

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

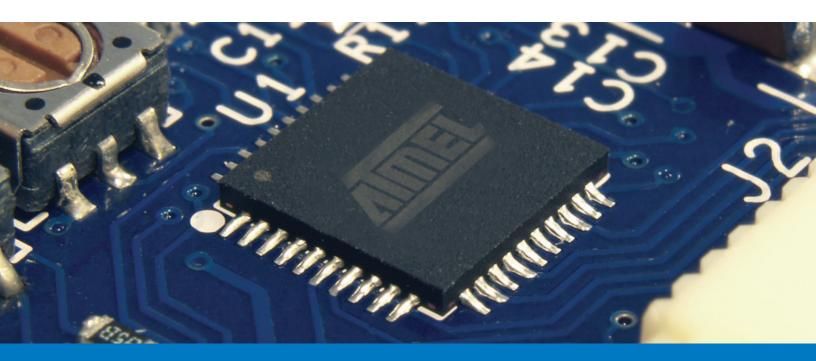
With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com


Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Compact, 6-channel LED Driver Board with I²C Interface

Datasheet

General Description

The Atmel® compact, 6-channel LED driver board is a complete LED backlight driver solution using the Atmel LED Driver-MSL 1061 LED driver for medium-sized LCD panels. Each channel drives up to 12 series-connected LEDs at up to 30mA per channel. The diver board is configured to operate from 3.3V up to 28V. The fullscale LED current is preset to 15, 20, 25, or 30mA per LED string, selected by an onboard switch. Current can be reduced from full-scale through the I²C serial interface in 16 linear steps. Digital (PWM) dimming is available through an external signal or by using the internal PWM generator via the serial interface.

Atmel LED Driver-MSLB9061 LED Driver Module

Compact, 6-channel LED Driver Board with I²C Interface

The optional microcontroller board and graphical user interface (GUI) software allow control of the driver board through a personal computer. This gives access to the internal features of the MSL1061, including fault detection, digital control of LED current, individual LED string on/off control, and internally generated PWM dimming.

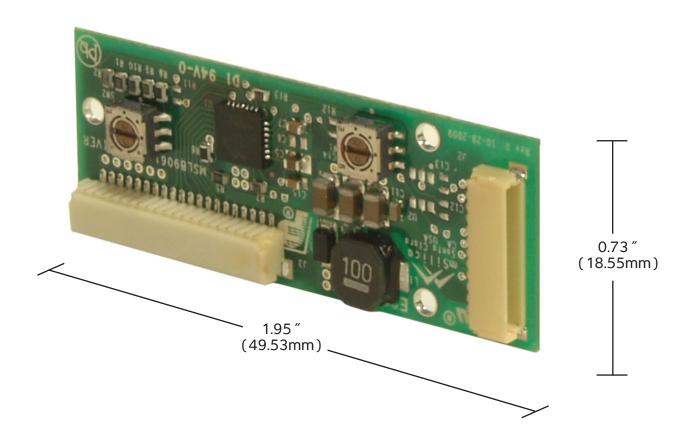
The compact six-channel LED driver board is intended for evaluation, prototyping, or production runs. Gerber files and Cadence OrCAD layout files are available to allow the circuit to be integrated into a larger system for large production runs.

Applications

LCD Panel LED Backlight Driver

Ordering Information

PART	DESCRIPTION
MSLB9061	Compact, 6-channel LED driver module


Compact, 6-channel LED Driver Board with I²C Interface

Key Features

- Drives up to 6 LED Strings
- Up to 12 LEDs per String
- Up to 30mA per LED String
- I²C Serial Interface
- Fault Detection and Protection
- 3.3 to 28V Input Voltage Range
- Up to 7.2W Output Power
- Small Size, 1.95" X 0.73"
- Four Available I²C Slave Addresses, Switch Selectable

- Four Full-scale Current Settings, Switch Selectable
- Separate Bias and Power Inputs Allows a Variety Of Configurations
- 1Mhz Switching Frequency
- Internal Or External PWM Dimming Control
- · Digital Control of LED String Current
- Individual LED String On/Off Digital Control
- Short Circuit or Open Circuit LED String Detection
- Automatic Overvoltage Protection

LED Driver Board

Mechanical Drawing

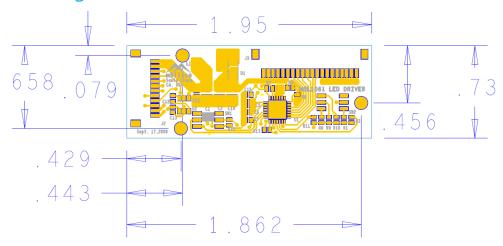


Figure 1. Atmel® LED Driver-MSLB9061 Mechanical Drawing. All Dimensions in Inches.

Connector Pin Descriptions

Table 1. J2 Input Connector Pin Descriptions

PIN NAME	PIN NUMBER	PIN DESCRIPTION			
PWR	1,2	Input power to integrated boost regulator circuit			
HVBIAS	3	Input to integrated LDO bias voltage regulator			
LVBIAS	4	Input to MSL1061 bias voltage			
DOUBLE	5	nput to charge pump doubler bias input			
SDA	6	² C serial data			
SCL	7	² C serial clock			
FLTB	8	Fault indication output			
EN	9	Enable control input			
PWM	10	PWM dimming control input			
GND	11,12	Ground			

Table 2. J3 Output Connector Pin Descriptions

PIN NAME	PIN NUMBER	PIN DESCRIPTION				
GND	1-8	Ground				
STR6	9	LED string 6 cathode connection				
STR5	10	ED string 5 cathode connection				
STR4	11	LED string 4 cathode connection				
STR3	12	LED string 3 cathode connection				
STR2	13	LED string 2 cathode connection				
STR1	14	LED string 1 cathode connection				
VLED	15-20	LED sting anode output voltage				

Compact, 6-channel LED Driver Board with I²C Interface

Absolute Maximum Ratings

Voltage (With Respect to GND)

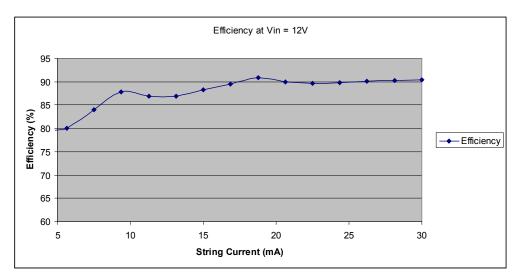
	STR1-STR6	0.3V to +50V
	VLED	0.3V to +40V
	PWR, HVBIAS	0.3V to +36V
	BIAS, EN, PWM, SDA, SCL, FLTBC).3V to +5.5V
Ar	Ambient operating temperature range $T_A = T_{MIN}$ to T_{MAX}	0°C to +50°C

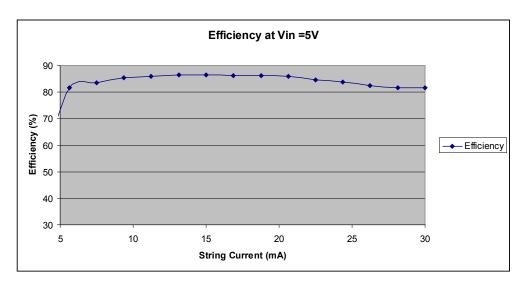
Table 3: Electrical Operating Characteristics

(Typical application circuit, VIN = 12V, $T_A = T_{MIN}$ to $T_{MAX'}$ unless otherwise noted. Typical values are at $T_A = +25$ °C)

PARAMETER	CONDITIONS AND NOTES	MIN	TYP	MAX	UNIT
DC ELECTRICAL CHARACTERISTICS					
Power input voltage	(Note 1)	3.3V		28	V
HVBIAS input voltage	Bias voltage applied to HVBIAS, BIAS unconnected	6.5		28	V
BIAS input voltage	HVBIAS and BIAS inputs connected with bias voltage applied	4.5		6	V
DOUBLE input voltage	HVBIAS and BIAS inputs connected together, bias voltage applied to DOUBLE	3.1		3.6	V
EN logic input high level		2.3			V
EN logic input low level				0.8	V
PWM, SDA, SCL input high voltage		2			V
PWM, SDA, SCL Input low voltage				0.9	V
FLTB output low voltage	I _{FLTB} = 1mA			0.1	V
FLTB leakage current	V _{FLTB} = 3.6V			1	Α
	ISTR <i>n</i> = 0x0F, S2 position 1		30		mA
CTD4 CTD6 output output	ISTRn = 0x0F, S2 position 2		25		mA
STR1-STR6 output current	ISTR <i>n</i> = 0x0F, S2 position 3		15		mA
	ISTRn = 0x0F, S2 position 4		10		mA

PARAMETER	CONDITIONS AND NOTES	MIN	TYP	MAX	UNIT
AC ELECTRICAL CHARACTERISTICS					
PWM input frequency				20	kHz




PARAMETER	CONDITIONS AND NOTES	MIN	TYP	MAX	UNIT
I ² C SWITCHING CHARACTERISTICS					
SCL clock frequency	I ² C timeout disabled (Note 2)			1000	kHz
Bus timeout			25		ms
Bus free time between a STOP and START condition		0.5			μs
Hold time for a repeated START condition		0.26			μs
Set-up time for a repeated START condition		0.26			μs
Set-up time for STOP condition		0.26			μs
Data hold time		10			ns
Data valid acknowledge time	(Note 3)	0.05		0.45	μs
Data valid time	(Note 4)	0.05		0.45	μs
Data set-up time		100			ns
LOW period of the SCL clock		0.5			μs
HIGH period of the SCL clock		0.26			μs
Fall time of SDA and SCL signals	(Note 5,6)			120	ns
Rise time of both SDA and SCL signals				120	ns
Pulse width of spikes that must be suppressed by the input filter	(Note 7)		50		ns
SDA, SCL, AD0 input capacitance			10		pF

- Note 1. Full power available with PWR input voltage greater than 6.5V. For 3.1V to 3.6V operation, doubling charge pump(U2) and C12, C13 are required.
- Note 2. Minimum SCL clock frequency is limited by the bus timeout feature, which resets the serial bus interface if either SDA or SCL is held low for 25ms. Disable bus timeout feature for DC operation.
- Note 3. Time for acknowledge signal from SCL low to SDA (out) low.
- Note 4. Minimum time for SDA data out to be valid following SCL low.
- Note 5. A master device must internally provide a hold time of at least 300ns for the SDA signal (refer to the $V_{\rm L}$ of the SCL signal) in order to bridge the undefined region of SCL falling edge.
- Note 6. The maximum fall times for the SDA and SCL bus lines are specified at 300ns. The maximum fall time for the SDA output stage is specified at 250ns. This allows series protection resistors to be connected between SDA and SCL and the SDA/SCL bus lines without exceeding the maximum specified tall time.
- Note 7. Input filters on the SDA, SCL, and AD0 inputs suppress noise less than 50ns.

Compact, 6-channel LED Driver Board with I²C Interface

Typical Performance Characteristics

Detailed Description

The MSLB9061 is a standalone, six-channel LED driver board suitable for integration into small production devices. It includes an I²C serial interface for accessing the digital features of the MSL1061 LED driver. Onboard switches set the I²C slave address to one of four available addresses and the full-scale LED current to 30, 25, 15, or 10mA.

Input Power

The MSLB9061 board is powered from input voltages ranging from 3.3 up to 28V, and the integral boost regulator power is separate, allowing operation with separate bias and power input voltages for improved efficiency or operation from a single input power source for simplicity. Full power is available for power (PWR) input voltage greater than 6.5V.

Single Input Voltage Configuration

The MSLB9061 board can be powered from a single input voltage source. The configuration depends on the input voltage range. The three available configurations are:

- Input voltage between 5.5V and 28V. Apply the input voltage to the PWR and HVBIAS inputs, J2 pins 1, 2, and 3, simultaneously. Leave BIAS and DOUBLE, J2 pins 4 and 5, unconnected. Full power is available in this configuration with an input voltage greater than 6.5V.
- Input voltage between 4.5V and 6V. Apply the input voltage to the PWR, HVBIAS, and BIAS inputs, J2 pins 1, 2, 3, and 4, simultaneously. Leave DOUBLE, J2 pin 5, unconnected. Full power is not available in this configuration.
- Input voltage between 3.1V and 3.6V. Apply the input voltage to the PWR and DOUBLE inputs, J2 pins 1, 2, and 5. Connect the BIAS and HVBIAS inputs, J2 pins 3 and 4, together, but do not apply voltage. Full power is not available in this configuration.

Separate Power and Bias Input Configuration

The MSLB9061 board can be powered from separate power and bias input voltage sources. With input

bias voltage below the input power voltage, power dissipation is reduced for improved power efficiency. In all cases, apply the power input voltage to the PWR inputs, J2 pins 1 and 2. Full output power is available for an input voltage greater than 6.5V. The three available bias configurations are:

- 5.5V to 28V bias input voltage. Connect the bias voltage to the HVBIAS input, J2 pin 3. Leave BIAS and DOUBLE inputs, J2 pins 4 and 5, unconnected.
- 4.5V to 6V bias input voltage. Connect the bias voltage to the HVBIAS and BIAS inputs, J2 pins 3 and 4, simultaneously. Leave DOUBLE, J2 pin 5, unconnected.
- 3.1V to 3.6V bias input voltage. Connect the bias voltage to DOUBLE, J2 pin 5. Connect the HVBIAS and BIAS inputs, J2 pins 3 and 4, together, but do not apply voltage.

I²C Serial Interface

The MSLB9061 driver board uses an I²C/SMBus serial interface for digital LED control and fault detection. Four slave ID addresses are available, and are selected by the I²C address selection switch. The addresses are shown in Table 4.

Compact, 6-channel LED Driver Board with I²C Interface

Table 4: I²C Slave Address Switch (S1) Settings

ADDRESS SWITCH S1 POSITION	I ² C SLAVE ADDRESS	ADDRESS SWITCH S1 POSITION	I ² C SLAVE ADDRESS
Position 1	1100_000 (binary)	Position 3	1100_010 (binary)
Position 2	1100_011 (binary)	Position 4	1100_001 (binary)

There are a number of features available through the I²C serial interface. Table 5 shows the registers for the MSL1061 LED driver.

Table 5. Atmel LED Driver-MSL1061 Register Map

REGISTER	ADDRESS					BIT				DESCRIPTION
NAME	ADDRESS	D7	D6	D5	D4	D3	D2	D1	D0	DESCRIPTION
MSTRCNTRL	0x00	-	-	-	-	-	-	-	SLEEP	Sleep enable
CNTRL	0x01	-	-	-	-	INTPWM	EXTCLK	TOEN	FLTEN	Internal/external generated PWM, internal/external clock, I ² C timeout and fault pin enable.
STATUS	0x03	-	OTDET	SCDET	OCDET	ı	-	-	FLTDET	Open/short detect, over-temperature detect.
OCSTATUS	0x04	-	-	OC6	OC5	OC4	OC3	OC2	OC1	LED open circuit detected on STR6 – STR1
SCSTATUS	0x05	-	-	SC6	SC5	SC4	SC3	SC1	SC0	LED short circuit to VOUT detected on STR6 – STR1
PWMFREQ	0x06	D7	D6	D5	D4	D3	D2	D1	D0	Internal PWM frequency (prescaler) generator
PWMDUTY	0x07	D7	D6	D5	D4	D3	D2	D1	D0	Internal PWM duty cycle generator
STREN	0x09	-	-	STR6EN	STR5EN	STR4EN	STR3EN	STR2EN	STR1EN	String enable, shutdown control
IDAC	0x10	-	-	-	-	DAC3	DAC2	DAC1	DAC0	4-bit current DAC

For detailed descriptions of the Atmel LED Driver-MSL1061 register-controlled operating modes, see the Atmel LED Driver-MSL1061 Datasheet.

Compact, 6-channel LED Driver Board with I²C Interface

On/Off (EN) Control Input

The on/off control Input, pin 9 of input connector J2, turns on/off the LED driver. Drive it high (between 2.3 and 5V) to turn on the LED driver, and drive it low (0 to 0.8V) to turn it off. The on/off control input is internally pulled up by a $100k\Omega$ resistor. For automatic start-up, leave it unconnected.

PWM Control Input

The input connector, J2, pin 10, is the PWM control input. Drive PWM with a digital signal to pulse-width modulate (PWM) the LED brightness. When using the internal PWM generator, the PWM input signal is ignored. The PWM input is pulled high through a $100\text{k}\Omega$ resistor. If not used, leave PWM unconnected or drive it high.

Fault Indicator Output

The MSL1061 includes fault detection circuitry that detects an open-circuited LED string or an LED string with one or more short-circuited LEDs. If any fault is detected, the fault indicator output is driven low. Use this output as an alert signal to a system controller. Once the controller gets the alert signal, it determines which LED is faulty by reading the STATUS, OCSTATUS, and SCSTATUS registers through the I²C serial interface.

Connecting the LEDs to the Atmel LED Driver-MSLB9061 LED Driver

The MSLB9061 driver board drives LED arrays with up to six parallel strings of up to 12 series LEDs each through the output connector, J3. Six connections for LED cathode connections allow the use of separate LED strings, or commonanode-connected LED strings. Connect unused LED cathode string connections (J3 pins 9-14) to GND to disable that LED string. J3 pins 1-8 are provided for this purpose so that unused string cathode connections are connected to GND through the wiring harness.

Setting the Full-Scale LED Current

The MSL1061 regulates the LED string current. The LED string current is set by a current sense resistor. Four different values are programmed to the MSLB9061 LED driver module, and the switch S2 selects one of those resistors to set the full-scale per-string LED current to 10mA, 15mA, 25mA or 30mA. Table 6 shows the switch settings and the full-scale per-string LED current for each setting.

Table 6: Full-Scale Per-String LED Current (S2) Settings

Full-Scale LED Current Switch S2 Position	Full-Scale Per-String LED Current	Full-Scale LED Current Switch S2 Position	Full-Scale Per-String LED Current
Position 1	30mA	Position 3	15mA
Position 2	25mA	Position 4	10mA

Driving LEDs with Greater than 30mA LED Current

The maximum current available from each LED driver is 30mA. When using LEDs that require greater than 30mA, connect multiple LED drivers in parallel to drive a single LED string. The LED string current is the sum of the LED driver currents. Table 7 shows a list of the higher currents that can be supported by this board.

Table 7. Settings for Higher Currents

Current	# of Strings	EVU-MSL1061		
40mA	2	2 x 20mA x 2 strings		
	3	2 x 20mA x 3 strings		
50mA	2	2 x 25mA x 2 strings		
	3	2 x 25mA x 3 strings		
60mA 2		2 x 30mA x 2 strings		
	3	2 x 30mA x 3 strings		

Compact, 6-channel LED Driver Board with I²C Interface

Atmel LED Driver-MSLB9061 Schematic

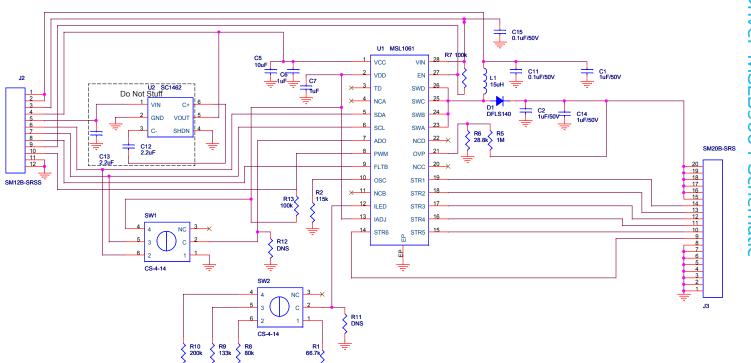
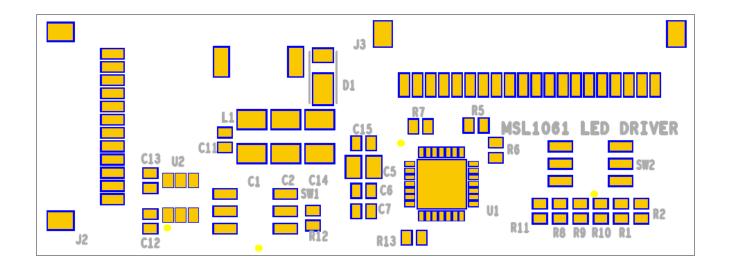



Figure 2: Atmel LED Driver-MSLB9061 Board Schematic.

Atmel LED Driver-MSLB9061 $\frac{1}{3}$

Atmel LED Driver-MSLB9061 Component Placement

Compact, 6-channel LED Driver Board with I²C Interface

Atmel LED Driver-MSLB9061 Bill of Materials

REF	QTY	DESCRIPTION	MANUFACTURER MANUFACTURER		
C1, C2, C14	3	Capacitor, ceramic, 1µF, 50V, X7R, 1206	Murata GRM31CR71H105KA61L or equivalent		
C5, C13*	2	Capacitor, ceramic, 10µF, 6.3V, X7R, 0805	Murata GRM21BR70J206KE76L or equivalent		
C6, C7	2	Capacitor, ceramic, 1µF, 10V, X7R, 0603	Murata GRM188R7A105KA61	D or equivalent	
C11, C15	2	Capacitor, ceramic, 0.1µF, 50V, X7R, 0603	Murata GRM188R71H104KAS	3D or equivalent	
C12*	1	Capacitor, ceramic, 2.2µF, 10V, X7R, 0603	Murata GRM188R71A225KE1	5D or equivalent	
D1	1	Rectifier, Schottky, 1A, 40V, Power-Di 123	Diodes Inc. DFLS140L-7 or ed	quivalent	
J3	1	Connector, 12-position, 1.0mm spacing, low profile	JST SM12B-SRSS-TB		
J3	1	Connector, 20-position, 1.0mm spacing, low profile	JST SM20B-SRSS-TB		
L1	1	Inductor, 15µH, 1.4A, CDRH5D28R/HP	Sumida CDRH5D28R/HP-150 or equivalent		
R1	1	Resistor, 66.5KΩ, 1%, 0603	Rohm MCR03EZPFX6652 or equivalent		
R2	1	Resistor, 115KΩ, 1%, 0603	Rohm MCR03EZPFX1153 or	equivalent	
R5	1	Resistor, 1.00MΩ, 1%, 0603	Rohm MCR03EZPFX1004 or	equivalent	
R6	1	Resistor, 28.7KΩ, 1%, 0603	Rohm MCR03EZPFX2872 or	equivalent	
R7, R13	2	Resistor, 100KΩ, 1%, 0603	Rohm MCR03EZPFX1003 or	equivalent	
R8	1	Resistor, 80.6KΩ, 1%, 0603	Rohm MCR03EZPFX8062 or	equivalent	
R9	1	Resistor, 133KΩ, 1%, 0603	Rohm MCR03EZPFX1333 or	equivalent	
R10	1	Resistor, 200KΩ, 1%, 0603	Rohm MCR03EZPFX2003 or equivalent		
SW1, SW2	2	Switch, 4-position, rotary, surface mount, 4.5x5mm	Copal Electronics CS-4-14NTA or equivalent		
U1	1	LED driver with boost, six-channel, QFN55-28	MSL1061		
U2*	1	Doubling charge pump, SOT-23-6	Semtech SC1462ISKTR or eq	uivalent	

^{*} Foot print are available for optional use. Do not stuff.

Atmel Corporation

2325 Orchard Parkway San Jose, CA 95131

Tel: (+1)(408) 441-0311 **Fax:** (+1)(408) 487-2600

www.atmel.com

Atmel Asia Limited

Unit 01-5 & 16, 19F BEA Tower, Millennium City 5 418 Kwun Tong Road Kwun Tong, Kowloon HONG KONG

Tel: (+852) 2245-6100 **Fax:** (+852) 2722-1369

Atmel Munich GmbH

Business Campus Parkring 4 D-85748 Garching b. Munich GERMANY

Tel: (+49) 89-31970-0 **Fax:** (+49) 89-3194621

Atmel Japan

9F, Tonetsu Shinkawa Bldg. 1-24-8 Shinkawa Chuo-ku, Tokyo 104-0033 JAPAN

Tel: (+81)(3) 3523-3551 **Fax:** (+81)(3) 3523-7581

 $\ \odot$ 2011 Atmel Corporation. All rights reserved. / Rev.: MEM-MSLB9061DS1-E-US_06-11

Atmel®, logo and combinations thereof, and others are registered trademarks or trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estopped or otherwise, to any intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN THE ATMEL TERMS AND CONDITIONS OF SALES LOCATED ON THE ATMEL WEBSITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTION PARABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LABLE FOR ANY MARKET.
INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS AND PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and products descriptions at any time without notice. Atmel does not make any commitment to update the information contained herien. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.