1:10	1/4 REFCLK	1/2 REFCLK	3/4 REFCLK
1:3	1/6 REFCLK	1/2 REFCLK	4/6 REFCLK
1:5	2/10 REFCLK	1/2 REFCLK	7/10 REFCLK

Figure 10 is a graphical representation of **Table 13**.

Figure 10. Internal Tick Spacing for Memory Controller Signals

The UPM machine and GPCM machine outputs change on the internal tick selected by the memory controller configuration. The AC timing specifications are relative to the internal tick. SDRAM machine outputs change only on the REFCLK rising edge.

Table 14. AC Timing for SIU Inputs

No.	Characteristic	Value for Bus Speed in MHz			Units
		Ref = CLKIN		Ref = CLKOUT	
		133	166	133	
10	Hold time for all signals after the 50% level of the REFCLK rising edge	0.5	0.5	0.5	ns
11a	ARTRY/ABB set-up time before the 50% level of the REFCLK rising edge	3.0	3.0	3.0	ns
11b	DBG/DBB/BG/BR/TC set-up time before the 50% level of the REFCLK rising edge	3.3	3.3	3.3	ns
11c	AACK set-up time before the 50% level of the REFCLK rising edge	2.9	2.9	2.9	ns
11d	TA/TEA/PSDVAL set-up time before the 50% level of the REFCLK rising edge <ul style="list-style-type: none"> • Data-pipeline mode • Non-pipeline mode 	3.4 4.0	3.4 4.0	3.4 4.0	ns ns
12	Data bus set-up time before REFCLK rising edge in Normal mode <ul style="list-style-type: none"> • Data-pipeline mode • Non-pipeline mode 	1.8 4.0	1.7 4.0	1.8 4.0	ns ns
13 ¹	Data bus set-up time before the 50% level of the REFCLK rising edge in ECC and PARITY modes <ul style="list-style-type: none"> • Data-pipeline mode • Non-pipeline mode 	2.0 7.3	2.0 7.3	2.0 7.3	ns ns
14 ¹	DP set-up time before the 50% level of the REFCLK rising edge <ul style="list-style-type: none"> • Data-pipeline mode • Non-pipeline mode 	2.0 6.1	2.0 6.1	2.0 6.1	ns ns
15a	TS and Address bus set-up time before the 50% level of the REFCLK rising edge <ul style="list-style-type: none"> • Extra cycle mode (SIUBCR[EXDD] = 0) • No extra cycle mode (SIUBCR[EXDD] = 1) 	3.6 5.0	3.6 5.0	3.8 5.0	ns ns
15b	Address attributes: TT/TBST/TSZ/GBL set-up time before the 50% level of the REFCLK rising edge <ul style="list-style-type: none"> • Extra cycle mode (SIUBCR[EXDD] = 0) • No extra cycle mode (SIUBCR[EXDD] = 1) 	3.5 4.4	3.5 4.4	3.5 4.4	ns ns
16	PUPMWAIT signal set-up time before the 50% level of the REFCLK rising edge	3.7	3.7	3.7	ns
17	IRQx setup time before the 50% level of the REFCLK rising edge ³	4.0	4.0	4.0	ns
18	IRQx minimum pulse width ³	6.0 + T _{REFCLK}	6.0 + T _{REFCLK}	6.0 + T _{REFCLK}	ns
Notes:					
1. Timings specifications 13 and 14 in non-pipeline mode are more restrictive than MSC8102 timings. 2. Values are measured from the 50% TTL transition level relative to the 50% level of the REFCLK rising edge. 3. Guaranteed by design					

Table 15. AC Timing for SIU Outputs

No.	Characteristic	Value for Bus Speed in MHz			Units
		Ref = CLKIN		Ref = CLKOUT	
		133	166	133	
30 ²	Minimum delay from the 50% level of the REFCLK for all signals	0.8	0.8	1.0	ns

Table 15. AC Timing for SIU Outputs (continued)

No.	Characteristic	Value for Bus Speed in MHz			Units
		Ref = CLKIN		Ref = CLKOUT	
		133	166	133	
31	PSDVAL/TEA/T _A max delay from the 50% level of the REFCLK rising edge	4.9	4.9	5.8	ns
32a	Address bus max delay from the 50% level of the REFCLK rising edge <ul style="list-style-type: none"> Multi-master mode (SIUBCR[EBM] = 1) Single-master mode (SIUBCR[EBM] = 0) 	5.5 4.2	5.5 3.9	6.4 5.1	ns ns
32b	Address attributes: TT[0–1]/TBST/TSZ/GBL max delay from the 50% level of the REFCLK rising edge	5.1	5.1	6.0	ns
32c	Address attributes: TT[2–4]/TC max delay from the 50% level of the REFCLK rising edge	5.7	5.7	6.6	ns
32d	BADDR max delay from the 50% level of the REFCLK rising edge	4.2	4.2	5.1	ns
33a	Data bus max delay from the 50% level of the REFCLK rising edge <ul style="list-style-type: none"> Data-pipeline mode Non-pipeline mode 	3.9 6.1	3.7 6.1	4.8 7.0	ns ns
33b	DP max delay from the 50% level of the REFCLK rising edge <ul style="list-style-type: none"> Data-pipeline mode Non-pipeline mode 	5.3 6.5	5.3 6.5	6.2 7.4	ns ns
34	Memory controller signals/ALE/CS[0–4] max delay from the 50% level of the REFCLK rising edge	4.2	3.9	5.1	ns
35a	DBG/BG/BR/DBB max delay from the 50% level of the REFCLK rising edge	4.7	4.7	5.6	ns
35b	AACK/ABB/TS/CS[5–7] max delay from the 50% level of the REFCLK rising edge	4.5	4.5	5.4	ns

Notes:

- Values are measured from the 50% level of the REFCLK rising edge to the 50% signal level and assume a 20 pF load except where otherwise specified.
- Except for specification 30, which is specified for a 10 pF load, all timings in this table are specified for a 20 pF load. Decreasing the load results in a timing decrease at the rate of 0.3 ns per 5 pF decrease in load. Increasing the load results in a timing increase at the rate of 0.15 ns per 5 pF increase in load.
- The maximum bus frequency depends on the mode:
- In 60x-compatible mode connected to another MSC8126 device, the frequency is determined by adding the input and output longest timing values, which results in the total delay for 20 pF output capacitance. You must also account for other influences that can affect timing, such as on-board clock skews, on-board noise delays, and so on.
 - In single-master mode, the frequency depends on the timing of the devices connected to the MSC8126.
 - To achieve maximum performance on the bus in single-master mode, disable the DBB signal by writing a 1 to the SIUMCR[BDD] bit. See the SIU chapter in the *MSC8122 Reference Manual* for details.

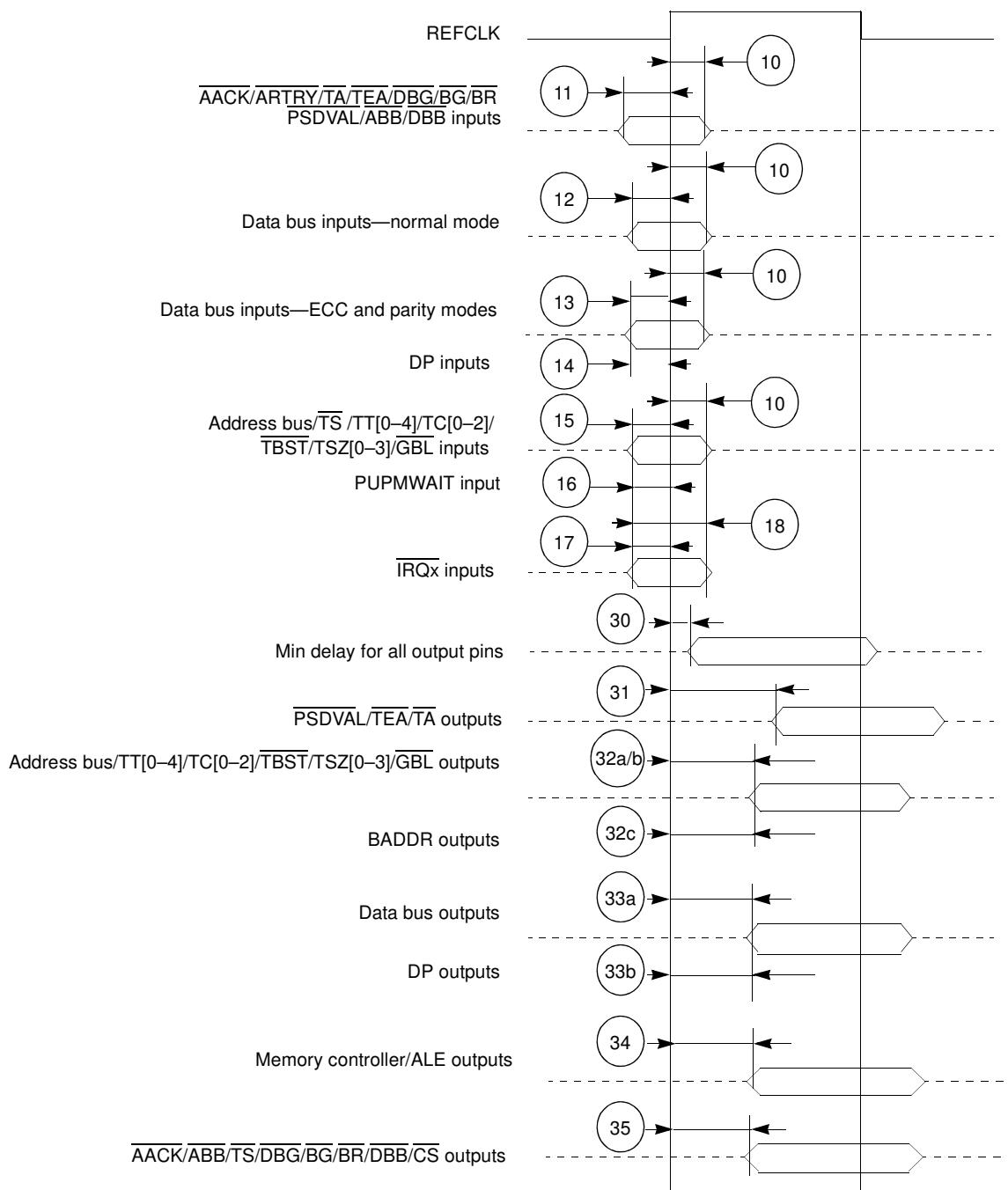


Figure 11. SIU Timing Diagram