

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

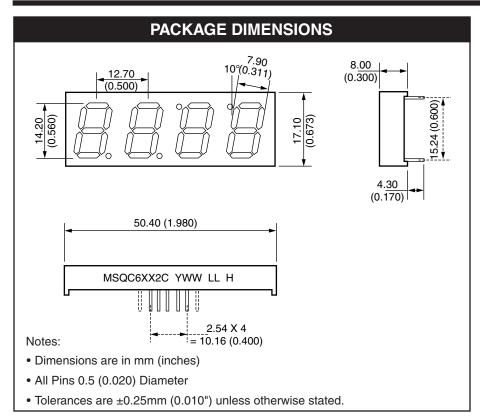
We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China



Bright Red MSQC6112C, MSQC6142C High Efficiency Red MSQC6912C, MSQC6942C Green MSQC6412C, MSQC6442C

Features

- · Bright Bold Segments
- · Common Anode/Cathode
- Low Power Consumption
- Low Current Capability
- High Performance
- High Reliability

Applications

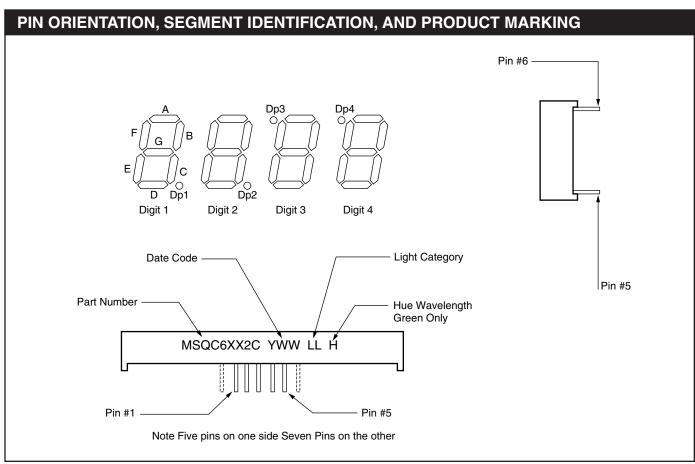
- Appliances
- Automotive
- Instrumentation
- Process Control

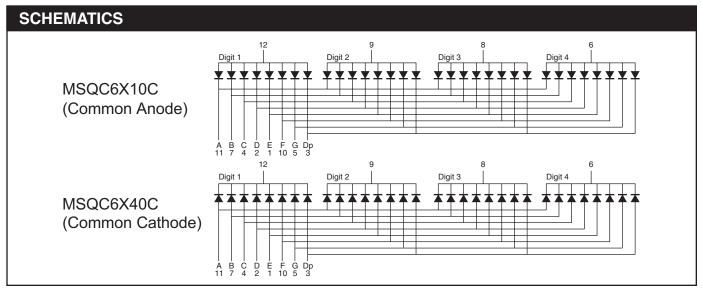
MODELS AVAILABLE					
Part Number	Colour	Description			
MSQC6112C	Bright Red	Clock Display, Common Anode, gray face, neutral segments			
MSQC6142C	Bright Red	Clock Display, Common Cathode, gray face, neutral segments			
MSQC6412C	Green	Clock Display, Common Anode, gray face, green segments			
MSQC6442C	Green	Clock Display, Common Cathode, gray face, green segments			
MSQC6912C	H.E.R	Clock Display, Common Anode, gray face, neutral segements			
MSQC6942C	H.E.R.	Clock Display, Common Cathode, gray face, neutral segments			

(For other colour options, contact your local area Sales Manager)

BRIGHT RED MSQC6112C, MSQC6142C HIGH EFFICIENCY RED MSQC6912C, MSQC6942C GREEN MSQC6412C, MSQC6442C

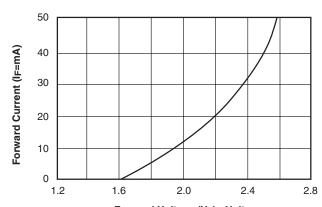
ABSOLUTE MAXIMUM RATINGS ⁽¹⁾ (T _A = 25°C, unless otherwise specified)									
Part Number Parameter	MSQC6112C MSQC6142C	MSQC6412C MSQC6442C	MSQC6912C MSQC6942C	Units					
Continuous Forward Current (each segment)	15	25	25	mA					
Peak Forward Current (F = 10KHz, D/F = 1/10)	60	90	90	mA					
Power Dissipation (P _D)	40	70	70	mW					
*Derate Linearly from 25°C	0.17	0.33	0.33	mW					
Reverse Voltage per Die			5 Volts						
Operating and Storage Temperature Range		-40°C to +85°C							
Lead soldering time (1/16 inch from standoffs)	5 seconds @ 23	0°C							

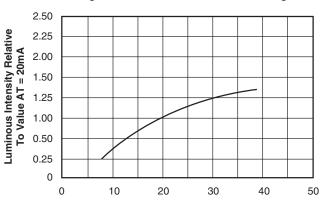

ELECTRO-OPTICAL CHARACTERISTICS ⁽¹⁾ (T _A = 25°C, unless otherwise specified)									
Part Number Parameter	MSQC6112C MSQC6142C	MSQC6412C MSQC6442C	MSQC6912C MSQC6912C	Units	Test Condition				
Luminous intensity ⁽²⁾ (I _V)									
Minimum (Standard Current)	300	800	800	μcd	I _F = 10mA				
Typical (Standard Current)	700	2400	2000	μcd	I _F = 10mA				
Minimum (Low Current)	Not Available								
Typical (Low Current) Not Available									
Forward Voltage (V _F)									
Typical (Standard Current)	2.10	2.10	2.00	V	I _F = 20mA				
Maximum (Standard Current)	2.80	2.80	2.80	V	I _F = 20mA				
Typical (Low Current)	Not Available								
Maximum (Low Current)	Not Available								
Peak Wavelength	695	570	635	nm	I _F = 20mA				
Dominant Wavelength	Not Available								
Spectral Line 1/2 Width	90	30	45	nm	I _F = 10mA				
Reverse B ⁽³⁾ . Voltage (V _R)	5	5	5	V	I _R = 100uA				


NOTES:

- (1) Data per individual LED element
- (2) Luminous intensity (ucd) = average light output per segment
- (3) B = breakdown

BRIGHT RED MSQC6112C, MSQC6142C HIGH EFFICIENCY RED MSQC6912C, MSQC6942C GREEN MSQC6412C, MSQC6442C



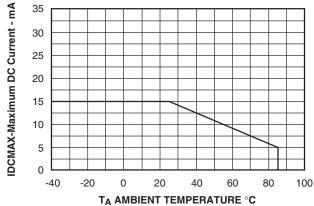
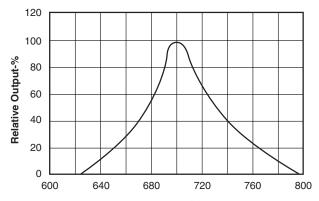
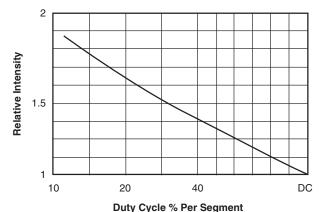


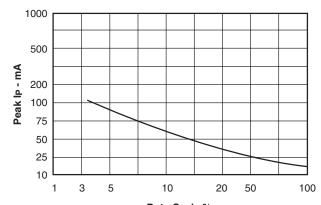
BRIGHT RED MSQC6112C, MSQC6142C HIGH EFFICIENCY RED MSQC6912C, MSQC6942C GREEN MSQC6412C, MSQC6442C

GRAPHICAL DATA Bright Red ($T_A = 25$ °C, unless otherwise specified)

Forward Voltage (VF) - Volts Fig. 1 Forward Current vs. Forward Voltage

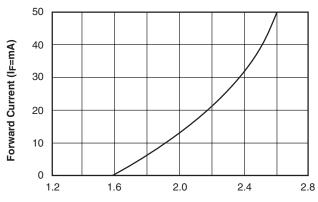
IF - Forward Current - mA
Fig. 3 Relative Luminous Intensity vs. Forward Current

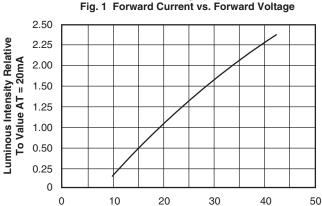

Fig. 4 Maximum Allowable DC Current per Segment vs. a Function of Ambient Temperature

Wavelength (λ)-nm Fig. 2 Spectral Response

(Average I_F = 10mA)
Fig. 5 Luminous Intensity vs. Duty Cycle



Duty Cycle % Fig. 6 Max Peak Current vs. Duty Cycle % (Refresh Rate f=1 KHz)

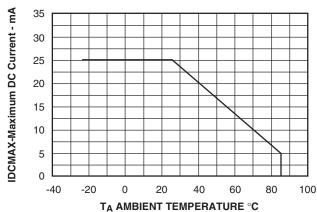
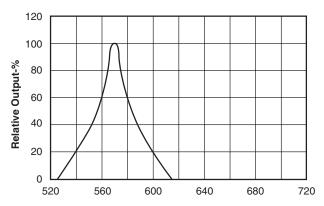


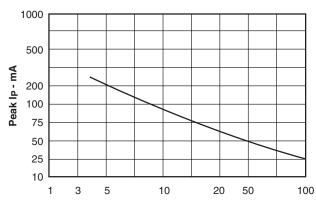
BRIGHT RED MSQC6112C, MSQC6142C HIGH EFFICIENCY RED MSQC6912C, MSQC6942C GREEN MSQC6412C, MSQC6442C

GRAPHICAL DATA Green (T_A = 25°C, unless otherwise specified)

Forward Voltage (VF) - Volts
ig. 1 Forward Current vs. Forward Voltage

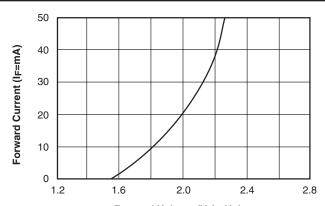
IF - Forward Current - mA
Fig. 3 Relative Luminous Intensity vs. Forward Current

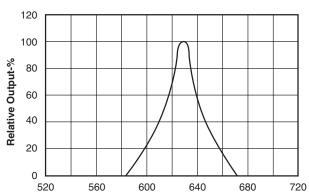


Fig. 4 Maximum Allowable DC Current per Segment vs. a Function of Ambient Temperature

Wavelength (λ)-nm Fig. 2 Spectral Response

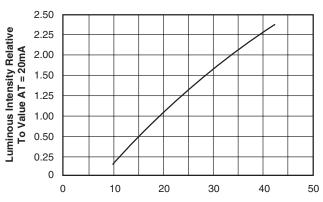
(Average I_F = 10mA)
Fig. 5 Luminous Intensity vs. Duty Cycle

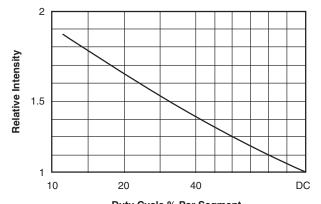


Duty Cycle % Fig. 6 Max Peak Current vs. Duty Cycle % (Refresh Rate f=1 KHz)



BRIGHT RED MSQC6112C, MSQC6142C HIGH EFFICIENCY RED MSQC6912C, MSQC6942C GREEN MSQC6412C, MSQC6442C


GRAPHICAL DATA High Efficiency Red ($T_A = 25$ °C, unless otherwise specified)


Forward Voltage (VF) - Volts Fig. 1 Forward Current vs. Forward Voltage

Wavelength (λ)-nm Fig. 2 Spectral Response

IF - Forward Current - mA
Fig. 3 Relative Luminous Intensity vs. Forward Current

Duty Cycle % Per Segment (Average I_F = 10mA) Fig. 5 Luminous Intensity vs. Duty Cycle

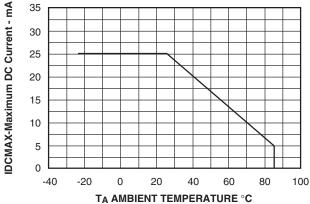
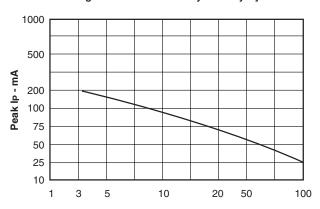



Fig. 4 Maximum Allowable DC Current per Segment vs.
a Function of Ambient Temperature

Duty Cycle %
Fig. 6 Max Peak Current vs. Duty Cycle %
(Refresh Rate f=1 KHz)

BRIGHT RED MSQC6112C, MSQC6142C HIGH EFFICIENCY RED MSQC6912C, MSQC6942C GREEN MSQC6412C, MSQC6442C

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.